首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
HIV-1 is one of the most variable viruses. The development of gene therapy technology using RNAi for AIDS/HIV-1 treatment is a potential alternative for traditional anti-retroviral therapy. Anti-HIV-1 siRNA should aim to exploit the most conserved viral targets. Using the deep sequencing of potential RNAi targets in 100-nt HIV-1 genome fragments from the clinical HIV-1 subtype A isolates in Russia, we found that the frequencies of all possible transversions and transitions in certain RNAi targets are 3–38 times lower than in adjacent sequences. Therefore, these targets are conserved. We propose the development of these RNAi targets for AIDS/HIV-1 treatment. Deep sequencing also enables the detection of the characteristic mutational bias of RT during the replication of viral RNA.  相似文献   

3.
The degradation of a selected mRNA species by RNA interference requires a high degree of homology between the short interfering or short hairpin RNA (si or shRNA) and its target. Recent reports have demonstrated that the number and location of nucleotide mismatches affect the activity of si/shRNA. Here, we systematically examined the effect of single nucleotide mutations in all 21 positions of an effective shRNA that targets the gag gene of HIV-1. We found that all mutant shRNAs exerted RNAi activity but were less effective in gene silencing compared to the wild-type gag shRNA. The most pronounced reduction in function was observed with mutations in the central and 5′ regions of the shRNA. Our results demonstrate that optimal gene silencing requires perfect homology between shRNA and the chosen target, but that a variable degree of silencing occurs, depending upon the precise location of nucleotide mismatches.  相似文献   

4.
5.
RNA interference (RNAi) is a cellular mechanism in which small interfering RNAs (siRNAs) mediate sequence-specific gene silencing by cleaving the targeted mRNA. RNAi can be used as an antiviral approach to silence the human immunodeficiency virus type 1 (HIV-1) through stable expression of short-hairpin RNAs (shRNAs). We previously reported efficient HIV-1 inhibition by an shRNA against the nonessential nef gene but also described viral escape by mutation or deletion of the nef target sequence. The objective of this study was to obtain insight in the viral escape routes when essential and highly conserved sequences are targeted in the Gag, protease, integrase, and Tat-Rev regions of HIV-1. Target sequences were analyzed of more than 500 escape viruses that were selected in T cells expressing individual shRNAs. Viruses acquired single point mutations, occasionally secondary mutations, but—in contrast to what is observed with nef—no deletions were detected. Mutations occurred predominantly at target positions 6, 8, 9, 14, and 15, whereas none were selected at positions 1, 2, 5, 18, and 19. We also analyzed the type of mismatch in the siRNA-target RNA duplex, and G-U base pairs were frequently selected. These results provide insight into the sequence requirements for optimal RNAi inhibition. This knowledge on RNAi escape may guide the design and selection of shRNAs for the development of an effective RNAi therapy for HIV-1 infections.  相似文献   

6.
Potent antiviral RNAi can be induced by intracellular expression of short hairpin RNAs (shRNAs) and artificial microRNAs (miRNAs). Expression of shRNA and miRNA results in target mRNA degradation (perfect base pairing) or translational repression (partial base pairing). Although efficient inhibition can be obtained, error-prone viruses such as human immunodeficiency virus type 1 (HIV-1) can escape from RNAi-mediated inhibition by mutating the target sequence. Recently, artificial miRNAs have been shown to be potent RNAi inducers due to their efficient processing by the RNAi machinery. Furthermore, miRNAs may be more proficient in suppressing imperfect targets than shRNAs. In this study, we tested the knockdown efficiency of miRNAs and shRNAs against wild-type and RNAi-escape HIV-1 variants with one or two mutations in the target sequence. ShRNAs and miRNAs can significantly inhibit the production of HIV-1 variants with mutated target sequences in the open reading frame. More pronounced mutation-tolerance was measured for targets in the 3′ untranslated region (3′ UTR). Partially complementary sequences within the 3′ UTR of the HIV-1 RNA genome efficiently act as target sites for miRNAs and shRNAs. These data suggest that targeting imperfect target sites by antiviral miRNAs or shRNAs provides an alternative RNAi approach for inhibition of pathogenic viruses.  相似文献   

7.
8.
Lentiviral vectors that carry anti-HIV shRNAs: problems and solutions   总被引:3,自引:0,他引:3  
BACKGROUND: HIV-1 replication can be inhibited with RNA interference (RNAi) by expression of short hairpin RNA (shRNA) from a lentiviral vector. Because lentiviral vectors are based on HIV-1, viral sequences in the vector system are potential targets for the antiviral shRNAs. Here, we investigated all possible routes by which shRNAs can target the lentiviral vector system. METHODS: Expression cassettes for validated shRNAs with targets within HIV-1 Leader, Gag-Pol, Tat/Rev and Nef sequences were inserted in the lentiviral vector genome. Third-generation self-inactivating HIV-1-based lentiviral vectors were produced and lentiviral vector capsid production and transduction titer determined. RESULTS: RNAi against HIV-1 sequences within the vector backbone results in a reduced transduction titer while capsid production was unaffected. The notable exception is self-targeting of the shRNA encoding sequence, which does not affect transduction titer. This is due to folding of the stable shRNA hairpin structure, which masks the target for the RNAi machinery. Targeting of Gag-Pol mRNA reduces both capsid production and transduction titer, which was improved with a human codon-optimized Gag-Pol construct. When Rev mRNA was targeted, no reduction in capsid production and transduction titer was observed. CONCLUSIONS: Lentiviral vector titers can be negatively affected when shRNAs against the vector backbone and the Gag-Pol mRNA are expressed during lentiviral vector production. Titer reductions due to targeting of the Gag-Pol mRNA can be avoided with a human codon-optimized Gag-Pol packaging plasmid. The remaining targets in the vector backbone may be modified by point mutations to resist RNAi-mediated degradation during vector production.  相似文献   

9.
10.
Repeated bottleneck passages result in fitness losses of RNA viruses. In the case of human immunodeficiency virus type 1 (HIV-1), decreases in fitness after a limited number of plaque-to-plaque transfers in MT-4 cells were very drastic. Here we report an analysis of entire genomic nucleotide sequences of four HIV-1 clones derived from the same HIV-1 isolate and their low-fitness progeny following 7 to 15 plaque-to-plaque passages. Clones accumulated 4 to 28 mutations per genome, with dominance of A --> G and G --> A transitions (57% of all mutations) and 49% nonsynonymous replacements. One clone-but not three sibling clones-showed an overabundance of G --> A transitions, evidencing the highly stochastic nature of some types of mutational bias. The distribution of mutations along the genome was very unusual in that mutation frequencies in gag were threefold higher than in env. Particularly striking was the complete absence of replacements in the V3 loop of gp120, confirmed with partial nucleotide sequences of additional HIV-1 clones subjected to repeated bottleneck passages. The analyses revealed several amino acid replacements that have not been previously recorded among natural HIV-1 isolates and illustrate how evolution of an RNA virus genome, with regard to constant and variable regions, can be profoundly modified by alterations in population dynamics.  相似文献   

11.
Many patterns of mutations selected by HIV-1 protease inhibitors have been described, but in most cases isolates with these patterns have been obtained from pre-clinical studies or after failures of monotherapies. We compared genotype and phenotype in HIV-1 infected patients who have failed more than one PI-including regimen. Phenotypic resistance could arise also in the absence of specific primary mutations and in the presence of different substitutions among those known to confer resistance to ritonavir, indinavir or nelfinavir. The number of secondary mutations was significantly associated with phenotypic resistance for each protease inhibitor. Thus, more study of mutational patterns in heavily pretreated patients is warranted; in the mean time treatment choices might be optimized if phenotyping could integrate genotyping within this setting.  相似文献   

12.
Although laboratory-adapted HIV-1 strains are largely resistant to the human restriction factor TRIM5α (hTRIM5α), we have recently shown that some viruses carrying capsid (CA) sequences from clinical isolates can be more sensitive to this restriction factor. In this study we evaluated the contribution to this phenotype of CA mutations known to be associated with escape from cytotoxic T lymphocyte (CTL) responses. Recombinant viruses carrying HIV-1 CA sequences from NL4-3 and three different clinical isolates were prepared, along with variants in which mutations associated with CTL resistance were modified by site-directed mutagenesis, and the infectivities of these viruses in target cells expressing hTRIM5α and cells in which TRIM5α activity had been inhibited by overexpression of TRIM5γ were compared. For both hTRIM5α-sensitive viruses studied, CTL-associated mutations were found to be responsible for this phenotype. Both CTL resistance mutations occurring within HLA-restricted CA epitopes and compensatory mutations occurring outside CTL epitopes influenced hTRIM5α sensitivity, and mutations associated with CTL resistance selected in prior hosts can contribute to this effect. The impact of CTL resistance mutations on hTRIM5α sensitivity was context dependent, because mutations shown to be responsible for the TRIM5α-sensitive phenotype in viruses from one patient could have little or no impact on this parameter when introduced into another virus. No fixed relationship between changes in hTRIM5α sensitivity and infectivity was discernible in our studies. Taken together, these findings suggest that CTL mutations may influence HIV-1 replication by modifying both viral infectivity and sensitivity to TRIM5α.  相似文献   

13.
A Achour  F Bex  P Hermans  A Burny    D Zagury 《Journal of virology》1996,70(10):6741-6750
Cytotoxic T lymphocytes (CTL) may be important to prevent cell-to-cell transmission of human immunodeficiency virus type 1 (HIV-1), the agent responsible for AIDS. In this study, we investigated the epitope specificity of CTLs induced in individuals immunized against the virus envelope glycoprotein gp160. The determinant of HIV-1 gp160 for the stimulation of CTL is located in a region of high sequence variability among HIV-1 isolates, the so-called V3 loop P18. Using a panel of P18 peptides, we compared the CTL specificities of cells from two individuals immunized with vaccinia virus recombinants expressing the envelope glycoproteins from two different strains of HIV-1, IIIB and SIMI. For this purpose, CTLs specific for the IIIB P18 peptide (RIQRGPGRAFVTIGK) were compared with CTLs for the site from the SIMI isolate (TLHMGPKRAFYATGD). The results indicate that in contrast to CD8+ CTLs induced by the glycoprotein from strain IIIB, CD8+ CTLs induced by strain SIMI strongly cross-reacted with targets presenting P18 peptides as well as envelope proteins from the divergent MN and RF isolates but failed to cross-react with targets that presented the IIIB peptide. These data have implications for the design of an HIV vaccine.  相似文献   

14.
15.
The expression of a membrane-anchored gp41-derived peptide (M87) has been shown to confer protection from infection through human immunodeficiency virus type 1 (HIV-1) (Hildinger et al., J. Virol. 75:3038-3042, 2001). In an effort to characterize the mechanism of action of this membrane-anchored peptide in comparison to the soluble peptide T-20, we selected resistant variants of HIV-1(NL4-3) and HIV-1(BaL) by serial virus passage using PM1 cells stably expressing peptide M87. Sequence analysis of the resistant isolates showed different patterns of selected point mutations in heptad repeat regions 1 and 2 (HR1 and HR2, respectively) for the two viruses analyzed. For HIV-1(NL4-3) a single amino acid change at position 33 in HR1 (L33S) was selected, whereas for HIV-1(BaL) the majority of the sequences obtained showed two amino acid changes, one in HR1 and one in HR2 (I48V/N126K). In both selections the most important contiguous 3-amino-acid sequence, GIV, within HR1, associated with resistance to soluble T-20, was not changed. Site-directed mutagenesis studies confirmed the importance of the characterized point mutations to confer resistance to M87 as well as to soluble T-20 and T-649. Replication capacity and dual-color competition assays revealed that the double mutation I48V/N126K in HIV-1(BaL) results in a strong reduction of viral fitness, whereas the L33S mutation in HIV-1(NL4-3) did enhance viral fitness compared to the respective parental viruses. However, the selected point mutations did not confer resistance to the more recently described optimized membrane-anchored fusion inhibitor M87o (Egelhofer et al., J. Virol. 78:568-575, 2004), strengthening the importance of this novel antiviral concept for gene therapy approaches.  相似文献   

16.
CCR5-using human immunodeficiency virus type 1 (HIV-1) isolates typically gain CXCR4 use via multiple mutations in V3 and often V1/V2 regions of envelope, and patterns of mutations are distinct for each isolate. Here, we report that multiple CXCR4-using variants of a parental CCR5-using HIV-1 isolate, SF162, obtained by either target cell selection or CCR5 inhibition have a common mutation pattern characterized by the same two V3 mutations and that these mutations preexisted in some of the SF162 stocks. These results imply that SF162 has a single pathway for acquiring CXCR4 use and that prolonged culture is sufficient to select for R5X4 variants.  相似文献   

17.
18.
19.
The swarm of quasispecies that evolves in each HIV-1-infected individual represents a source of closely related Env protein variants that can be used to explore various aspects of HIV-1 biology. In this study, we made use of these variants to identify mutations that confer sensitivity and resistance to the broadly neutralizing antibodies found in the sera of selected HIV-1-infected individuals. For these studies, libraries of Env proteins were cloned from infected subjects and screened for infectivity and neutralization sensitivity. The nucleotide sequences of the Env proteins were then compared for pairs of neutralization-sensitive and -resistant viruses. In vitro mutagenesis was used to identify the specific amino acids responsible for the neutralization phenotype. All of the mutations altering neutralization sensitivity/resistance appeared to induce conformational changes that simultaneously enhanced the exposure of two or more epitopes located in different regions of gp160. These mutations appeared to occur at unique positions required to maintain the quaternary structure of the gp160 trimer, as well as conformational masking of epitopes targeted by neutralizing antibodies. Our results show that sequences in gp41, the CD4 binding site, and the V2 domain all have the ability to act as global regulators of neutralization sensitivity. Our results also suggest that neutralization assays designed to support the development of vaccines and therapeutics targeting the HIV-1 Env protein should consider virus variation within individuals as well as virus variation between individuals.  相似文献   

20.
Our previous study demonstrated the anti-apoptosis function of the human immunodeficiency virus type 1 (HIV-1) vpu gene product in normal CD4+ T lymphocytes. In this study, using sequences obtained from the HIV sequence database, we compared vpu sequences from 184 preparations of various subtypes of HIV-1 from diverse geographical regions. Our analysis revealed that CRF01_AE isolates had premature stop codon mutations at the vpu gene at a much higher rate (36%) than other subtypes (0-9%). The premature stop codon mutations in vpu existed mostly at two amino acid residues: the methionine initiation codon and the boundary between the transmembrane (TM) and cytoplasmic domains. The mutations at the latter site were more often detected in CRF01_AE. The higher mutation rates at vpu in CRF01_AE were confirmed by sequence comparison of polymerase chain reaction products newly obtained directly from the DNA extracted from peripheral blood mononuclear cells (PBMCs), but not from the RNA from the plasma, in CRF01_AE- and subtype B-infected individuals. This finding may indicate the possibility that the more abundant population of HIV-1 CRF01_AE is able to induce apoptosis in CD4+ T lymphocytes than the populations of other subtypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号