首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The effect of immobilization with various glass-forming monomers on the stability of PS II activity of spinach chloroplast was investigated. PS II activity (O2 evolution due to the Hill reaction) was reduced very slightly by the addition of monomers including polyethyleneglycol (PEG). Immobilization of chloroplast was done with hydrophobic monomer as well as hydrophilic monomer and activity of immobilized chloroplast increased with decreasing monomer concentration as far as the polymerization was possible. The activity of immobilized chloroplast was very high and it decayed far more gradually with the storage time in comparison with the decay of unimmobilized chloroplast and was retained more than 30 days. The optimum monomer concentration for immobilization was about 10%. Thermostability of chloroplast also increased greatly by immobilization with these monomers, especially hydrophilic monomers.  相似文献   

2.
Immobilized enzymes have a very large surface region which is not in contact with the support surface and, thus, have potential as a target for novel stabilization strategies. In this paper, coating the surfaces of such enzymes with a highly hydrophilic and compact cross-linked poly-aminated polymer as a strategy to increase the thermal stability of the immobilized enzymes is proposed. In particular, Rhizomucor miehei lipase (RML) was immobilized by interfacial adsorption onto octyl-agarose and further coated with poly-allylamine (PAA), a polymer that is very rich in primary amino groups. Cross-linking of the PAA layer to coat the immobilized enzyme was carried out, in situ, by reaction with freshly oxidized dextran (aldehyde–dextran). The PAA layer only exerted moderate stabilizing effects (around 4-fold), but further cross-linking with aldehyde–dextran highly increased the stabilizing effects; the new derivative was 440-fold more stable than uncoated derivative at 55 °C and pH 7 and exhibited 6-fold more catalytic activity compared to the soluble enzyme used for immobilization. We hypothesize that the hydrophilicity of PAA reduces the exposure of internal hydrophobic pockets to the enzyme surface at high temperatures. Besides, the compactness of the polymer may reduce distortion of the enzyme surface during inactivation.  相似文献   

3.
Immobilization of lipases involves many levels of complications relating to the structure of the active site and its interactions with the immobilization support. Interaction of the so called hydrophobic ‘lid’ with the support has been reported to affect synthetic activity of an immobilized lipase. In this work we evaluate and compare the synthetic activity of lipases from different sources immobilized on different kinds of supports with varying hydrophobicity. Humicola lanuginosa lipase, Candida antarctica lipase B and Rhizomucor miehei lipase were physically adsorbed onto two types of hydrophobic carriers, namely hydrophilic carriers with conjugated hydrophobic ligands, and supports with base matrix hydrophobicity. The prepared immobilized enzymes were used for acylation of n-butanol with oleic acid as acyl donor in iso-octane with variable water content (0–2.8%, v/v) as reaction medium. Enzyme activity and effect of water on the activity of the immobilized derivatives were compared with those of respective soluble lipases and a commercial immobilized lipase Novozyme 435. Both R. miehei and H. lanuginosa immobilized lipases showed maximum activity at 1.39% (v/v) added water concentration. Sepabeads, a methacrylate based hydrophilic support with conjugated octadecyl chain showed highest immobilized esterification (synthetic) activity for all three enzymes, and of the three R. miehei lipase displayed maximum esterification activity comparable to the commercial enzyme.  相似文献   

4.
An important requirement of immobilized enzyme based biosensors is the thermal stability of the enzyme. Studies were carried out to increase thermal stability of glucose oxidase (GOD) for biosensor applications. Immobilization of the enzyme was carried out using glass beads as support and the effect of silane concentration (in the range 1-10%) during the silanization step on the thermal stability of GOD has been investigated. Upon incubation at 70 degrees C for 3h, the activity retention with 1% silane was only 23%, which increased with silane concentration to reach a maximum up to 250% of the initial activity with 4% silane. Above this concentration the activity decreased. The increased stability of the enzyme in the presence of high silane concentrations may be attributed to the increase in the surface hydrophobicity of the support. The decrease in the enzyme stability for silane concentrations above 4% was apparently due to the uneven deposition of the silane layer on the glass bead support. Further work on thermal stability above 70 degrees C was carried out by using 4% silane and it was found that the enzyme was stable up to 75 degrees C with an increased activity of 180% after 3-h incubation. Although silanization has been used for the modification of the supports for immobilization of enzymes, the use of higher concentrations to stabilize immobilized enzymes is being reported for the first time.  相似文献   

5.
Covalent immobilization of pure lipases A and B from Candida rugosa on agarose and silica is described. The immobilization increases the half-life of the biocatalysts ( ) with respect to the native pure lipases ( ). The percentage immobilization of lipases A and B is similar in both supports (33–40%). The remaining activity of the biocatalysts immobilized on agarose (70–75%) is greater than that of the enzymatic derivatives immobilized on SiO2 (40–50%). The surface area and the hydrophobic/hydrophilic properties of the support control the lipase activity of these derivatives. The thermal stability of the immobilized lipase A derivatives is greater than that of lipase B derivatives. The nature of the support influences the thermal deactivation profile of the immobilized derivatives. The immobilization in agarose (hydrophilic support) gives biocatalysts that show a greater initial specific reaction rate than the biocatalysts immobilized in SiO2 (hydrophobic support) using the hydrolysis of the esters of (R) or (S) 2-chloropropanoic and of (R,S) 2-phenylpropanoic acids as the reaction test. The enzymatic derivatives are active for at least 196 h under hydrolysis conditions. The stereospecificity of the native and the immobilized enzymes is the same.  相似文献   

6.
Alpha-amylase was covalently immobilized onto maleic anhydride copolymer films preserving activity. The initial activity of the immobilized layers strongly depended on the immobilization solution, and on the physicochemical properties of the copolymer film. Higher enzyme loading (quantified by amino acid analysis using HPLC) and activity (measured by following starch hydrolysis) were attainable onto hydrophilic, highly swelling 3-D poly(ethylene-alt-maleic anhydride) (PEMA) copolymer films, while immobilization onto hydrophobic poly(octadecene-alt-maleic anhydride) (POMA) copolymer films resulted in low content enzyme layers and lower activity. No significant activity was lost upon dehydration/re-hydration or storage of enzyme containing PEMA copolymer layers in deionised water for up to 48 h. In contrast, α-amylase decorated POMA films suffered a significant activity loss under those conditions. The distinct behaviours may be attributed to the different intrinsic physicochemical properties of the copolymer films. The compact, hydrophobic POMA films possibly favours hydrophobic interactions between the hydrophobic moieties of the protein and the surface, which may result in conformational changes, and consequent loss of activity. Surprisingly, residual activity was found after harsh treatments of active α-amylase PEMA based layers revealing that immobilization onto the hydrophilic polymer films improved the stability of the enzyme.  相似文献   

7.
Self-assembling amphipathic peptides (SAPs) are a category of peptides that have unique sequences with alternating hydrophobic and hydrophilic residues that can spontaneously assemble into ordered nanostructures. In this study, we investigated the potential of fusion technique with SAPs to improve the thermal stability of lipoxygenase (LOX) from Pseudomonas aeruginosa. Six SAPs were individually fused to the N terminus of the LOX that resulted to the SAP–LOX fusions with approximately 2.3- to 4.5-fold enhanced thermal stability at 50 °C. The specific activities of the SAP–LOX fusions were also increased by 1.0- to 2.8-fold as compared with the wild-type LOX. This is the first report on the improvement of the thermal stability and specific activity of an enzyme by the fused SAPs, suggesting a simple technique to improve the catalytic properties of the recombinant enzymes by fusion expression.  相似文献   

8.
Penicillin amidase, alpha-chymotrypsin and urease have been immobilized in water-soluble nonstoichiometric polyelectrolyte complexes (N-PEC). N-PEC are formed by modified poly(N-ethyl-4-vinyl-pyridinium bromide) (polycation) and excess poly(methylacrylic acid) (polyanion). N-PEC are a new class of polymers capable, characteristically, of phase transitions solution in equilibrium precipitate induced by slight change in pH or ionic strength. Neither the chemical structure of the carrier nor the number of cross-linkages between an enzyme and a carrier change on phase transition. That gives an unique opportunity to elucidate the difference between enzymes immobilized on water-soluble and water-insoluble supports. A detailed study of the phase transition effect on thermal stability of the enzymes and protein-protein interactions has been carried out. The following effects were found. Pronounced thermal stabilization of penicillin amidase and urease may be achieved on two conditions: the enzyme is in the precipitate; (b) the enzyme is linked to the N-PEC nucleus. Then the thermal stability of N-PEC-bound penicillin amidase increases 7-fold at pH 5.7, 60 degrees C, and 300-fold at pH 3.1, 25 degrees C, compared to the native enzyme. For urease, the thermal stabilization increases 20-fold at pH 5.0, 70 degrees C. The localization of enzyme on N-PEC has been established by titration of alpha-chymotrypsin bound to a polycation or polyanion with basic pancreatic trypsin inhibitor. Both in solution (pH 6.1) and in N-PEC precipitate (pH 5.7), an alpha-chymotrypsin molecule bound to a polyanion is fully exposed to the solution. If the enzyme is bound to a polycation, only 20% of alpha-chymotrypsin molecules in the precipitate and 40% in solution retain their ability for protein-protein interactions. This means that a polycation-bound enzyme is localized in the hydrophobic nucleus of the complex, whereas the polyanion-bound enzyme sits on the hydrophilic shell of the complex. On pH-induced phase transition (pH decreases from 6.1 to 5.7), there occurs a stepwise decrease in penicillin amidase activity which is due to a 9.8-fold increase in the Km for 2-nitro-4-phenylacetamidobenzoic acid. Change of the catalytic activity and thermal stability of N-PEC-bound penicillin amidase is fully reversible and reproducible. Such soluble-insoluble immobilized enzymes with controllable thermal stability and activity may be used for simulating events in vivo and in biotechnology.  相似文献   

9.
Bacillus subtilis lipase A (BSLA) has been extensively studied through protein engineering; however, its immobilization and behavior as an insoluble biocatalyst have not been extensively explored. In this work, for the first time, a direct immobilization of recombinant BSLA from microbial culture supernatant was reported, using chemically modified porous with different electrostatic, hydrophobic, hydrophilic, and hydrophilic−hydrophobic enzyme-support interactions. The resulting biocatalysts were evaluated based on their immobilization kinetics, activity expression (pH 7.4), thermal stability (50 °C), solvent resistance and substrate preference. Biocatalysts obtained using glyoxyl silica support resulted in the selective immobilization of BSLA, resulting in an activity recovery of 50 % and an outstanding aqueous stabilization factor of 436, and 9.5 in isopropyl alcohol, compared to the free enzyme. This selective immobilization methodology of BSLA allows to efficiently generate immobilized biocatalysts, thus avoiding laborious purification steps from cell culture supernatant, which is usually a limiting step when large amounts of enzyme variants or candidates are assessed as immobilized biocatalysts. Direct enzyme immobilization from cell supernatant provides an interesting tool which can be used to facilitate the development and assessment of immobilized biocatalysts from engineered enzyme variants and mutant libraries, especially in harsh conditions, such as high temperatures or non-aqueous solvents, or against non-water-soluble substrates. Furthermore, selective immobilization approaches from cell culture supernatant or clarified lysates could help bridging the gap between protein engineering and enzyme immobilization, allowing for the implementation of immobilization steps in high throughput enzyme screening platforms for their potential use in directed evolution campaigns.  相似文献   

10.
Water-insoluble proteases were prepared by immobilizing papain and chymotrypsin onto the surface of polyacrolein microspheres with and without oligoglycines as spacer. The activity of immobilized proteases was found to be still high toward small ester substrates, but very low toward casein, a high-molecular-weight substrate. The relative activity of the immobilized proteases without spacer decreased gradually with the decreasing surface concentration of the immobilized proteases on the microspheres. On the contrary, the immobilized proteases with oligoglycine spacers gave an almost constant activity for the substrate hydrolysis within the surface concentration region studied and gave a much higher relative activity than those without any spacer. With the longer spacer, the immobilized enzymes showed a higher activity toward casein hydrolysis, whereas there was an optimum length for the spacer when hydrolysis was carried out toward the low-molecular-weight substrate. The thermal stability of the immobilized proteases was higher than that of the respective native proteases. The initial enzymatic activity of the immobilized proteases maintained almost unchanged without any elimination and inactivation of proteases, when the batch enzyme reaction was performed repeatedly, indicating the excellent durability.  相似文献   

11.
Alcohol dehydrogenase from halophilic archaeon Haloferax volcanii (HvADH2) was successfully covalently immobilized on metal-derivatized epoxy Sepabeads. The immobilization conditions were optimized by investigating several parameters that affect the halophilic enzyme–support interaction. The highest immobilization efficiency (100 %) and retention activity (60 %) were achieved after 48 h of incubation of the enzyme with Ni-epoxy Sepabeads support in 100 mM Tris–HCl buffer, pH 8, containing 3 M KCl at 5 °C. No significant stabilization was observed after blocking the unreacted epoxy groups with commonly used hydrophilic agents. A significant increase in the stability of the immobilized enzyme was achieved by blocking the unreacted epoxy groups with ethylamine. The immobilization process increased the enzyme stability, thermal activity, and organic solvents tolerance when compared to its soluble counterpart, indicating that the immobilization enhances the structural and conformational stability. One step purification–immobilization of this enzyme has been carried out on metal chelate-epoxy Sepabeads, as an efficient method to obtain immobilized biocatalyst directly from bacterial extracts.  相似文献   

12.
In the present study adenosine deaminase (ADA) was immobilized onto two different polymeric materials, agarose and casein. The factors affecting the amount of enzyme attachment onto the polymeric supports such as incubation time were investigated. The maximum amount of enzyme immobilized onto different polymeric supports occurred at incubation pH value 7.5 and ADA concentration 42 units/g and the incubation time needed for the maximum amount of enzyme attachment to the polymeric supports was found to be 8 h. Some phsicochemical properties of the free and immobilized ADA such as operational stability, optimum temperature and thermal stability, pH optimum and stability, storage stability, and the effect of gamma-radiation were studied. The operational stability of the free and immobilized enzyme showed that the enzyme immobilized by a cross-linking technique using gultaric dialdehyde showed poor durability and the relative activity decreased sharply due to the leakage after repeated washing, while the enzymes immobilized by covalent bonds to the carriers showed a slight decrease in most cases in the relative activity (around 20%) after being used 10 times. Storage for 4-6 months, showed that the free enzyme lost its activity, while the immobilized enzyme showed the opposite behavior. Subjecting the immobilized enzyme to a dose of gamma radiation of 0.5-10 Mrad showed complete loss in the activity of the free enzyme at a dose of 5 Mrad, while the immobilized enzymes showed relatively high resistance to gamma radiation up to a dose of 5 Mrad.  相似文献   

13.
We have analyzed the effects of the buffer nature on the stability of immobilized lipases. Commercial phospholipase Lecitase Ultra (LU), lipase B from Candida antarctica (CALB) and lipase from Thermomyces lanuginosus (TLL) have been immobilized on octyl-glyoxyl agarose beads. The enzymes were readily inactivated using 4 M sodium phosphate but 6 M NaCl did not inactivate them. Using 2 M of sodium phosphate, the inactivation of the 3 immobilized enzymes still was very significant even at 25 °C but at lower rate than with higher phosphate concentration. Thermal stress inactivations of the immobilized enzymes revealed that even 100 mM sodium phosphate produced a significant decrease in enzyme stability; this effect was less pronounced for Lecitase but dramatic for CALB. While 6 M NaCl presented slightly positive (LU) or negative (TLL) effects on their thermal stabilities of, CALB was thermally stabilized under the same conditions. Results were very different using free enymes. Fluorescence spectroscopy revealed dramatic structural rearrangements of the immobilized enzymes in the presence of high phosphate concentration. From these results, the use of sodium phosphate does not seem to be recommended for studies on thermal stability of lipases, although this should be verified for each enzyme and immobilized preparation.  相似文献   

14.
Choi YS  Yoo YJ 《Biotechnology letters》2012,34(6):1131-1135
Binary mixtures of hydrophilic and hydrophobic solvents were assessed for their ability to balance enzyme activity with the conservation of enzyme stability in organic media. Acetone, dioxane and dodecane were chosen as model organic solvents, and subtilisin Carlsberg and horseradish peroxidase (HRP) were chosen as model enzymes. Residual enzyme activities were measured to monitor enzyme stability, and the fluorescence intensity of HRP was monitored to investigate structural changes due to the presence of an organic solvent. Enzyme stability increased with the increasing hydrophobicity of the solvent mixture used, and a solvent mixture with a high log P value (~ >4) was capable of conserving enzyme stability. Enzyme stability in organic media can be conserved therefore with a mixture of hydrophilic and hydrophobic solvents: this approach might be used as a general and practical strategy for optimizing enzyme activity and stability for industrial applications.  相似文献   

15.
A series of mesoporous and hydrophilic novel bead carriers containing epoxy groups were synthesized by modified inverse suspension polymerization. Glycidyl methacrylate and acryloyloxyethyl trimethyl ammonium chloride were used as the monomers, and divinyl benzene, allyl methacrylate, and ethylene glycol dimethacrylate as crosslinking agents, respectively. The resulting carriers were employed in the immobilization of glucoamylase (Glu) with covalent bond between epoxy groups and enzymes. The activity recovery of the three series of immobilized Glus could reach 76%, 79%, and 86%, respectively. The immobilized Glus exhibit excellent stability and reusability than that of the free ones.  相似文献   

16.
Many industrially important reactions use immobilized enzymes in non-aqueous, organic systems, particularly for the production of chiral compounds such as pharmaceutical precursors. The addition of a spacer molecule ("tether") between a supporting surface and enzyme often substantially improves the activity and stability of enzymes in aqueous solution. Most "long" linkers (e.g., polyethylene oxide derivatives) are relatively hydrophilic, improving the solubility of the linker-enzyme conjugate in polar environments, but this provides little benefit in non-polar environments such as organic solvents. We present a novel method for the covalent immobilization of enzymes on solid surfaces using a long, hydrophobic polytryptophan tether. Candida antarctica lipase B (CALB) was covalently immobilized on non-porous, functionalized 1-microm silica microspheres, with and without an intervening hydrophobic poly-DL-tryptophan tether (n approximately 78). The polytryptophan-tethered enzyme exhibited 35 times greater esterification of n-propanol with lauric acid in the organic phase and five times the hydrolytic activity against p-nitrophenol palmitate, compared to the activity of the same enzyme immobilized without tethers. In addition, the hydrophobic tethers caused the silica microspheres to disperse more readily in the organic phase, while the surface-immobilized control treatment was less lipophilic and quickly settled out of the organic phase when the suspensions were not vigorously mixed.  相似文献   

17.
Increasedlevelofcholesterolisfoundincoronaryarterydisease ,nephrosis,diabetes,myxoedema ,obstructivejaundiceandhypothy roidism ;whiledecreasedlevelofcholesterolisobservedincasesofhypothyroidism ,anemia,malabsorptionandwastingsyndromes[1] .Thus,cholesteroldete…  相似文献   

18.
《Process Biochemistry》2014,49(9):1488-1496
Finishing of silk fabric was achieved by using amino-functional polydimethylsiloxane (PDMS) and lipase from Candida sp. 99-125 was immobilized on the treated silk fabrics. Hydrophobic fabrics were obtained by dipping the native fabric in 0.125–0.25% (w/v) PDMS solution and dried at 70 °C. The direct adsorption on PDMS-treated fabric was verified to be a better strategy for lipase immobilization than that by covalent binding. Compared to unfinished fabrics, the hydrolytic activity of immobilized enzyme on the finished fabric was improved by 1.6 times. Moreover, the activity of immobilized enzymes on hydrophobic fabrics was significantly improved in different concentrations of strong polar solvents such as methanol and ethanol, and in common organic solvents with different octanol–water partition coefficients (Log P). Enzymatic activity and stability in 15% water content system (added water accounted for the total reaction mixtures, v/v) showed more than 30% improvement in each batch. The amino–silicone finished fabric surface was investigated by scanning electron microscopy and X-ray photoelectron spectroscopy. The hydrophobic fabric immobilized enzyme could be recycled for more than 80 times with no significant decrease in esterification activity. PDMS-treated woven silk fabrics could be a potential support for lipase immobilization in catalytic esterification processes.  相似文献   

19.
Chloroperoxidase (CPO) was covalently immobilized on poly(hydroxypropyl methacrylate-co-polyethyleneglycole-methacrylate) membranes, which were characterized, by swelling test, FT-IR spectroscopy, scanning electron microscopy, and contact angle measurement. The Km and Vmax values for free and immobilized CPO were found to be 34.6 and 47.2 μM, and 287.5 and 245.2 U/mg protein, respectively. The optimum pH for both the free and immobilized enzyme was observed at 3.0. The immobilized enzyme showed wide pH and temperature profiles. Most importantly, the increased thermal, storage and operational stability of immobilized CPO should depend on the creation of a comfortable strong hydrophilic microenvironment on the designed support to the host enzyme molecule.  相似文献   

20.
Enzyme immobilization was studied by means of radiation-induced polymerization of hydrophobic glass-forming monomers at low temperatures. The polymerized hydrophobic composite was generally obtained in microspheric form. Enzymatic activity showed little decrease with repeated use in these systems. The particle size of the microsphere increased with increasing monomer concentration, and activity yield had a maximum at an optimum monomer concentration. Immobilization by copolymerization of hydrophilic and hydrophobic comonomers was also investigated and a maximum activity yield was found at a certain monomer concentration. A model scheme for immobilization at low temperatures was proposed and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号