首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metorphamide is a [Met]-enkephalin-containing opioid octapeptide with a C-terminal alpha-amide group. It is derived from proenkephalin and is, so far, the only endogenous opioid peptide with a particularly high affinity for mu opioid (morphine) receptors, a somewhat lesser affinity for kappa opioid receptors, and a relatively low affinity for delta opioid receptors. The concentrations of metorphamide in the bovine caudate nucleus, the hypothalamus, the spinal cord, and the neurointermediate pituitary were determined by radioimmunoassay and chromatography separation procedures. Metorphamide concentrations were compared with the concentrations of eight other opioid peptides from proenkephalin and prodynorphin in identical extracts. The other opioid peptides were [Met]-enkephalyl-Arg6-Phe7 and [Met]-enkephalyl-Arg6-Gly7-Leu8 from proenkephalin; alpha-neoendorphin, beta-neoendorphin, dynorphin A(1-8), dynorphin A(1-17), and dynorphin B from prodynorphin; and [Leu]-enkephalin, which can be derived from either precursor. All opioid peptides were present in all four bovine neural tissues investigated. Metorphamide concentrations were lower than the concentrations of the other proenkephalin-derived opioid peptides. They were, however, similar to the concentrations of the prodynorphin-derived opioid peptides in the same tissues. Marked differences in the relative ratios of the opioids derived from prodynorphin across brain regions were observed, a finding suggesting differential posttranslational processing. Differences in the ratios of the proenkephalin-derived opioids across brain regions were less pronounced. The results from this study together with previous findings on metorphamide's mu opioid receptor binding and bioactivities suggest that the amounts of metorphamide in the bovine brain are sufficient to make this peptide a candidate for a physiologically significant endogenous mu opioid receptor ligand.  相似文献   

2.
Effects of opioid peptides (beta-endorphin, dynorphin (1-13). alpha-neoendorphin, beta-neoendorphin, leucine-enkephalin, methionine-enkephalin) on the release of thyrotropin-releasing hormone (TRH) from the rat caecum were studied in vitro. The rat caecum was incubated in medium 199 with 1.0 mg/ml of bacitracin (pH 7.4) (medium). The amount of TRH release from the rat caecum into the medium was measured by radioimmunoassay. The immunoreactive TRH (ir-TRH) release from the rat caecum was inhibited significantly in a dose-related manner with the addition of opioid peptides. The inhibitory effects of opioid peptides on ir-TRH release from the rat caecum were blocked with an addition of naloxone. The elution profile of acid-methanol-extracts of rat caecum on Sephadex G-10 was identical to that of synthetic TRH. The findings suggest that opioid peptides inhibit TRH release from the rat caecum in vitro.  相似文献   

3.
Reaction of Opioid Peptides with Neutral Endopeptidase (''Enkephalinase")   总被引:6,自引:3,他引:3  
The kinetics of the reactions of nine opioid peptides with the neutral endopeptidase ("enkephalinase") activities of human kidney, rat kidney, and rat brain have been determined. These opioid peptides can be divided into two classes, those that are good inhibitors of Leu5-enkephalin hydrolysis (Ki less than 75 microM) and good substrates for the enzyme, and those that are poor inhibitors (Ki greater than 500 microM) and are not substrates for the enzyme. The former group includes Leu5-enkephalin, Met5-enkephalin, Met5-enkephalin-Arg6-Phe7, beta-lipotropin, and gamma-endorphin, while the nonreactive opioid peptides include alpha-neo-endorphin, beta-neo-endorphin, dynorphin, and beta-endorphin. These results suggest that those peptides containing the Met5-enkephalin sequence are more reactive than those containing the Leu5-enkephalin sequence. The lack of specificity of this neutral endopeptidase indicates that it may function in the degradation of a variety of biologically active peptides.  相似文献   

4.
A combination of several chromatographic and assay systems was used to characterize the opioid peptides in rat stomach extracts. Partial purification of opioid material in acetic acid extracts of the corpus plus antrum regions of the rat stomach was carried out by gel filtration chromatography on Sephadex G-50, followed by adsorption onto Amberlite XAD-2 resin. A single peak in opioid activity was determined by both radioreceptor assay (RRA) and bioassay. By high performance liquid chromatography, this peak was resolved into five distinct components, characterized by RRA and (or) radioimmunoassay, with retention times corresponding to methionine enkephalin (met-enk), leucine enkephalin, met-enk-arg6-gly7-leu8, met-enk-arg6-phe7, and dynorphin 1-13. Closer examination of the dynorphin component revealed the presence of dynorphins 1-17, 1-13, and 1-8. Trypsin digestion of the partially purified (Sephadex G-50 and Amberlite XAD-2 chromatographed) extract resulted in an overall increase in opioid activity, suggesting the presence of larger, possibly precursor forms.  相似文献   

5.
L-DOPA-induced dyskinesia is a troublesome complication of L-DOPA pharmacotherapy of Parkinson's disease and has been associated with disturbed brain opioid transmission. However, so far the results of clinical and preclinical studies on the effects of opioids agonists and antagonists have been contradictory at best. Prodynorphin mRNA levels correlate well with the severity of dyskinesia in animal models of Parkinson's disease; however the identities of the actual neuroactive opioid effectors in their target basal ganglia output structures have not yet been determined. For the first time MALDI-TOF imaging mass spectrometry (IMS) was used for unbiased assessment and topographical elucidation of prodynorphin-derived peptides in the substantia nigra of a unilateral rat model of Parkinson's disease and L-DOPA induced dyskinesia. Nigral levels of dynorphin B and alpha-neoendorphin strongly correlated with the severity of dyskinesia. Even if dynorphin peptide levels were elevated in both the medial and lateral part of the substantia nigra, MALDI IMS analysis revealed that the most prominent changes were localized to the lateral part of the substantia nigra. MALDI IMS is advantageous compared with traditional molecular methods, such as radioimmunoassay, in that neither the molecular identity analyzed, nor the specific localization needs to be predetermined. Indeed, MALDI IMS revealed that the bioconverted metabolite leu-enkephalin-arg also correlated positively with severity of dyskinesia. Multiplexing DynB and leu-enkephalin-arg ion images revealed small (0.25 by 0.5 mm) nigral subregions with complementing ion intensities, indicating localized peptide release followed by bioconversion. The nigral dynorphins associated with L-DOPA-induced dyskinesia were not those with high affinity to kappa opioid receptors, but consisted of shorter peptides, mainly dynorphin B and alpha-neoendorphin that are known to bind and activate mu and delta opioid receptors. This suggests that mu and/or delta subtype-selective opioid receptor antagonists may be clinically relevant for reducing L-DOPA-induced dyskinesia in Parkinson's disease.  相似文献   

6.
Eighteen endogenous opioid peptides, all containing the sequence of either Met5- or Leu5-enkephalin, were tested for their ability to modify nicotine-induced secretion from bovine adrenal chromaffin cells. ATP released from suspensions of freshly isolated cells was measured with the luciferin-luciferase bioluminescence method as an index of secretion. None of the peptides affected 5 microM nicotine-induced ATP release at 10 nM. Three peptides inhibited secretion at 5 microM: dynorphin1-13, dynorphin1-9, and rimorphin inhibited by 65%, 37%, and 29% respectively. Use of peptidase inhibitors (bestatin, thiorphan, bacitracin, or 1,10-phenanthroline) did not result in any of the other peptides showing potent actions on the nicotinic response, although bestatin and thiorphan did enhance the inhibitory actions of dynorphin1-13 and dynorphin1-9 by 20-30%. Nicotine-induced secretion of endogenous catecholamines from bovine chromaffin cells cultured for 3 days was also studied to assess any selective actions of the peptides on adrenaline or noradrenaline cell types. Dynorphin1-13 was 1,000-fold more potent than Leu5-enkephalin at inhibiting endogenous catecholamine secretion. Dynorphin1-13 was slightly more potent at inhibiting noradrenaline release than adrenaline release whereas Leu5-enkephalin showed the opposite selectivity. The structure-activity relationships of opioid peptide actions on the chromaffin cell nicotinic response are discussed in relation to the properties of the adrenal opioid binding sites.  相似文献   

7.
In previous communications [4, 38] we published that [3H]Met-enkephalin-Arg6-Phe7 (MERF) binds to opioid (kappa2 and delta) and sigma2 sites in frog and rat brain membrane preparations, however no binding to kappa1 sites could be established. In the present paper we compare the frog, rat and guinea pig brain membrane fractions with respect to their MERF binding data. No qualitative differences were found between the three species but specific binding of labelled MERF was maximal in frog brain and lowest in guinea pig brain, which corresponds to their kappa2 opioid receptor distribution. The naloxone resistant binding was also present in all investigated species and varied from 25% in frog and guinea pig cerebrum, to 50% in rat cerebrum and cerebellum, but no naloxone inhibition was found in guinea pig cerebellum where no kappa2 opioid receptors have been found. The presence of sigma2-like receptor was demonstrated in each investigated membrane fraction with displacement experiments using (-)N-allyl-normetazocine as competitor of tritiated MERF. It was shown that this site was responsible for 60-80% of [3H]MERF binding. The remaining part of the naloxone resistant labelled MERF binding could be displaced only with endogenous opioid peptides as met-enkephalin, dynorphin and beta-endorphin. The eventual physiological role of multiple MERF receptors is discussed.  相似文献   

8.
Effects of opioid peptides on immunoreactive corticotropin-releasing factor (I-CRF) release from the rat hypothalamus were examined using a rat hypothalamic perifusion system and a rat CRF RIA in vitro. beta-Endorphin (0.3 - 30 nM), dynorphin (0.3 - 30 nM) and FK 33-824 (1 - 10 microM) suppressed basal I-CRF release in a dose-dependent fashion. At 2.2 nM concentrations of these peptides, mean percent inhibition was 56% for beta-endorphin; less than 5% for alpha-endorphin; 44% for dynorphin; 23% for leucine-enkephalin; 6% for methionine-enkephalin; less than 5% for FK 33-824; and less than 5% for D-ala2, D-leu5-enkephalin. The inhibitory effects of beta-endorphin and enkephalins were completely blocked by naloxone, but those of dynorphin were only partially blocked. These results suggest that opioid peptides act through opioid receptors and inhibit I-CRF release from the hypothalamus under our conditions. Therefore, endogenious opioid peptides may have a physiological role in the CRF-releasing mechanism of the hypothalamus.  相似文献   

9.
Brguljan PM  Turk V  Nina C  Brzin J  Krizaj I  Popovic T 《Peptides》2003,24(12):1977-1984
Highly purified human brain cathepsin H (EC 3.4.22.16) was used to study its involvement in degradation of different brain peptides. Its action was determined to be selective. On Leu-enkephalin, dynorphin (1-6), dynorphin (1-13), alpha-neoendorphin, and Lys-bradykinin, it showed a preferential aminopeptidase activity by cleaving off hydrophobic or basic amino acids. It showed no aminopeptidase activity on bradykinin, which has Pro adjacent to its N-terminal amino acid, on neurotensin with blocked N-terminal amino acid, or on dermorphin with second amino acid D-alanine. After prolonged incubation, cathepsin H acted as an endopeptidase. Dermorphin and dynorphin (1-13) were cleaved at bonds with Phe in the P2 position, while dynorphin (1-6), alpha-neoendorphin, bradykinin and Lys-bradykinin were cleaved at bonds with Gly in the P2 position. Further on, it was shown that human brain cathepsin H activity could be controlled in vivo by cystatin C in its full-length form or its [delta1-10] variant, already known to be co-localized in astrocytes, since the Ki values for the inhibition are in the 10(-10) M range.  相似文献   

10.
Benyhe S  Farkas J  Tóth G  Wollemann M 《Life sciences》1999,64(14):1189-1196
[3H]Met-enkephalin-Arg6-Phe7 (MERF) has been shown to label opioid (kappa2 and delta) and sigma2 sites in rat and frog brain membrane preparations, and no specific binding to kappa1 opioid receptors could be established (refs. 6 and 8). In this study the binding was examined in rat cerebellar membranes which are relatively rich in kappa2-sites, and in guinea pig cerebellar preparations where kappa1 opioid receptors are almost exclusively present. In accordance with our previous results, [3H]MERF binding could not be displaced in guinea pig cerebellar membranes neither with U-69,593 nor with naloxone or levorphanol suggesting no interaction with opioid sites, nevertheless a Kd of 2.8 nM was calculated in cold saturation experiments. In rat cerebellar membrane fractions about the half of the specific [3H]MERF binding sites was inhibited by opiate alkaloids such as naloxone, ethylketocyclazocine, or bremazocine. This portion of the heptapeptide binding sites was stereoselective as demonstrated by the difference in the affinities of the enantiomeric compounds levorphanol and dextrorphan, therefore it would represent an opioid site. In both tissues (-)N-allyl-normetazocine (SKF-10,047), which is also considered as sigma2 ligand, displayed the highest affinities. Among opioid peptides beta-endorphin and dynorphin(1-13) showed the highest potencies, displacing [3H]MERF also from its non-opioid sites. It was concluded therefore that [3H]MERF does not bind to kappa1 sites, and besides kappa2-opioid sites substantial binding to peptide preferring non-opioid sites, and/or sigma2 receptors also occurs.  相似文献   

11.
1. The mechanical responses to some autonomic drugs and neuropeptides of longitudinal muscle (LM) and circular muscle (CM) strips isolated from the carp intestinal bulb were investigated in vitro. 2. Acetylcholine and carbamylcholine caused concentration-dependent transient contraction of both LM and CM strips. Tetrodotoxin had no effect, but atropine selectively decreased the contractile responses to acetylcholine and carbamylcholine. 3. Excitatory alpha-2 and inhibitory beta adrenoceptors were present in both LM and CM strips. 4. 5-Hydroxytryptamine (5-HT) caused concentration-dependent contraction of both LM and CM strips. Tetrodotoxin, atropine and methysergide decreased the contractile responses to 5-HT. 5. Some neuropeptides (angiotensin I, angiotensin II, bombesin, bradykinin, neurotensin, somatostatin and vasoactive intestinal polypeptide) did not cause any mechanical response (contraction or relaxation) in either smooth muscle strip. 6. Substance P (SP), neurokinin A (NKA) and neurokinin B (NKB) caused contraction of both LM and CM strips. However, the time course of the contraction in LM was different from that in CM. The order of potency was NKA greater than SP greater than NKB in LM strips and NKA greater than SP much greater than NKB in CM strips. In LM strips, the contractile responses to tachykinins were unaffected by spantide and methysergide, but partly decreased by tetrodotoxin and atropine. On the other hand, the contractile responses of CM strips were unaffected by tetrodotoxin, atropine, methysergide and spantide. 7. Dynorphin (1-13) (DYN), leucine-enkephalin (L-Enk) and methionine-enkephalin (M-Enk) caused concentration-dependent contraction of both LM and CM strips. The order of potency was DYN greater than M-Enk greater than L-Enk. Naloxone selectively decreased the responses to opiate peptides. 8. The present results indicate that acetylcholine, carbamylcholine, catecholamines, 5-HT, tachykinins (SP, NKA and NKB) and opiate peptides (DYN, L-Enk and M-Enk) affect the mechanical activity of LM and CM strips isolated from the carp intestinal bulb through their specific receptors.  相似文献   

12.
This paper describes a study on a dynorphin converting enzyme in spinal cord homogenates from rats with experimental arthritis after adjuvant injection into one hindpaw. The enzyme resembles a neutral cysteine endopeptidase which cleaves the opioid peptide dynorphin B and generates its N-terminal fragment, Leu-enkephalin-Arg6 with opioid activity. It exhibits considerably lower activity against dynorphin A and alpha-neoendorphin, the two other prodynorphin derived peptides. The enzyme showed significantly higher activity in the dorsal part than in the ventral part of the spinal cord. A significant decrease in enzyme activity was observed in the dorsal spinal cord during inflammation as compared to vehicle-injected controls. This decrease paralleled a decrease in the tissue level of Leu-enkephalin-Arg6. These data thus indicate that adjuvant-induced arthritis may generate an important change in a converting enzyme acting on peptide structures, which may be involved in pain modulation. Therefore, a functional role of the present enzyme in the regulation of pain-related peptides is suggested.  相似文献   

13.
A novel soluble non-opioid dynorphin A-binding factor (DABF) was identified and characterized in neuronal cell lines, rat spinal cord, and brain. DABF binds dynorphin A(1-17), dynorphin A(2-17), and the 32 amino acid prodynorphin fragment big dynorphin consisting of dynorphin A and B, but not other opioid and non-opioid peptides, opiates, and benzomorphans. The IC50 for dynorphin A(1-17), dynorphin A(2-17), and big dynorphin is in the 5-10 nM range. Using dynorphin A and big dynorphin fragments a binding epitope was mapped to dynorphin A(6-13). DABF has a molecular mass of about 70 kDa. SH-groups are apparently involved in the binding of dynorphin A since p-hydroxy-mercuribenzoic acid inhibited this process. Upon interaction with DABF dynorphin A was converted into Leu-enkephalin, which remained bound to the protein. These data suggest that DABF functions as an oligopeptidase that forms stable and specific complexes with dynorphin A. The presence of DABF in brain structures and other tissues with low level of prodynorphin expression suggests that DABF as an oligopeptidase may degrade other peptides. Dynorphin A at the sites of its release in the CNS may attenuate this degradation as a competitor when it specifically binds to the enzyme.  相似文献   

14.
Opioid peptides, particularly dynorphin, after amygdaloid-kindled seizures   总被引:3,自引:0,他引:3  
The influence of amygdaloid kindling on brain and pituitary content of immunoreactive dynorphin (IR-DYN) and other opioid peptides was studied in rabbits. The kindling was very effective in increasing the hippocampal levels of IR-DYN, alpha-neoendorphin and Leu-enkephalin, but remained without any significant effect on the levels of IR-DYN and beta-endorphin in the majority of brain structures studied. The concentration of IR-DYN in the hippocampus remained at the control level throughout the development but was increased dramatically after completion of kindling. Biochemical alterations persisted for at least one month following the completion of kindling. The obtained results suggest that the hippocampal IR-DYN and related peptides may play some role in the maintenance of amygdaloid-kindled seizures.  相似文献   

15.
Physiological release of endogenous opioids in guinea pig hippocampal slices was detected in an in vitro competition binding assay using [3H]U69,593, a kappa 1-selective radioligand. Veratridine-induced opioid release caused a decrease in [3H]U69,593 binding that was blocked by either tetrodotoxin addition or the removal of calcium from the incubation buffer. Focal electrical stimulation of opioid peptide-containing afferent pathways resulted in a decrease in [3H]U69,593 binding, whereas stimulation of a major afferent lacking endogenous opioid immunoreactivity had no effect. The addition of 6-cyano-7-nitroquinoxaline-2,3-dione blocked the reduction in [3H]U69,593 binding caused by perforant path stimulation, but not the reduction caused by mossy fiber stimulation, suggesting that the primary source of endogenous kappa ligands was likely to be the dentate granule cells. Antisera against dynorphin A(1-8) or dynorphin B peptides inhibited the effects of mossy fiber stimulation in the [3H]U69,593 displacement assay. Antisera against other prodynorphin- and proenkephalin-derived opioid peptides had no effect. As shown by receptor autoradiography, the distribution of kappa 1 binding sites was limited to the molecular layer of the dentate gyrus and the presubiculum region of temporal hippocampal slices. These results indicate that prodynorphin-derived opioids released under physiological conditions from the mossy fibers act at kappa 1 receptors in the guinea pig dentate gyrus.  相似文献   

16.
Y.X. Zhu  V. Hllt  H. Loh 《Peptides》1983,4(6):871-874
We have developed a radioimmunoassay for synthetic dynorphin B, a novel opioid tridecapeptide, which shares a common precursor molecule with dynorphin1–17 (=dynorphin A) and the neo-endorphins. The levels of immunoreactivity towards this peptide in rat brain and pituitary show a pattern quantitatively and qualitatively similar to those found for dynorphin A and -neo-endorphin in earlier studies. The antiserum used was highly specific with only dynorphin-32 and dynorphin B-29, both of which contain the dynorphin B sequence, showing substantial cross-reactivity. Gel filtration of whole rat brain extracts in combination with HPLC analysis provide strong evidence for the existence of these latter two peptides in rat brain.  相似文献   

17.
MALDI imaging mass spectrometry (IMS) is a powerful approach that facilitates the spatial analysis of molecular species in biological tissue samples2 (Fig.1). A 12 μm thin tissue section is covered with a MALDI matrix, which facilitates desorption and ionization of intact peptides and proteins that can be detected with a mass analyzer, typically using a MALDI TOF/TOF mass spectrometer. Generally hundreds of peaks can be assessed in a single rat brain tissue section. In contrast to commonly used imaging techniques, this approach does not require prior knowledge of the molecules of interest and allows for unsupervised and comprehensive analysis of multiple molecular species while maintaining high molecular specificity and sensitivity2. Here we describe a MALDI IMS based approach for elucidating region-specific distribution profiles of neuropeptides in the rat brain of an animal model Parkinson''s disease (PD). PD is a common neurodegenerative disease with a prevalence of 1% for people over 65 of age3,4. The most common symptomatic treatment is based on dopamine replacement using L-DOPA5. However this is accompanied by severe side effects including involuntary abnormal movements, termed L-DOPA-induced dyskinesias (LID)1,3,6. One of the most prominent molecular change in LID is an upregulation of the opioid precursor prodynorphin mRNA7. The dynorphin peptides modulate neurotransmission in brain areas that are essentially involved in movement control7,8. However, to date the exact opioid peptides that originate from processing of the neuropeptide precursor have not been characterized. Therefore, we utilized MALDI IMS in an animal model of experimental Parkinson''s disease and L-DOPA induced dyskinesia. MALDI imaging mass spectrometry proved to be particularly advantageous with respect to neuropeptide characterization, since commonly used antibody based approaches targets known peptide sequences and previously observed post-translational modifications. By contrast MALDI IMS can unravel novel peptide processing products and thus reveal new molecular mechanisms of neuropeptide modulation of neuronal transmission. While the absolute amount of neuropeptides cannot be determined by MALDI IMS, the relative abundance of peptide ions can be delineated from the mass spectra, giving insights about changing levels in health and disease. In the examples presented here, the peak intensities of dynorphin B, alpha-neoendorphin and substance P were found to be significantly increased in the dorsolateral, but not the dorsomedial, striatum of animals with severe dyskinesia involving facial, trunk and orolingual muscles (Fig. 5). Furthermore, MALDI IMS revealed a correlation between dyskinesia severity and levels of des-tyrosine alpha-neoendorphin, representing a previously unknown mechanism of functional inactivation of dynorphins in the striatum as the removal of N-terminal tyrosine reduces the dynorphin''s opioid-receptor binding capacity9. This is the first study on neuropeptide characterization in LID using MALDI IMS and the results highlight the potential of the technique for application in all fields of biomedical research.  相似文献   

18.
The release of immunoreactive (ir) dynorphin (DYN) and alpha-neoendorphin (ir-ANEO) from the isolated perfused rat duodenum was demonstrated using specific radioimmunoassays (RIAs). Depolarization of the tissue by increasing the potassium (K+) concentration up to 108 mM enhanced the release of ir-DYN and ir-ANEO in Ca2+-dependent manner. Administration of the serotonin-releasing agent fenfluramine (10(-6) M) and the serotonin receptor agonist m-chlorophenylpiperazine (m-CPP, 10(-6) M) stimulated the release of ir-DYN and ir-ANEO from the duodenum. A subsequent study revealed that serotonin (5-HT, 10(-6)-10(-4) M) induced a dose-dependent increase in the release of ir-DYN and ir-ANEO from the duodenum. The effect of 5-HT on the release of ir-DYN and ir-ANEO from the duodenum was antagonized by 5-HT antagonist cyproheptadine (10(-6) M). The presence of dynorphin and the related peptides in the gastrointestinal tract (GIT) and their release from the duodenum in vitro indicate that these peptides may act as transmitters involved in some GIT functions. Furthermore, our results suggest that at least part of 5-HT effects on the GIT may be mediated by the release of dynorphin and the related peptides.  相似文献   

19.
Following incubation of [3H]dynorphin A (1-8) and [3H]dynorphin A (1-9) with suspensions of guinea pig brain membranes, analysis of the supernatants by HPLC has shown that both peptides are degraded at 25 degrees C and at 0 degrees C. Bestatin and captopril reduce degradation at 0 degrees C but for a similar degree of protection at 25 degrees C arginine-containing dipeptides are also required. The effects of these peptidase inhibitors on the degradation profiles indicate that [3H]dynorphin A (1-8) has three main sites of cleavage: the Tyr1-Gly2, Arg6-Arg7, and Leu5-Arg6 bonds. With [3H]dynorphin A (1-9) as substrate the Arg7-Ile8 and Ile8-Arg9 bonds are also liable to cleavage. In binding assays, in contrast to the effects of peptidase inhibitors on the degradation of unbound [3H]dynorphin A (1-8) and [3H]dynorphin A (1-9), bestatin and captopril have little effect on the binding characteristics of the tritiated dynorphin A fragments at the kappa-site at 0 degrees C. However, at 25 degrees C binding is low in the absence of peptidase inhibitors. When binding at mu- and delta-sites is prevented, the maximal binding capacities of [3H]dynorphin A (1-8), [3H]dynorphin A (1-9), and [3H](-)-bremazocine at the kappa-site are similar; [3H]dynorphin A (1-9) has 5-10 times higher affinity for the kappa-site than [3H]dynorphin A (1-8). Comparison of the effects of peptidase inhibitors on unbound dynorphin A fragments with their effects in binding assays suggests that the bound peptides are protected from the action of peptidases.  相似文献   

20.
J W Taylor 《Biochemistry》1990,29(22):5364-5373
Two peptide models of dynorphin A(1-17) have been synthesized. These peptides incorporate a minimally homologous substitute sequence for residues 6-17, including alternating lysine and valine residues substituting for the potential amphiphilic beta-strand structure in positions 7-15. Model 1 retains Pro10 from the native sequence, but model 2 does not. Compression isotherms of peptide monolayers at the air-water interface and CD spectra of peptide films adsorbed from aqueous solution onto siliconized quartz slides were evaluated by comparison to those of idealized amphiphilic alpha-helical, beta-sheet, and disordered peptides. Dynorphin A(1-17) was mostly disordered, whereas beta-endorphin was alpha helical. Dynorphin model 1 had properties similar to those of dynorphin A(1-17) at these interfaces, but model 2 formed strongly amphiphilic beta sheets. In binding assays to mu-, delta-, and kappa-opioid receptors in guinea pig brain membranes, model 1 reproduced the high potency and selectivity of dynorphin A(1-17) for kappa receptors, and model 2 was only 3 times less potent and less selective for these receptors. Both peptide models retained the high, kappa-selective agonist activity of dynorphin A(1-17) in guinea pig ileum assays, and like dynorphin A(1-17), model 1 had little activity in the rat vas deferens assay. In view of the minimal homology of the modeled dynorphin structures, these studies support current models of membrane-catalyzed opioid ligand-receptor interactions and suggest a role for the amphiphilic alpha-helical and beta-strand structures in beta-endorphin and dynorphin A(1-17), respectively, in this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号