首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arispe N  Diaz JC  Flora M 《Biophysical journal》2008,95(10):4879-4889
The opening of the Alzheimer's Aβ channel permits the flux of calcium into the cell, thus critically disturbing intracellular ion homeostasis. Peptide segments that include the characteristic histidine (His) diad, His13 and His14, efficiently block the Aβ channel activity, blocking Aβ cytotoxicity. We hypothesize that the vicinal His-His peptides coordinate with the rings of His in the mouth of the pore, thus blocking the flow of calcium ions through the channel, with consequent blocking of Aβ cytotoxicity. To test this hypothesis, we studied Aβ ion channel activity and cytotoxicity after the addition of compounds that are known to have His association capacity, such as Ni2+, imidazole, His, and a series of His-related compounds. All compounds were effective at blocking both Aβ channel and preventing Aβ cytotoxicity. The efficiency of protection of His-related compounds was correlated with the number of imidazole side chains in the blocker compounds. These data reinforce the premise that His residues within the Aβ channel sequence are in the pathway of ion flow. Additionally, the data confirm the contribution of the Aβ channel to the cytotoxicity of exogenous Aβ.  相似文献   

2.
Priming is an increase in soil organic carbon decomposition following input of labile organic carbon. In temperate soils where biological activity is limited commonly by nitrogen availability, priming is expected to occur through microbial acquisition of nitrogen from organic matter or stimulated activity of recalcitrant-carbon degrading microorganisms. However, these priming mechanisms have not yet been assessed in strongly weathered tropical forest soils where biological activity is often limited by the availability of phosphorus. We examined whether microbial nutrient limitation or community dynamics drive priming in three lowland tropical forest soils of contrasting fertility (‘low’, ‘mid’ and ‘high’) by applying C4-sucrose (alone or in combination with nutrients; nitrogen, phosphorus and potassium) and measuring (1) the δ13C-signatures in respired CO2 and in phospholipid fatty acid (PLFA) biomarkers, and (2) the activities of enzymes involved in nitrogen (N-acetyl β-glucosaminidase), phosphorus (phosphomonoesterase) and carbon (β-glucosidase, cellobiohydrolase, xylanase, phenol oxidase) acquisition from organic compounds. Priming was constrained in part by nutrient availability, because priming was greater when sucrose was added alone compared to when added with nutrients. However, the greatest priming with sucrose addition alone was detected in the medium fertility soil. Priming occurred in parallel with stimulated activity of phosphomonoesterase and phenol oxidase (but not N-acetyl β-glucosaminidase); when sucrose was added with nutrients there were lower activities of phosphomonoesterase and phenol oxidase. There was no evidence according to PLFA δ13C-incorporation that priming was caused by specific groups of recalcitrant-carbon degrading microorganisms. We conclude that priming occurred in the intermediate fertility soil following microbial mineralization of organic nutrients (phosphorus in particular) and suggest that priming was constrained in the high fertility soil by high nutrient availability and in the low fertility soil by the low concentration of soil organic matter amenable to priming. This first study of priming mechanisms in tropical forest soils indicates that input of labile carbon can result in priming by microbial mineralization of organic nutrients, which has important implications for understanding the fate of organic carbon in tropical forest soils.  相似文献   

3.
The synthesis of diazidopropidium and diazidoethidium is described. The applicability of these compounds as photoaffinity labels for cholinergic proteins has been investigated: diazidopropidium inhibits neuromuscular transmission. This inhibition is reversible if the compound is applied in the dark but becomes irreversible after irradiation with white light. Inhibition is accompanied by a disappearance of miniature endplate potentials. Electrophysiological analysis of this effect indicates that diazidopropidium acts postsynaptically by blocking the acetylcholine receptors. At the molecular level the action of diazidopropidium and diazidoethidium on acetylcholinesterase has been investigated: both compounds appear to bind to a peripheral acetylcholine binding site of this enzyme. Binding of 125I-labeled α-neurotoxin from Naja naja siamensis to purified membranes from Torpedo californica electric tissue rich in acetylcholine receptors is diminished after incubation and irradiation with diazidopropidium. About half of the toxin binding sites appear to be blocked by the photoaffinity label.  相似文献   

4.
Structural and functional characteristics of the yeast red pigment (product of polymerization of N1-(β-D-ribofuranosyl)-5-aminoimidazole), isolated from ade1 mutant cells of Saccharomyces cerevisiae and its deribosylated derivatives (obtained by acid hydrolysis) and its synthetic pigment analogue (product of polymerization of N1-methyl-5-aminoimidazole in vitro) were obtained. Products of in vitro polymerization were identified using mass spectrometry. The ability of these pigments to inhibit amyloid formation using insulin fibrils was compared. All the studied compounds are able to interact with amyloids and inhibit their growth. Electron and atomic force microscopy revealed a common feature inherent in the insulin fibrils formed in the presence of these compounds—they are merged into conglomerates more stable and resistant to the effects of ultrasound than are insulin aggregates grown without pigments. We suggest that all these compounds can cause coalescence of fibrils partially blocking the loose ends and, thereby, inhibit attachment of monomers and formation of new fibrils.  相似文献   

5.
A primer design strategy named CODEHOP (consensus-degenerate hybrid oligonucleotide primer) for amplification of distantly related sequences was used to detect the priming glycosyltransferase (GT) gene in strains of the Lactobacillus casei group. Each hybrid primer consisted of a short 3′ degenerate core based on four highly conserved amino acids and a longer 5′ consensus clamp region based on six sequences of the priming GT gene products from exopolysaccharide (EPS)-producing bacteria. The hybrid primers were used to detect the priming GT gene of 44 commercial isolates and reference strains of Lactobacillus rhamnosus, L. casei, Lactobacillus zeae, and Streptococcus thermophilus. The priming GT gene was detected in the genome of both non-EPS-producing (EPS) and EPS-producing (EPS+) strains of L. rhamnosus. The sequences of the cloned PCR products were similar to those of the priming GT gene of various gram-negative and gram-positive EPS+ bacteria. Specific primers designed from the L. rhamnosus RW-9595M GT gene were used to sequence the end of the priming GT gene in selected EPS+ strains of L. rhamnosus. Phylogenetic analysis revealed that Lactobacillus spp. form a distinctive group apart from other lactic acid bacteria for which GT genes have been characterized to date. Moreover, the sequences show a divergence existing among strains of L. rhamnosus with respect to the terminal region of the priming GT gene. Thus, the PCR approach with consensus-degenerate hybrid primers designed with CODEHOP is a practical approach for the detection of similar genes containing conserved motifs in different bacterial genomes.  相似文献   

6.
The increasing risk of drug-resistant bacterial infections indicates that there is a growing need for new and effective antimicrobial agents. One promising, but unexplored area in antimicrobial drug design is de novo purine biosynthesis. Recent research has shown that de novo purine biosynthesis in microbes is different from that in humans. The differences in the pathways are centered around the synthesis of 4-carboxyaminoimidazole ribonucleotide (CAIR) which requires the enzyme N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) synthetase. Humans do not require and have no homologs of this enzyme. Unfortunately, no studies aimed at identifying small-molecule inhibitors of N5-CAIR synthetase have been published. To remedy this problem, we have conducted high-throughput screening (HTS) against Escherichia coli N5-CAIR synthetase using a highly reproducible phosphate assay. HTS of 48,000 compounds identified 14 compounds that inhibited the enzyme. The hits identified could be classified into three classes based on chemical structure. Class I contains compounds with an indenedione core. Class II contains an indolinedione group, and Class III contains compounds that are structurally unrelated to other inhibitors in the group. We determined the Michaelis–Menten kinetics for five compounds representing each of the classes. Examination of compounds belonging to Class I indicates that these compounds do not follow normal Michaelis–Menten kinetics. Instead, these compounds inhibit N5-CAIR synthetase by reacting with the substrate AIR. Kinetic analysis indicates that the Class II family of compounds are non-competitive with both AIR and ATP. One compound in Class III is competitive with AIR but uncompetitive with ATP, whereas the other is non-competitive with both substrates. Finally, these compounds display no inhibition of human AIR carboxylase:SAICAR synthetase indicating that these agents are selective inhibitors of N5-CAIR synthetase.  相似文献   

7.
Potassium channels are essential for cell survival and regulate the cell membrane potential and electrochemical gradient. During its lifecycle, Plasmodium falciparum parasites must rapidly adapt to dramatically variant ionic conditions within the mosquito mid-gut, the hepatocyte and red blood cell (RBC) cytosols, and the human circulatory system. To probe the participation of K+ channels in parasite viability, growth response assays were performed in which asexual stage P. falciparum parasites were cultured in the presence of various Ca2+-activated K+ channel blocking compounds. These data describe the novel anti-malarial effects of bicuculline methiodide and tubocurarine chloride and the novel lack of effect of apamine and verruculogen. Taken together, the data herein imply the presence of K+ channels, or other parasite-specific targets, in P. falciparum-infected RBCs that are sensitive to blockade with Ca2+-activated K+ channel blocking compounds.  相似文献   

8.
Inhibition of α-glucosidase is an effective strategy for controlling post-prandial hyperglycemia in diabetic patients. Beside these α-glucosidase inhibitors has been also used as anti-obesity and anti-viral drugs. Keeping in view the greater importance of α-glucosidase inhibitors here in this study we are presenting oxindole based oxadiazoles hybrid analogs (1–20) synthesis, characterized by different spectroscopic techniques including 1H NMR and EI-MS and their α-glucosidase inhibitory activity. All compounds were found potent inhibitors for the enzyme with IC50 values ranging between 1.25 ± 0.05 and 268.36 ± 4.22 µM when compared with the standard drug acarbose having IC50 value 895.09 ± 2.04 µM. Our study identifies novel series of potent α-glucosidase inhibitors and further investigation on this may led to the lead compounds. A structure activity relationship has been established for all compounds. The interactions of the active compounds and enzyme active site were established with the help of molecular docking studies.  相似文献   

9.
LYMPHOCYTES from tumour-bearing animals are often cytotoxic in vitro against cultured tumour cells from the same individual1–4. It is possible that the serum of tumour-bearing hosts may contain circulating factors which interfere with the cell-mediated immune responses concerned in tumour rejection reactions5. Evidence has been provided by the demonstration that lymphocyte cytotoxicity against cultured tumour cells could be blocked by first exposing tumour cells to serum from tumour-bearing animals2,3; similar effects have also been observed in cancer patients6,7. The blocking factor in tumour-bearer serum has the characteristic properties of 7S immunoglobulins2, suggesting the involvement of tumour-specific antibody. Serum blocking activity is rapidly lost, however, in animals rendered tumour free and the activity of tumour-bearer serum can be neutralized by the addition of serum from these animals8,9. One explanation is that the blocking factor in tumour-bearer serum is antigen-antibody complex and the objective of these studies, using a transplanted rat hepatoma (D23), was to test directly whether such complexes prepared from solubilized tumour-specific antigen and antiserum exhibit blocking activity.  相似文献   

10.
Plant activators are agrochemicals that protect plants from a broad range of pathogens by activating the plant immune system. Unlike pesticides, they do not target pathogens; therefore, plant activators provide durable effects that are not overcome by pathogenic microbes. Although certain plant activators have been applied to paddy fields for more than 30 years, the molecular basis of the underlying immune induction are unclear. From the screening of 10,000 diverse chemicals by a high-throughput screening procedure to identify compounds that specifically enhance pathogen-induced cell death in Arabidopsis cultured cells, we identified 7 compounds, which we designated as immune priming chemicals (Imprimatins). These compounds increased disease resistance against pathogenic Pseudomonas bacteria in Arabidopsis plants. Pretreatments increased the accumulation of endogenous salicylic acid (SA) but reduced its metabolite, SA-O-β-D-glucoside (SAG). Imprimatins inhibited the enzymatic activities of 2 SA glucosyltransferases (SAGTs) in vitro at concentrations effective for immune priming. Single and double knockout Arabidopsis plants for both SAGTs consistently exhibited enhanced disease resistance and SA accumulation. Our results demonstrate that the control of the free SA pool through SA-inactivating enzymes can be a useful methodology to confer disease resistance in plants. SAGTs can pave the way for target-based discovery of novel crop protectants.  相似文献   

11.
The blockade of CLC-0 chloride channels by p-chlorophenoxy acetate (CPA) has been thought to be state dependent; the conformational change of the channel pore during the “fast gating” alters the CPA binding affinity. Here, we examine the mechanism of CPA blocking in pore-open mutants of CLC-0 in which the residue E166 was replaced by various amino acids. We find that the CPA-blocking affinities depend upon the volume and the hydrophobicity of the side chain of the introduced residue; CPA affinity can vary by three orders of magnitude in these mutants. On the other hand, mutations at the intracellular pore entrance, although affecting the association and dissociation rates of the CPA block, generate only a modest effect on the steady-state blocking affinity. In addition, various amphiphilic compounds, including fatty acids and alkyl sulfonates, can also block the pore-open mutants of CLC-0 through a similar mechanism. The blocking affinity of fatty acids and alkyl sulfonates increases with the length of these amphiphilic blockers, a phenomenon similar to the block of the Shaker K+ channel by long-chain quaternary ammonium (QA) ions. These observations lead us to propose that the CPA block of the open pore of CLC-0 is similar to the blockade of voltage-gated K+ channels by long-chain QAs or by the inactivation ball peptide: the blocker first uses the hydrophilic end to “dock” at the pore entrance, and the hydrophobic part of the blocker then enters the pore to interact with a more hydrophobic region of the pore. This blocking mechanism appears to be very general because the block does not require a precise structural fit between the blocker and the pore, and the blocking mechanism applies to the cation and anion channels with unrelated pore architectures.  相似文献   

12.
The 3-dimensional quantitative structure–activity relationship (3D-QSAR) molecular modeling technique or comparative molecular field analysis (CoMFA) has been used to design analogs of the natural product cryptolepine (1). Twenty-three compounds with their in vitro biological activities (IC50 values) against Crytococcus neoformans were used to generate the training set database of compounds for the CoMFA studies. The cross-validated q2, noncross-validated r2, and partial least squares (PLS) analysis results were used to predict the biological activity of 11 newly designed test set compounds. The best CoMFA model produced a q2 of 0.815 and an r2 of 0.976 indicating high statistical significance as a predictive model. The steric and electrostatic contributions from the contour map were interpreted from the color-coded contour plots generated from the PLS model and the active structural components for potency against C. neoformans were determined and validated in the test set compounds. The 3-substituted benzylthio quinolinium salts (4) that make up the test set were synthesized and evaluated based on the predicted activity from the CoMFA model and the results produced a good correlation between the predicted and experimental activity (R = 0.82). Thus, CoMFA has served as an effective tool to aid the design of new analogs and in this case, it has aided the identification of compounds equipotent with amphotericin B, the gold standard in antifungal drug design.  相似文献   

13.
Chaetomium globosum Kunze ex. Fries has been known to produce diverse bioactive metabolites, attracting researchers to exploit the biocontrol agent for plant disease management. However, distinct research gaps are visible regarding detail characterization of bioactive metabolites. Thus the current study has been planned to characterize volatile and nonvolatile compounds of most potential strain of C. globosum 5157. GC–MS analysis of hexane fraction revealed twenty-six volatile organic compounds, representing 65.5% of total components in which 3-octanone (21.4%) was found to be most abundant. UPLC-QTOF-MS/MS analysis of ethyl acetate and methanolic fractions resulted tentative characterization of fifteen and eleven metabolites, respectively. Among these, nine metabolites were isolated, purified and characterized using 1H NMR and High resolution mass spectrometric analysis to delineate mass fragmentation pattern for the first time. Antifungal potential of hexane fraction exhibited high inhibitory action against Sclerotium rolfsii (139.2 μg mL?1) whereas ethyl acetate fraction was highly effective against Sclerotinia sclerotiorum (112.1 μg mL?1). Comparative assessment of C. globosum 5157 vis a vis Trichoderma harzianum A28 revealed promising effect of C. globosum 5157 with respect to antifungal properties and plant growth promotion of Brassica seedlings.  相似文献   

14.
15.
In plants and animals, induced resistance (IR) to biotic and abiotic stress is associated with priming of cells for faster and stronger activation of defense responses. It has been hypothesized that cell priming involves accumulation of latent signaling components that are not used until challenge exposure to stress. However, the identity of such signaling components has remained elusive. Here, we show that during development of chemically induced resistance in Arabidopsis thaliana, priming is associated with accumulation of mRNA and inactive proteins of mitogen-activated protein kinases (MPKs), MPK3 and MPK6. Upon challenge exposure to biotic or abiotic stress, these two enzymes were more strongly activated in primed plants than in nonprimed plants. This elevated activation was linked to enhanced defense gene expression and development of IR. Strong elicitation of stress-induced MPK3 and MPK6 activity is also seen in the constitutive priming mutant edr1, while activity was attenuated in the priming-deficient npr1 mutant. Moreover, priming of defense gene expression and IR were lost or reduced in mpk3 or mpk6 mutants. Our findings argue that prestress deposition of the signaling components MPK3 and MPK6 is a critical step in priming plants for full induction of defense responses during IR.  相似文献   

16.
In a variety of tumour systems, individuals carrying progressively growing neoplasms have lymphoid cells with a specific cytotoxic effect on cultured tumour cells from the same individual1–4. Since the sera of tumour-bearing individuals have been shown to prevent tumour cell destruction by immune lymphocytes in vitro2,5–8 and since this serum blocking activity appears early in primary and transplant tumour development5,7, it has been suggested that the appearance of this serum blocking activity might be responsible for the progressive growth of tumours in individuals having cytotoxic lymphocytes. Counteraction of this blocking activity would thus be of primary importance in facilitating the function of an already existing or bolstered cell-mediated immunity. The serum blocking activity might be inhibited in various ways, by preventing the formation of blocking antibody or by interfering with its action (“unblocking”), as demonstrated in Moloney sarcoma regressor sera9. This type of serum also has a therapeutic effect on Moloney sarcomas in vivo10,11, which has been tentatively attributed to its unblocking activity8,9 or, possibly, to a complement-dependent cytotoxicity10. Tumour growth in the Moloney sarcoma system, however, might be due in part to continuous recruitment of neoplastic cells by virus-induced transformation and so the therapeutic effect could be due to a virus-neutralizing serum activity9,10.  相似文献   

17.
Application of levulinic acid (LA), a competitive inhibitor of δ-aminolevulinic acid (ALA) dehydratase, to greening plant tissues causes ALA to accumulate at the expense of chlorophyll. 4,6-Dioxoheptanoic acid (DA), which has been reported to be an effective inhibitor of this enzyme in animal systems, has a similar but more powerful effect on ALA and chlorophyll metabolism in greening leaves of Hordeum vulgare L. var. Larker. Both LA and DA also inhibit the uptake of [14C]amino acids into etiolated and greening barley leaves and reduce their incorporation into protein. Treatment of etiolated and greening leaves with these compounds results in the inhibition of 14CO2 evolution from labeled precursors, including amino and organic acids. Inhibition of 14CO2 evolution by these compounds is more effective in greening leaves than in etiolated leaves when [4-14C]ALA or [1-14C]glutamate are employed as precursors. Both LA and DA also inhibit the uptake and increase the incorporation of 32Pi into organophosphorus by etiolated barley leaves. These results indicate that LA and DA have more far-reaching effects upon plant metabolism than was previously believed.  相似文献   

18.
The prion protein (PrP) is implicated in the Transmissible Spongiform Encephalopathies (TSEs), which comprise a group of fatal neurodegenerative diseases affecting humans and other mammals. Conversion of cellular PrP (PrPC) into the scrapie form (PrPSc) is the hallmark of TSEs. Once formed, PrPSc aggregates and catalyzes PrPC misfolding into new PrPSc molecules. Although many compounds have been shown to inhibit the conversion process, so far there is no effective therapy for TSEs. Besides, most of the previously evaluated compounds failed in vivo due to poor pharmacokinetic profiles. In this work we propose a combined in vitro/in silico approach to screen for active anti-prion compounds presenting acceptable drugability and pharmacokinetic parameters. A diverse panel of aromatic compounds was screened in neuroblastoma cells persistently infected with PrPSc (ScN2a) for their ability to inhibit PK-resistant PrP (PrPRes) accumulation. From ∼200 compounds, 47 were effective in decreasing the accumulation of PrPRes in ScN2a cells. Pharmacokinetic and physicochemical properties were predicted in silico, allowing us to obtain estimates of relative blood brain barrier permeation and mutagenicity. MTT reduction assays showed that most of the active compounds were non cytotoxic. Compounds that cleared PrPRes from ScN2a cells, were non-toxic in the MTT assay, and presented a good pharmacokinetic profile were investigated for their ability to inhibit aggregation of an amyloidogenic PrP peptide fragment (PrP109–149). Molecular docking results provided structural models and binding affinities for the interaction between PrP and the most promising compounds. In summary, using this combined in vitro/in silico approach we have identified new small organic anti-scrapie compounds that decrease the accumulation of PrPRes in ScN2a cells, inhibit the aggregation of a PrP peptide, and possess pharmacokinetic characteristics that support their drugability. These compounds are attractive candidates for prion disease therapy.  相似文献   

19.

Aims and Background

While the temperature response of soil respiration (RS) has been well studied, the partitioning of heterotrophic respiration (RH) by soil microbes from autotrophic respiration (RA) by roots, known to have distinct temperature sensitivities, has been problematic. Further complexity stems from the presence of roots affecting RH, the rhizosphere priming effect. In this study the short-term temperature responses of RA and RH in relation to rhizosphere priming are investigated.

Methods

Temperature responses of RA, RH and rhizosphere priming were assessed in microcosms of Poa cita using a natural abundance δ13C discrimination approach.

Results

The temperature response of RS was found to be regulated primarily by RA, which accounted for 70 % of total soil respiration. Heterotrophic respiration was less sensitive to temperature in the presence of plant roots, resulting in negative priming effects with increasing temperature.

Conclusions

The results emphasize the importance of roots in regulating the temperature response of RS, and a framework is presented for further investigation into temperature effects on heterotrophic respiration and rhizosphere priming, which could be applied to other soil and vegetation types to improve models of soil carbon turnover.  相似文献   

20.
Several analogues of the tetraethylammonium (TEA+) ion were injected into the giant axon of the squid, and the resultant changes in time course and magnitude of the potassium current (IK) were studied. For all the analogues used, three of the ethyl side chains of TEA+ were left unchanged, while the fourth chain was either lengthened or shortened. Increasing the length of this chain increased binding to the blocking site in the channel by a factor of roughly two for each added CH2 group. The effect on the rate of entry into the blocking site was relatively slight. Thus the concentration for half-suppression of gK decreased by about the same factor of two for each added CH2. All the analogues caused anomalous or ingoing rectification. The longest chain analogue used, pentyltriethylammonium ion, caused rapid inactivation of gK, and this inactivation had properties quite similar to gNa inactivation. The anomalous rectification and the gK inactivation caused by these compounds have the same basic mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号