共查询到20条相似文献,搜索用时 0 毫秒
1.
Ja Yil Lee Feng Wang Teresa Fazio Shalom WindEric C. Greene 《Biochemical and biophysical research communications》2012,426(4):565-570
We report a new approach to probing DNA-protein interactions by combining optical tweezers with a high-throughput DNA curtains technique. Here we determine the forces required to remove the individual lipid-anchored DNA molecules from the bilayer. We demonstrate that DNA anchored to the bilayer through a single biotin-streptavidin linkage withstands ∼20 pN before being pulled free from the bilayer, whereas molecules anchored to the bilayer through multiple attachment points can withstand ?65 pN; access to this higher force regime is sufficient to probe the responses of protein-DNA interactions to force changes. As a proof-of-principle, we concurrently visualized DNA-bound fluorescently-tagged RNA polymerase while simultaneously stretching the DNA molecules. This work presents a step towards a powerful experimental platform that will enable concurrent visualization of DNA curtains while applying defined forces through optical tweezers. 相似文献
2.
Rapid characterization of DNA
oligomers and genotyping of single nucleotide polymorphism using nucleotide-specific
mass tags
下载免费PDF全文

Using currently available MS-based methods, accurate mass measurements are essential for the characterization of DNA oligomers. However, there is a lack of specificity in mass peaks when the characterization of individual DNA species in a mass spectrum is dependent solely upon the mass-to-charge ratio (m/z). Here, we utilize nucleotide-specific tagging with stable isotopes to provide internal signatures that quantitatively display the nucleotide content of oligomer peaks in MS spectra. The characteristic mass-split patterns induced by the partially 13C/15N-enriched dNTPs in DNA oligomers indicate the number of labeled precursors and in turn the base substitution in each mass peak, and provide for efficient SNP detection. Signals in mass spectra not only reflect the masses of particular DNA oligomers, but also their specific composition of particular nucleotides. The measurements of mass tags are relative in the mass-split pattern and, hence, the accuracy of the determination of nucleotide substitution is indirectly increased. For high sample throughput, 13C/15N-labeled sequences of interest have been generated, excised in solution and purified for MS analysis in a single-tube format. This method can substantially improve the specificity, accuracy and efficiency of mass spectrometry in the characterization of DNA oligomers and genetic variations. 相似文献
3.
4.
Interaction forces between protein inclusion bodies and an air bubble have been quantified using an atomic force microscope (AFM). The inclusion bodies were attached to the AFM tip by covalent bonds. Interaction forces measured in various buffer concentrations varied from 9.7 nN to 25.3 nN (+/- 4-11%) depending on pH. Hydrophobic forces provide a stronger contribution to overall interaction force than electrostatic double layer forces. It also appears that the ionic strength affects the interaction force in a complex way that cannot be directly predicted by DLVO theory. The effects of pH are significantly stronger for the inclusion body compared to the air bubble. This study provides fundamental information that will subsequently facilitate the rational design of flotation recovery system for inclusion bodies. It has also demonstrated the potential of AFM to facilitate the design of such processes from a practical viewpoint. 相似文献
5.
6.
7.
J.D.T. Arruda-Neto E.C. Friedberg M.C. Bittencourt-Oliveira H.R.C. Segreto M.M. Moron D.A. Maria L.F.Z. Batista A.C.G. Schenberg 《DNA Repair》2010,9(4):356-357
Comments are made and new insights are provided on the key role played by endogenous and exogenous electric fields, where the former starts and conducts the repairing chain, while the latter is able to scramble the completion of the repair process and, as a consequence, may have important potential as a radiation sensitizer for clinical application. 相似文献
8.
Measuring electrostatic, van der Waals, and hydration forces in electrolyte solutions with an atomic force microscope 总被引:9,自引:4,他引:9
下载免费PDF全文

Hans-Jürgen Butt 《Biophysical journal》1991,60(6):1438-1444
In atomic force microscopy, the tip experiences electrostatic, van der Waals, and hydration forces when imaging in electrolyte solution above a charged surface. To study the electrostatic interaction force vs distance, curves were recorded at different salt concentrations and pH values. This was done with tips bearing surface charges of different sign and magnitude (silicon nitride, Al2O3, glass, and diamond) on negatively charged surfaces (mica and glass). In addition to the van der Waals attraction, neutral and negatively charged tips experienced a repulsive force. This repulsive force depended on the salt concentration. It decayed exponentially with distance having a decay length similar to the Debye length. Typical forces were about 0.1 nN strong. With positively charged tips, purely attractive forces were observed. Comparing these results with calculations showed the electrostatic origin of this force.
In the presence of high concentrations (> 3 M) of divalent cations, where the electrostatic force can be completely ignored, another repulsive force was observed with silicon nitride tips on mica. This force decayed roughly exponentially with a decay length of 3 nm and was ~0.07-nN strong. This repulsion is attributed to the hydration force.
相似文献9.
DNA condensation in vivo usually requires proteins and/or multivalent salts. Here, we explore the in vitro compaction of DNA by cationic dendrimers having an intermediate size and charge. The dynamic assembly of DNA-dendrimer mesophases is discernible due to the laminar flow in a specially designed X-ray compatible microfluidic device. The setup ensures a nonequilibrium ascent of reactant concentration, and the resulting progression of DNA compaction was detected online using microfocused small-angle X-ray diffraction. The evolution of a DNA-dendrimer columnar square mesophase as a function of increasing dendrimer content is described. Additionally, in regions of maximum shear, an unexpected high-level perpendicular ordering of this phase is recorded. Furthermore, these assemblies are found to be in coexistence with a densely packed DNA-only mesophase in regions of excess DNA. The latter is reminiscent of dense packing found in bacteriophage and chromosomes, although surprisingly, it is not stabilized by direct dendrimer contact. 相似文献
10.
Numerical simulation of gel electrophoresis of DNA knots in weak and strong electric fields
下载免费PDF全文

Gel electrophoresis allows one to separate knotted DNA (nicked circular) of equal length according to the knot type. At low electric fields, complex knots, being more compact, drift faster than simpler knots. Recent experiments have shown that the drift velocity dependence on the knot type is inverted when changing from low to high electric fields. We present a computer simulation on a lattice of a closed, knotted, charged DNA chain drifting in an external electric field in a topologically restricted medium. Using a Monte Carlo algorithm, the dependence of the electrophoretic migration of the DNA molecules on the knot type and on the electric field intensity is investigated. The results are in qualitative and quantitative agreement with electrophoretic experiments done under conditions of low and high electric fields. 相似文献
11.
Herbert A. Pohl 《Journal of biological physics》1985,13(3):79-80
Externally imposed sinusoidal electric and magnetic fields acting ninety degrees out of phase and perpendicular to each other produce a unidirectional force on an object. The electromagnetic body force arising is found to be proportional to the frequency, to the field strengths, and to the (differential) polarizability of the body acted upon in its medium. The force is found to be small for practically realizable fields, but is different from that of the familiar light pressure. This crossed field force, based as it is upon the frequency-dependent relative effective dielectric constant and loss factor of the body as it moves in the supporting fluid medium, can provice spectra of various dielectric response mechanisms. 相似文献
12.
Differential effects in cells exposed to ultra-short, high intensity electric fields: cell survival, DNA damage, and cell cycle analysis 总被引:1,自引:0,他引:1
M. Stacey J. Stickley P. Fox V. Statler K. Schoenbach S. J. Beebe S. Buescher 《Mutation Research - Genetic Toxicology and Environmental Mutagenesis》2003,542(1-2):65-75
High power, nanosecond pulsed electric field (nsPEF) effects have been focused on bacterial decontamination, but the impact on mammalian cells is now being revealed. During nsPEF applications, electrical pulses of 10, 60 or 300 ns durations were applied to cells using electric field amplitudes as high as 300 kV/cm. Because of the ultra-short pulse durations, the energy transferred to cells is negligible, and only non-thermal effects are observed. We investigated the genotoxicity of nsPEF on adherent and non-adherent cell lines including 10 human lines and one mouse cell line with different origin and growth characteristics. We present data examining the effects of nsPEF exposure on cell survival assessed by clonogenic formation or live cell count; DNA damage determined by the comet assay and chromosome aberrations; and cell cycle parameters by measuring the mitotic indices of exposed cells. Using each of these indicators, we observed differential effects among cell types with non-adherent cells being more sensitive to the genotoxic effects of nsPEF exposures than adherent cells. Non-adherent cultures showed a rapid decrease in cell viability (90%), induction of DNA damage, and a decrease in the number of cells reaching mitosis after one 60 ns pulse with an electric field intensity of 60 kV/cm. These effects were not observed in cells grown as adherent cultures, with the exception of the mouse 3T3 cell line, which showed survival characteristics similar to non-adherent cultures. These data suggest that nsPEF genotoxicity may be cell type specific, and therefore have potential applications in the selective removal of one cell type from another, for example, in diseased states. 相似文献
13.
E. Noumi M. Snoussi F. Saghrouni M. Ben Said L. Del Castillo E. Valentin A. Bakhrouf 《Journal of applied microbiology》2009,107(6):1991-2000
Aims: This report describes an investigation into the genetic profiles of 38 Candida albicans and 19 Candida glabrata strains collected from a dental hospital of Monastir (Tunisia) and the Laboratory of Parasitology, Farhat Hached Hospital of Sousse (Tunisia), using two typing methods: random amplified polymorphic DNA (RAPD) and contour‐clamped homogenous electric fields (CHEF). Methods and Results: The two methods (RAPD and CHEF electrophoresis) were able to identify clonal‐related isolates from different patients. RAPD method using two primers (CA1 and CA2) exhibited the highest discriminatory power by discriminating 22 genotypes for C. albicans with CA1 oligonucleotides and 19 genotypes with CA2 primer. For C. glabrata, 17 genotypes were obtained when both primers CA1 and CA2 were combined. The CHEF karyotyping of C. albicans has discriminated only 17 different karyotypes. Conclusion: The genotype of each isolate and genotypic difference among C. albicans and C. glabrata isolates were patient specific and not associated with the site of infection, geographic origin or date of isolation. Significance and Impact of the Study: Identification of relatedness between Candida species using molecular approaches with high discriminatory power is important in determining adequate measures for interruption of transmission of this yeast. 相似文献
14.
The electric birefringence of poly-L -lysine hydrobromide in methanol–water mixtures has been measured at 25 °C over a wide range of field strengths by use of the rectangular pulse technique. An abrupt change in the specific Kerr constant was observed between 87 and 90 vol % methanol, corresponding to the solvent-induced helix–coil transition. The specific Kerr constant increased rapidly with dilution in the random coil form, and more slowly in the helical conformation. The field strength dependence of the bire fringence at various concentrations, for both the helical and coil conformations, can be described by a common orientation function, which resembles the theoretical one for the case of permanent dipole moment orientation. This is interpreted in terms of the saturation of ion–atmosphere polarization. The optical anisotropy for the helical conformation was much larger than that for the coil form. Anomalous birefringence signals were observed above a critical field strength (about 5 kV/cm) in 90 vol % methanol. The birefringence passed through a maximum and began to decrease slowly before the pulse terminated, reaching a steady-state value. This steady-state value was closer to that of the coil in the coil in the limit of very high fields. The results indicate that a transition from the charged helix to the charged coil is induced by high electric fields in the transition region. This effect can be explained on the basis of the polarization mechanism proposed by Neumann and Katchalasky. 相似文献
15.
The effect of counterion-counterion repulsion on the orientation of DNA, a polyion of high charge density is examined by electric-field orientation experiments. The charge species of the counterion and the ionic strength effect the orientation in a manner consistent with a theoretical treatment of the polarization of high charge density polyelectrolytes in terms of the effect of the applied field on the equilibrium distribution of condensed counterfoils on the polyion. 相似文献
16.
Atomic force microscopy of DNA and bacteriophage in air, water and propanol: the role of adhesion forces. 总被引:6,自引:4,他引:6
下载免费PDF全文

Y L Lyubchenko P I Oden D Lampner S M Lindsay K A Dunker 《Nucleic acids research》1993,21(5):1117-1123
We have developed a chemical treatment for the mica surface which allows biopolymers to be held in place for atomic force microscopy, even under water, using conventional, untreated force sensing tips. We illustrate the procedure with images of lambda DNA and fd phage. The phage adheres well enough to permit in situ imaging of the adsorption process in water. These experiments yield a mean length for the phage of 883 +/- 72 nm. This compares with a measured length of 883 +/- 33 nm when the phage are imaged after drying following adsorption from water, showing that the effect of dehydration is quite small. Adhesion forces between the force sensing tip and the substrate and the sensing tip and the biomolecules are very different in the three media (air, water and propanol). The apparent height of the phage and the width and height of the DNA depends upon these adhesion forces quite strongly. In contrast, changing the Hookean spring force exerted by the scanning tip makes little difference. These results suggest that the chemical factors involved in adhesion can dominate atomic force images and that the composition of the scanning tip is at least as important a factor as its geometry. 相似文献
17.
Adhesion forces measured between a calcium blocker drug and its receptor in living cells using atomic force microscope 总被引:5,自引:0,他引:5
The adhesion force between the tip of an atomic force microscope cantilever derivatized with nimodipine (a calcium blocker, from the dihydropyridine class, currently used in clinical medicine for hypertension) and living cells of Saccharomyces cerevisiae (unicellular eukaryotes which portray ultrastructural features characteristic of higher eukaryotic cells) was measured. This methodology allowed us to locate (and visualize) pores on the cell surface which may be responsible for calcium transportation in the living cells. The interaction of the cantilever derivatized with the calcium blocker and a pore, which can be a calcium channel, is more intense than a non-derivatized cantilever and the pore. Outside the pore (on the rest of cell surface), a derivatized or a non-derivatized cantilever has the same pattern of adhesion force. The information obtained with this method is very important for the design of new, more potent and less toxic drugs for pharmacological use. 相似文献
18.
Transient effects of 100-kV/m extremely low frequency electric fields were studied in the white footed deermouse, Peromyscus leucopus. Gross motor activity, carbon dioxide production, oxygen consumption, and core body temperature were monitored before, during, and after intermittent field exposures (four hour-long exposures, at one-hour intervals). Thirty-four mice were exposed in cages with plastic floors floating above ground potential, and 21 mice were exposed in cages with grounded metal floor plates. The first field exposure produced an immediate, transient increase of activity and gas measures during the inactive phase of the circadian cycle. All measures returned to baseline levels before the second exposure and were not significantly changed throughout the remainder of the exposures. The rapid habituation of field-induced arousal suggests that significant metabolic changes will not be measured in experiments in which the interval between exposure and measurement is greater than two hours. 相似文献
19.
Electric birefringence and circular dichroism measurements have been made on solutions of two po!y (L-lysine) homologs. The specific Kerr constant and the molar ellipticity at 222 nm of poly (L-alpha, gamma-diaminobutyric acid hydrochloride) in methanol/water mixtures underwent an abrupt change between 75 and 80 vol% methanol at 25 degrees C, corresponding to a solvent-induced helix-coil transition. On the helix side of the transition region, i.e., between 78 and 80 vol% methanol, anomalous birefringence transients indicative of field-induced helix-to-coil transition were observed at high fields. In the case of poly (L-ornithine hydrobromide) in methanol/water mixtures, a helix-coil transition was induced between 93 and 98 vol% methanol and anomalous birefringence transients were observed between 96 and 98 vol% methanol. The double logarithmic plots of the steady-state specific birefringence versus the square of field strength for various solvent compositions and polymer concentrations could be superimposed on one another by horizontal and vertical shifts, except for the range where anomalous birefringence transients were observed. This enabled us to estimate the threshold field strength. 相似文献
20.
Fuller DN Raymer DM Rickgauer JP Robertson RM Catalano CE Anderson DL Grimes S Smith DE 《Journal of molecular biology》2007,373(5):1113-1122
Molecular motors drive genome packaging into preformed procapsids in many double-stranded (ds)DNA viruses. Here, we present optical tweezers measurements of single DNA molecule packaging in bacteriophage lambda. DNA-gpA-gpNu1 complexes were assembled with recombinant gpA and gpNu1 proteins and tethered to microspheres, and procapsids were attached to separate microspheres. DNA binding and initiation of packaging were observed within a few seconds of bringing these microspheres into proximity in the presence of ATP. The motor was observed to generate greater than 50 picoNewtons (pN) of force, in the same range as observed with bacteriophage phi29, suggesting that high force generation is a common property of viral packaging motors. However, at low capsid filling the packaging rate averaged approximately 600 bp/s, which is 3.5-fold higher than phi29, and the motor processivity was also threefold higher, with less than one slip per genome length translocated. The packaging rate slowed significantly with increasing capsid filling, indicating a buildup of internal force reaching 14 pN at 86% packaging, in good agreement with the force driving DNA ejection measured in osmotic pressure experiments and calculated theoretically. Taken together, these experiments show that the internal force that builds during packaging is largely available to drive subsequent DNA ejection. In addition, we observed an 80 bp/s dip in the average packaging rate at 30% packaging, suggesting that procapsid expansion occurs at this point following the buildup of an average of 4 pN of internal force. In experiments with a DNA construct longer than the wild-type genome, a sudden acceleration in packaging rate was observed above 90% packaging, and much greater than 100% of the genome length was translocated, suggesting that internal force can rupture the immature procapsid, which lacks an accessory protein (gpD). 相似文献