首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Allowing for the lipid nature of firefly luciferase we have developed a new method for obtaining high-activity and high-stability enzyme preparations for bioluminescent microassay. The method includes the step of differential centrifugation in presence of stabilizing additives which entails a partial purification of the enzyme and its essential stabilization likely due to the fact that luciferase retains its lipid environment which plays an important role in catalysis. The resultant luciferase preparation is stable in solution at 4 °C for 2-3 months and allows the detection of down to 10?11M ATP. A new method has been offered for luciferase immobilization on film carriers precoated with a phospholipid layer. By sorption of the enzyme on such carriers, the samples of immobilized luciferase have been obtained suitable for constructing chemiluminescent biosensors, in the form of luciferase-containing films. There are many-fold applications for detection of ATP micro-quantities.  相似文献   

2.
Refolding of firefly Photinus pyralis luciferase from a denatured state is a slow process; its rate and productivity depend on molecular chaperones of the Hsp70 family. In contrast, cotranslational folding of luciferase is fast and productive in the absence of chaperones. During cotranslational folding, the C termini of polypeptides are associated with ribosomes, massive particles. The question arises as to whether C-terminal immobilization on a massive particle promotes folding. To study this problem experimentally, luciferase was C-tagged with hexahistidine to allow its C-terminal immobilization of chelating Sepharose. Both immobilized and free chains of the urea-denatured enzyme refolded at the same rate. At the same time, immobilization led to a higher refolding yield owing to the prevention of intermolecular aggregation. Chaperones of the Hsp70 family promoted folding of both immobilized and free luciferase polypeptides. It was assumed that the high rate of cotranslational folding is not ensured by mere immobilization of the C terminus of the polypeptide, but is rather due to a favorable start conformation of the growing peptide in the peptidyltransferase center of the ribosome and/or the vectorial character of the folding, proceeding from the N to the C end during polypeptide synthesis.  相似文献   

3.
Refolding of Photinus pyralis firefly luciferase from a denatured state is a slow process; its rate and productivity depend on molecular chaperones of the Hsp70 family. In contrast, cotranslational folding of the enzyme is fast and productive in the absence of chaperones [Svetlov et al., 2006. Protein Sci. 15, 242-247]. During cotranslational folding, the C-termini of polypeptides are bound to massive particles - ribosomes. The question arises whether the immobilization of the polypeptide C-terminus on a massive particle promotes the folding. To test this experimentally, the luciferase with oligohistidine tag at its C-terminus was prepared. This allowed us to immobilize the protein C-terminal segment on chelating Sepharose beads. Here we show that both immobilized and free chains of urea-denatured enzyme refold with the same rate. At the same time, the immobilization of luciferase results in higher refolding yield due to prevention of inter-molecular aggregation. Chaperones of the Hsp70 family promote refolding of both immobilized and free luciferase polypeptides. The results presented here suggest that the high rate of cotranslational folding is not caused by the immobilization of polypeptide C-termini by itself, but is rather due to a favorable start conformation of the growing polypeptide in the peptidyl-transferase center of the ribosome and/or the strongly vectorial character of the folding from N- to C-terminus during polypeptide synthesis.  相似文献   

4.
Production of glucose isomerase from Streptomyces olivochromogenes PTCC 1457 was followed by its purification and immobilization. Different immobilization methods including the use of a hydrophobic support were investigated.  相似文献   

5.
Immobilized keratinase can improve stability while retaining its proteolytic and keratinolytic properties. Conventional purification followed by chemical immobilization is a laborious and costly process. A new genetic construct was developed to produce the keratinase-streptavidin fusion protein. Consequently, the purification and immobilization of the fusion protein onto a biotinylated matrix can be accomplished in a single step. The method was tested in both the Bacillus subtilis and Escherichia coli systems. In B. subtilis, the fusion protein was produced extracellularly and readily immobilized from the medium. In E. coli, the fusion protein was produced intracellularly in inclusion bodies; additional separation and renaturation processes were required prior to immobilization from the cell extract. The overall efficiencies were approximately the same, 24-28%, using both systems.  相似文献   

6.
Firefly luciferase from Photinus pyralis has been covalently bound to a collagen strip via an acylazide activation process. Immobilization performed in the presence of both substrates ATP and luciferin allows to increase the activity retained on the strip. The best activity exhibited by immobilized luciferase was obtained in a 0.05M Tris-acetate buffer, pH 7.75. The pH optimum and the activation energy of luciferase have been found unchanged after immobilization. In the chosen stirring conditions, no diffusional limitations of substrates appear. ATP measurements can be performed with collagen-bound luciferase in the range 1.10(-11) M-3.10(-6) M. It was possible to store the strips at 4 degrees C in a dehydrated form; then, the bound enzyme retains 20% of its initial activity after eight months. Human blood ATP was measured with this collagen-bound luciferase and the results were found in good agreement with those obtained by soluble luciferase.  相似文献   

7.
A laboratory method for obtaining immunoaffinity medium for chromatographic purification of recombinant human interferon alpha2b (IFN-alpha2b) is described. The method is based on oriented and non-covalent immobilization of recombinant antibody fragments on cellulose. The single-chain fragment variable (ScFv) against human IFN-alpha2b was genetically fused to cellulose-binding domain (CBD) from Clostridium thermocellum cellulosome and expressed in Escherichia coli. After the isolation of the target protein in functionally active form from bacteria cells its bioaffinity immobilization on several forms of cellulose powders has been carried out. The crystalline microgranular cellulose with immobilized ScFv-CBD-fusion protein was used as affinity medium to perform the purification of recombinant human IFN-alpha2b directly from clarified extract of E. coli cells.  相似文献   

8.
The bioluminescent reaction catalysed by firefly luciferase has become widely established as an outstanding analytical system for assay of ATP. When used in solution, luciferase is unstable and cannot be re-used, a problem that can be partially circumvented by immobilizing the enzyme on solid substrates. Transparent glass is especially advantageous over alternative immobilizing matrices, since it allows most of the emitted photons to be detected. We report a new method for luciferase immobilization on glass which does not require prior silanization and glutaraldehyde activation, thus saving preparation time and minimizing enzyme inactivation. Our method is based on the co-immobilization by adsorption of luciferase (from a firefly lantern extract) and poly-L -lysine (PL) on non-porous glass strips. Luciferase immobilized in this way exhibits minimal variations in intersample activity, high sensitivity for ATP detection (linear luminescence responses down to 50 nmol/L) and good stability (full activity for at least 60 days when stored at −80°C). PL-mediated immobilization of luciferase on glass strips provides an attractive strategy for the design of specific ATP biosensors, with potential in industry, environmental screening, medicine and biological research. © 1998 John Wiley & Sons, Ltd.  相似文献   

9.
Mutation detection and single-nucleotide polymorphism genotyping require screening of large samples of materials and therefore the importance of high-throughput DNA analysis techniques is significant. Pyrosequencing is a four-enzyme bioluminometric DNA sequencing technology based on the sequencing-by-synthesis principle. Currently, the technique is limited to simultaneous analysis of 96 or 384 samples. Earlier, attempts to increase the sample capacity were made using micromachined filter chamber arrays where parallel analyses of nanoliter samples could be monitored in real time. We have developed a strategy for specific immobilization of the light-producing enzyme luciferase to the DNA template within a reaction chamber. By this approach, luciferase is genetically fused to a DNA-binding protein (Klenow polymerase or Escherichia coli single-stranded DNA-binding (SSB) protein) and to a purification handle (Z(basic)). The proteins are produced in E. coli and purified using cation and anion exchange chromatography with removal of Z(basic). The produced proteins have been analyzed using an assay for complete primer extension of DNA templates immobilized on magnetic beads detected by pyrosequencing chemistry. Results from these experiments show that the proteins bind selectively to the immobilized DNA and that their enzymatic domains were active. Z(basic)-SSB-luciferase produced the highest signal in this assay and was further exploited as enzymatic reagent for DNA sequencing.  相似文献   

10.
A macroporous silica - silochrom - used for immobilization and purification of biopolymers was modified by dehydroxylation and alumination. The adsorption capacity of the modified silochroms for proteins and DNA is higher than that of the initial sorbent. The biopolymers adsorbed on aluminated silochrom are strongly attached to its surface.  相似文献   

11.
Firefly luciferase was immobilized on epoxy methacrylate beads and used for a continuous-flow assay of ATP extracted from platelets. The immobilized luciferase had a half-life of 3 days at 25°C; there was a 25% recovery of luciferase activity upon immobilization, and ca 50 reactors were made from 1 mg of commercial enzyme. The sensitivity of the assay was 0.3 pmol of ATP, and the response was linear between 1 and 500 pmol of ATP. The content of platelets obtained with the present method correlated well with those obtained using soluble luciferase.  相似文献   

12.
《Biochemical education》1999,27(2):114-117
An experiment is described in which students carry out urease purification, immobilization and its application in blood urea estimation. Urease from pigeonpea is partially purified using acetone fractionation and then immobilized on calcium alginate in the form of beads. The immobilized enzyme has a better shelf-life at 4°C than soluble enzyme. Various aspects of enzyme immobilization are discussed. Blood urea estimation is carried out with immobilized enzyme beads and the beads can be used repeatedly for this purpose making it an economical procedure compared to commercial kits.  相似文献   

13.
To avoid the unwanted and random covalent linkage between the cross-linker and enzyme's active site in covalent immobilization, a genetically encoded “aldehyde tag” was introduced into recombinant lipase and applied for the one-step purification and covalent immobilization of this enzyme. The effects of the immobilization time, temperature and the amount of enzyme were investigated, and the thermo-stability of immobilized lipase was also examined. The specific activity and the kcat/Km of the immobilized lipase using aldehyde tag (IL-AT) were 2.50 and 3.02 fold higher, respectively, than those of the traditionally immobilized lipase using glutaraldehyde (IL-GA). The newly immobilized lipase also presented better thermo-stability than the traditionally immobilized one. The results show that the recombinant enzyme could be conveniently immobilized without glutaraldehyde and that the enzyme's active site was well protected. This is a new immobilization method able to avoid glutaraldehyde or 2,4,6-trichloro-1,3,5-triazine as an activating agent. The greener method without hazardous chemicals for the one-step purification and immobilization of an enzyme using a genetically encoded “aldehyde tag” can be exploited for numerous other enzyme purification and immobilization applications.  相似文献   

14.
We have developed a method for measuring the local concentrationof ATP at the extracellular surface of live cells. This method relieson the specific attachment to the cell surface of a chimeric proteinthat consists of the IgG-binding domain ofStaphylococcus aureus protein A fusedin-frame with the complete sequence for firefly luciferase (proA-luc).Expression of proA-luc in Escherichia coli and its one-step affinity purification arestraightforward. Attachment to cells is demonstrated to be specific andantibody dependent using several suspended and adherent cell types.Light production by cell surface-attached luciferase is continuous, linearly related to ATP concentration, and sufficient to provide nanomolar sensitivity. The spatial resolution of this method enables the observation of strictly local changes in extracellular ATP duringits secretion from activated platelets. Furthermore, the activity ofcell-attached luciferase is relatively refractory to the inclusion ofnucleotidases in the medium, arguing for its effectiveness in cellsystems possessing potent ecto-ATPases.

  相似文献   

15.
The renaturation yield of the denatured firefly luciferase decreased strongly with increasing protein concentration in a renaturation buffer, because of aggregation. In this study, firefly luciferase was immobilized on agarose beads at a high concentration. Although the protein concentration was extremely high (about 100-fold) compared to that of soluble luciferase, the renaturation yield was comparable with that for the soluble one. Thus, immobilization was shown to be effective for avoiding aggregation of firefly luciferase. It was also shown that the optimum buffer conditions for renaturation of the immobilized luciferase were the same as those for the renaturation in solution. Also, it was indicated that electrostatic interactions between a protein and the matrix have a negative effect on renaturation of the immobilized luciferase since the renaturation yield decreased at acidic pH only for the immobilized luciferase. These novel observations are described in detail in this paper.  相似文献   

16.
Biotinylation is useful for the detection, purification and immobilization of proteins. It is performed by chemical modification, although position-specific and quantitative biotinylation is rarely achieved. We developed a position-specific biotinylation method using biotinylated non-natural amino acids. We showed that biotinylated p-aminophenylalanine derivatives were incorporated into a protein more efficiently than biotinylated lysine derivatives in a cell-free translation system. In addition, the biotinylated p-aminophenylalanines overcame the serious position-dependency observed for biotinylated lysines. The present method will be useful for detection and purification of proteins along with comprehensive exploration of surface-exposed residues and oriented immobilization of proteins.  相似文献   

17.
Bacterial bioluminescence, catalyzed by FMN:NAD(P)H oxidoreductase and luciferase, has been used as an analytical tool for quantitating the substrates of NAD(P)H-dependent enzymes. The development of inexpensive and sensitive biosensors based on bacterial bioluminescence would benefit from a method to immobilize the oxidoreductase and luciferase with high specific activity. Toward this end, oxidoreductase and luciferase were fused with a segment of biotin carboxy carrier protein and produced in Escherichia coli. The in vivo biotinylated luciferase and oxidoreductase were immobilized on avidin-conjugated agarose beads with little loss of activity. Coimmobilized enzymes had eight times higher bioluminescence activity than the free enzymes at low enzyme concentration and high NADH concentration. In addition, the immobilized enzymes were more stable than the free enzymes. This immobilization method is also useful to control enzyme orientation, which could increase the efficiency of sequentially operating enzymes like the oxidoreductase-luciferase system.  相似文献   

18.
The crude intracellular lipase (cell homogenate) from Trichosporon laibacchii was subjected to partial purification by aqueous two-phase system (ATPS) and then in situ immobilization by directly adding diatomites as carrier to the top PEG-rich phase of ATPS. A partition study of lipase in the ATPS formed by polyethylene glycol–potassium phosphate has been performed. The influence of system parameters such as molecular weight of PEG, system phase composition and system pH on the partitioning behaviour of lipase was evaluated. The ATPS consisting of PEG 4000 (12%) and potassium phosphate (K2HPO4, 13%) resulted in partition of lipase to the PEG-rich phase with partition coefficient 7.61, activity recovery 80.4%, and purification factor of 5.84 at pH of 7.0 and 2.0% NaCl. Moreover, the in situ immobilization of lipase in PEG phase resulted in a highest immobilized lipase activity of 1114.6 U g?1. The above results show that this novel lipase immobilization procedure which couples ATPS extract and enzyme immobilization is cost-effective as well as time-saving. It could be potentially useful technique for the purification and immobilization of lipase.  相似文献   

19.
We discuss the use of a photoactivated polycarbonate (PPC) microfluidic chip for the solid-phase, reversible immobilization (SPRI) and purification of genomic DNA (gDNA) from whole cell lysates. The surface of polycarbonate was activated by UV radiation resulting in a photo-oxidation reaction, which produced a channel surface containing carboxylate groups. The gDNA was selectively captured on this photoactivated surface in an immobilization buffer, which consisted of 3% polyethylene glycol, 0.4 M NaCl and 70% ethanol. The methodology reported herein is similar to conventional SPRI in that surface-confined carboxylate groups are used for the selective immobilization of DNA; however, no magnetic beads or a magnetic field are required. As observed by UV spectroscopy, a load of ~7.6 ± 1.6 µg/ml of gDNA was immobilized onto the PPC bed. The recovery of DNA following purification was estimated to be 85 ± 5%. The immobilization and purification assay using this PPC microchip could be performed within ~25 min as follows: (i) DNA immobilization ~6 min, (ii) chip washout with ethanol 10 min, and (iii) drying and gDNA desorption ~6 min. The PPC microchip could also be used for subsequent assays with no substantial loss in recovery, no observable carryover and no need for ‘reactivation’ of the PC surface with UV light.  相似文献   

20.
The firefly bioluminescence reaction, which uses luciferin, Mg-ATP, and molecular oxygen to yield an electronically excited oxyluciferin, is carried out by luciferase and visible light is emitted. The bioluminescence color of firefly luciferases is determined by the luciferase structure and assay conditions. Among different beetle luciferases, those from Phrixothrix railroad worm emit either yellow or red bioluminescence colors. Sequence alignment analysis shows that the red-emitter luciferase from Phrixothrix hirtus has an additional Arg residue at 353, which is absent in firefly luciferases. We report here the construction and purification of a mutant at residue Arg(356), which is not conserved in beetle luciferases. By insertion of an additional residue (Arg(356)) using site-specific insertion mutagenesis in a green-emitter luciferase (Lampyris turkestanicus) the color of emitted light was changed to red and the optimum temperature of activity was also increased. Insertion of this Arg in an important flexible loop showed changes of the bioluminescence color and the luciferase reaction took place with relatively retention of its basic kinetic properties such as Km and relative activity. Comparison of native and mutant luciferases using homology modeling reveals a significant conformational change of the flexible loop in the red mutant. Movement of flexible loop brought about a new ionic interaction concomitant with a change in polarity of the emitter site, thereby leading to red emission. It is worthwhile to note that the increased optimum temperature and emission of red light might make mutant luciferase a suitable reporter for the study of gene expression and bioluminescence imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号