首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
陈琳  薛绪潮 《生物技术》2007,17(5):89-91
增殖型腺病毒能在肿瘤细胞中复制并裂解肿瘤细胞,释放出的子代病毒再感染邻近肿瘤细胞直至完全杀灭肿瘤,却不影响正常细胞的功能。同时,增殖型腺病毒还是一种有效的基因治疗载体,可通过病毒自身增殖提高目的基因的拷贝数,从而更高效率地表达外源性治疗基因,增强抗肿瘤效应。本文着重介绍增殖型腺病毒载体改良和应用的最新进展,并对其研究前景进行展望,以期对增殖型腺病毒的发展有所帮助。  相似文献   

5.
The lack of specificity of cancer treatment causes damage to normal cells as well, which limits the therapeutic range. To circumvent this problem one would need to use an absolute difference between normal cells and cancer cells as therapeutic target. Such a difference exists in the genome of all individuals suffering from a tumor that is characterized by loss of genetic material [loss of heterozygosity (LOH)]. Due to LOH, the tumor is hemizygous for a number of genes, whereas the normal cells of the individual are heterozygous for these genes. Theoretically, polymorphic sites in these genes can be utilized to selectively target the cancer cells with an antisense oligonucleotide, provided that it can discriminate the alleles and inhibit gene expression. Furthermore, the targeted gene should be essential for cell survival, and 50% gene expression sufficient for the cell to survive. This will allow selective killing of cancer cells without concomitant toxicity to normal cells. As an initial step in the experimental test of this putative selective cancer cell therapy, we have developed a set of antisense phosphorothioate oligonucleotides which can discriminate the two alleles of a polymorphic site in the gene encoding the large subunit of RNA polymerase II. Our data show that the exact position of the antisense oligonucleotide on the mRNA is of essential importance for the oligonucleotide to be an effective inhibitor of gene expression. Shifting the oligonucleotide position only a few bases along the mRNA sequence will completely abolish the inhibitory activity of the antisense oligonucleotide. Reducing the length of the oligonucleotides to 16 bases increases the allele specificity. This study shows that it is possible to design oligonucleotides that selectively target the matched allele, whereas the expression level of the mismatched allele, that differs by one nucleotide, is only slightly affected.  相似文献   

6.
Levels of p27Kip1, a key negative regulator of the cell cycle, are often decreased in cancer. In most cancers, levels of p27Kip1 mRNA are unchanged and increased proteolysis of the p27Kip1 protein is thought to be the primary mechanism for its down-regulation. Here we show that p27Kip1 protein levels are also down-regulated by microRNAs in cancer cells. We used RNA interference to reduce Dicer levels in human glioblastoma cell lines and found that this caused an increase in p27Kip1 levels and a decrease in cell proliferation. When the coding sequence for the 3'UTR of the p27Kip1 mRNA was inserted downstream of a luciferase reporter gene, Dicer depletion also enhanced expression of the reporter gene product. The microRNA target site software TargetScan predicts that the 3'UTR of p27Kip1 mRNA contains multiple sites for microRNAs. These include two sites for microRNA 221 and 222, which have been shown to be upregulated in glioblastoma relative to adjacent normal brain tissue. The genes for microRNA 221 and microRNA 222 occupy adjacent sites on the X chromosome; their expression appears to be coregulated and they also appear to have the same target specificity. Antagonism of either microRNA 221 or 222 in glioblastoma cells also caused an increase in p27Kip1 levels and enhanced expression of the luciferase reporter gene fused to the p27Kip1 3'UTR. These data show that p27Kip1 is a direct target for microRNAs 221 and 222, and suggest a role for these microRNAs in promoting the aggressive growth of human glioblastoma.  相似文献   

7.
Tumor cells such as leukemia and lymphoma cells are obvious and attractive targets for gene therapy. Gene transfer and expression for cytokine and immunomodulatory molecules in various kinds of tumor cells have been shown to mediate tumor regression and antimetastatic effects. Moreover, genetically modified leukemia cells expressing costimulatory molecules or cytokines are likely to have significant therapeutic roles for patients with leukemia. One of the major hurdles to the successful implementation of these promising approaches is the lack of a suitable nanocarrier for transgene delivery and expression in a safe and effective manner. Recently, we reported on the development of a safe, efficient nanocarrier system of carbonate apatite that can assist both intracellular delivery and release of DNA, leading to very high level of transgene expression in cancer and primary cells. However, its efficiency in human lymphocytes is poor. We show here that nanocrystals of carbonate apatite, when electrostatically associated with fibronectin and/or E-cadherin-Fc, accelerated transgene delivery in a human T leukemia cell line (Jurkat). Moreover, transgene expression efficiency could be enhanced dramatically with the cell adhesive protein-embedded particles finally up to 150 times by selectively disrupting the actin filaments.  相似文献   

8.
Among the broad array of genes that have been evaluated for tumor therapy, those encoding prodrug activation enzymes are especially appealing as they directly complement ongoing clinical chemotherapeutic regimes. These enzymes can activate prodrugs that have low inherent toxicity using both bacterial and yeast enzymes, or enhance prodrug activation by mammalian enzymes. The general advantage of the former is the large therapeutic index that can be achieved, and of the latter, the non-immunogenicity (supporting longer periods of prodrug activation) and the fact that the prodrugs will continue to have some efficacy after transgene expression is extinguished. This review article describes 13 different prodrug activation schemes developed over the last 15 years, two of which - activation of ganciclovir by viral thymidine kinase and activation of 5-fluorocytosine to 5-fluorouracil - are currently being evaluated in clinical trials. Essentially all of these prodrug activation enzymes mediate toxicity through disruption of DNA replication, which occurs at differentially high rates in tumor cells compared with most normal cells. In cancer gene therapy, vectors target delivery of therapeutic genes to tumor cells, in contrast to the use of antibodies in antibody-directed prodrug therapy. Vector targeting is usually effected by direct injection into the tumor mass or surrounding tissues, but the efficiency of gene delivery is usually low. Thus it is important that the activated drug is able to act on non-transduced tumor cells. This bystander effect may require cell-to-cell contact or be mediated by facilitated diffusion or extracellular activation to target neighboring tumor cells. Effects at distant sites are believed to be mediated by the immune system, which can be mobilized to recognize tumor antigens by prodrug-activated gene therapy. Prodrug activation schemes can be combined with each other and with other treatments, such as radiation, in a synergistic manner. Use of prodrug wafers for intratumoral drug activation and selective permeabilization of the tumor vasculature to prodrugs and vectors should further increase the value of this new therapeutic modality.  相似文献   

9.
microRNA异常表达促进癌症的发生发展.本研究通过microRNA表达谱分析2个肝癌细胞和2个正常细胞microRNA的表达,寻找与肝癌相关的microRNA,发现microRNA-215在肝癌细胞中高表达,q RT-PCR验证microRNA-215在肝癌细胞呈显著高表达.进一步研究发现,microRNA-215直接靶向Dicer1基因的3′UTR并抑制Dicer1蛋白表达,Dicer1是microRNA加工成熟过程中必需的蛋白.过表达microRNA-215抑制Dicer1从而促进肝癌细胞迁移和转化,而抑制microRNA-215表达起相反作用.Dicer1抑制后,许多抑癌microRNA表达被抑制,从而促进迁移和转化.相对于癌旁组织,Dicer1在肝癌组织呈明显低表达.本研究揭示,microRNA-215异常活化并抑制Dicer1表达与肝癌发展相关.  相似文献   

10.
The human genome encodes several hundred microRNA (miRNA) genes that produce small (21–23n) single strand regulatory RNA molecules. Although abnormal expression of miRNAs has been linked to cancer progression, the mechanisms of this dysregulation are poorly understood. Malignant mesothelioma (MM) of pleura is an aggressive and highly lethal cancer resistant to conventional therapies. We and others previously linked loss of the 9p21.3 chromosome in MM with short time to tumor recurrence. In this study, we report that MM cell lines derived from patients with more aggressive disease fail to express miR-31, a microRNA recently linked with suppression of breast cancer metastases. We further demonstrate that this loss is due to homozygous deletion of the miR-31-encoding gene that resides in 9p21.3. Functional assessment of miR-31 activity revealed its ability to inhibit proliferation, migration, invasion, and clonogenicity of MM cells. Re-introduction of miR-31 suppressed the cell cycle and inhibited expression of multiple factors involved in cooperative maintenance of DNA replication and cell cycle progression, including pro-survival phosphatase PPP6C, which was previously associated with chemotherapy and radiation therapy resistance, and maintenance of chromosomal stability. PPP6C, whose mRNA is distinguished with three miR-31-binding sites in its 3′-untranslated region, was consistently down-regulated by miR-31 introduction and up-regulated in clinical MM specimens as compared with matched normal tissues. Taken together, our data suggest that tumor-suppressive propensity of miR-31 can be used for development of new therapies against mesothelioma and other cancers that show loss of the 9p21.3 chromosome.  相似文献   

11.
BACKGROUND: The mda-7 gene (melanoma differentiation associated gene-7) is a novel tumor suppressor gene. The anti-proliferative activity of MDA-7 has been previously reported. In this report, we analyze the anti-tumor efficacy of Ad-mda7 in a broad spectrum of cancer lines. MATERIALS AND METHODS: Ad-mda7-transduced cancer or normal cell lines were assayed for cell proliferation (tritiated thymidine incorporation assay, Alamar blue assay, and trypan-blue exclusion assay), apoptosis (TUNEL, and Annexin V staining visualized by fluorescent microscopy or FACs analysis), and cell cycle regulation (Propidium Iodide staining and FACs analysis). RESULTS: Ad-mda7 treatment of tumor cells resulted in growth inhibition and apoptosis in a temporal and dose-dependent manner. The anti-tumor effects were independent of the genomic status of p53, RB, p16, ras, bax, and caspase 3 in these cells. In addition, normal cell lines did not show inhibition of proliferation or apoptotic response to Ad-mda7. Moreover, Ad-mda7-transduced cancer cells secreted a soluble form of MDA-7 protein. Thus, Ad-mda7 may represent a novel gene-therapeutic agent for the treatment of a variety of cancers. CONCLUSIONS: The potent and selective killing activity of Ad-mda7 in cancer cells but not in normal cells makes this vector a potential candidate for cancer gene therapy.  相似文献   

12.
Current therapies against metastatic tumors are still ineffective. Cancer stem cells — a small subset of cells inside the tumor that possesses a self-renewal capacity — might be responsible for the recurrence of the tumor after anti-cancer therapies. Their immortality and unique drug resistance impede their eradication during therapy. The ‘stemness’ of these cells is controlled by microRNAs. These molecules possess the ability to downregulate gene expression by binding to the target mRNA. It turns out that microRNAs control the expression of approximately 60% of the genes in human cells. MicroRNA aberrant expression can lead to cancer development and progression. Therefore, recent research has focused on unraveling the role of microRNA in maintaining a stem-like phenotype in malignant tumors and cancer stem cells. This review summarizes our current knowledge about microRNAs that control the self-renewal capacity of cancer stem cells and indicates the importance of profound research aimed at developing efficient miRNA-targeted therapies.  相似文献   

13.
The inefficiency of in vivo gene transfer using currently available vectors reflects a major hurdle in cancer gene therapy. Both viral and non-viral approaches that improve gene transfer efficiency have been described, but suffer from a number of limitations. Herein, a fiber-modified adenovirus, carrying the small peptide ligand on the capsid, was tested for the delivery of a transgene to cancer cells. The fiber-modified adenovirus was able to mediate the entry and expression of a beta-galactosidase into cancer cells with increased efficiency compared to the unmodified adenovirus. Particularly, the gene transfer efficiency was improved up to 5 times in OVCAR3 cells, an ovarian cancer cell line. Such transduction systems hold promise for delivering genes to transferrin receptor overexpressing cancer cells, and could be used for future cancer gene therapy.  相似文献   

14.

Background

The production of cell-based cancer vaccines by gene vectors encoding proteins that stimulate the immune system has advanced rapidly in model systems. We sought to develop non-viral transfection methods that could transform patient tumor cells into cancer vaccines, paving the way for rapid production of autologous cell-based vaccines.

Methods

As the extended culture and expansion of most patient tumor cells is not possible, we sought to first evaluate a new technology that combines electroporation and chemical transfection in order to determine if plasmid-based gene vectors could be instantaneously delivered to the nucleus, and to determine if gene expression was possible in a cell-cycle independent manner. We tested cultured cell lines, a primary murine tumor, and primary human leukemia cells from diagnostic work-up for transgene expression, using both RFP and CD137L expression vectors.

Results

Combined electroporation-transfection directly delivered plasmid DNA to the nucleus of transfected cells, as demonstrated by confocal microscopy and real-time PCR analysis of isolated nuclei. Expression of protein from plasmid vectors could be detected as early as two hours post transfection. However, the kinetics of gene expression from plasmid-based vectors in tumor cell lines indicated that optimal gene expression was still dependent on cell division. We then tested to see if pediatric acute lymphocytic leukemia (ALL) would also display the rapid gene expression kinetics of tumor cells lines, determining gene expression 24 hours after transfection. Six of 12 specimens showed greater than 17% transgene expression, and all samples showed at least some transgene expression.

Conclusion

Given that transgene expression could be detected in a majority of primary tumor samples analyzed within hours, direct electroporation-based transfection of primary leukemia holds the potential to generate patient-specific cancer vaccines. Plasmid-based gene therapy represents a simple means to generate cell-based cancer vaccines and does not require the extensive infrastructure of a virus-based vector system.  相似文献   

15.
The application of adenoviral vectors in cancer gene therapy is hampered by low receptor expression on tumor cells and high receptor expression on normal epithelial cells. Targeting adenoviral vectors toward tumor cells may improve cancer gene therapy procedures by providing augmented tumor transduction and decreased toxicity to normal tissues. Targeting requires both the complete abolition of native tropism and the addition of a new specific binding ligand onto the viral capsid. Here we accomplished this by using doubly ablated adenoviral vectors, lacking coxsackievirus-adenovirus receptor and alpha(v) integrin binding capacities, together with bispecific single-chain antibodies targeted toward human epidermal growth factor receptor (EGFR) or the epithelial cell adhesion molecule. These vectors efficiently and selectively targeted both alternative receptors on the surface of human cancer cells. Targeted doubly ablated adenoviral vectors were also very efficient and specific with primary human tumor specimens. With primary glioma cell cultures, EGFR targeting augmented the median gene transfer efficiency of doubly ablated adenoviral vectors 123-fold. Moreover, EGFR-targeted doubly ablated vectors were selective for human brain tumors versus the surrounding normal brain tissue. They transduced organotypic glioma and meningioma spheroids with efficiencies similar to those of native adenoviral vectors, while exhibiting greater-than-10-fold-reduced background levels on normal brain explants from the same patients. As a result, EGFR-targeted doubly ablated adenoviral vectors had a 5- to 38-fold-improved tumor-to-normal brain targeting index compared to native vectors. Hence, single-chain targeted doubly ablated adenoviral vectors are promising tools for cancer gene therapy. They should provide an improved therapeutic index with efficient tumor transduction and effective protection of normal tissue.  相似文献   

16.
17.
18.
19.
Alternative polyadenylation (APA) could result in mRNA isoforms with variable lengths of 3′ UTRs. Gain of microRNA target sites in the 3′ UTR of a long mRNA isoform may cause different regulation from the corresponding short isoform. It has been known that cancer cells globally exhibit a lower ratio of long and short isoforms (LSR); that is, they tend to express larger amounts of short isoforms. The objective of this study is to illustrate the relationship between microRNA differential regulation and LSR. We retrieved public APA annotations and isoform expression profiles of breast cancer and normal cells from a high-throughput sequencing method study specific for the mRNA 3′ end. Combining microRNA expression profiles, we performed statistical analysis to reveal and estimate microRNA regulation on APA patterns in a global scale. First, we found that the amount of microRNA target sites in the alternative UTR (aUTR), the region only present in long isoforms, could affect the LSR of the target genes. Second, we observed that the genes whose aUTRs were targeted by up-regulated microRNAs in cancer cells had an overall lower LSR. Furthermore, the target sites of up-regulated microRNAs tended to appear in aUTRs. Finally, we demonstrated that the amount of target sites for up-regulated microRNAs in aUTRs correlated with the LSR change between cancer and normal cells. The results indicate that up-regulation of microRNAs might cause lower LSRs of target genes in cancer cells through degradation of their long isoforms. Our findings provide evidence of how microRNAs might play a crucial role in APA pattern shifts from normal to cancerous or proliferative states.  相似文献   

20.
RNAi-based gene therapy has been recently considered as a promising approach against cancer. Targeted delivery of drug, gene or therapeutic RNAi-based systems to tumor cells is one of the important issues in order to reduce side effects on normal cells. Several strategies have been developed to improve the safety and selectivity of cancer treatments including antibodies, peptides and recently aptamers with various attractive characteristics including higher target specificity, affinity and reduced toxicity. Here we described a novel targeted delivery platform comprising modified PAMAM with 10-bromodecanoic acid (10C) and 10C-PEG for improvement of transfection efficiency, AS1411 aptamer for targeting nucleolin ligand on target cancer cells and shRNA plasmid for specific knockdown of Bcl-xL protein. Modified vector could significantly improve the transfection efficiency even after covalent or non-covalent aptamer binding compared to the non-targeted vector in A549 cells. The results of gene silencing and apoptosis assay indicated that our targeted shRNA delivery system could efficiently down-regulate the Bcl-xL expression up to 25% and induce 14% late apoptosis in target cancer cells with strong cell selectivity. This study proposed a novel targeted non-viral system for shRNA-mediated gene-silencing in cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号