首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Vasoconstriction within the renal medulla contributes to the development of hypertension. This study investigated the role of reactive oxygen species (ROS) in regulating renal medullary and cortical blood perfusion (MBP and CBP respectively) in both stroke-prone spontaneously hypertensive rats (SHRSP) and Wistar rats. CBP and MBP were measured using a laser-Doppler flow meter before and after intra-renal infusion of tempol, the superoxide dismutase (SOD) mimetic or tempol plus catalase, the hydrogen peroxide-degrading enzyme. Tempol infusion significantly elevated blood perfusion within the renal medulla (MBP) in both SHRSP (by 43 ± 7%, P < 0.001) and Wistar rats (by 17 ± 2%, P < 0.05) but the magnitude of the increase was significantly greater in the SHRSP (P < 0.01). When the enzyme catalase and tempol were co-infused, MBP was again significantly increased in SHRSP (by 57 ± 6%, P < 0.001) and Wistar rats (by 33 ± 6%, P < 0.001), with a significantly greater increase in perfusion being induced in the SHRSP relative to the Wistar rats (P < 0.01). Notably, this increase was significantly greater than in those animals infused with tempol alone (P < 0.01). These results suggest that ROS plays a proportionally greater role in reducing renal vascular compliance, particularly within the renal medulla, in normotensive and hypertensive animals, with effects being greater in the hypertensive animals. This supports the hypothesis that SHRSP renal vasculature might be subjected to elevated level of oxidative stress relative to normotensive animals.  相似文献   

3.
4.
5.
6.
7.

Background

Patients with metabolic syndrome, who are characterized by co-existence of insulin resistance, hypertension, hyperlipidemia, and obesity, are also prone to develop non-alcoholic fatty liver disease (NAFLD). Although the prevalence and severity of NAFLD is significantly greater in men than women, the mechanisms by which gender modulates the pathogenesis of hepatic steatosis are poorly defined. The obese spontaneously hypertensive (SHROB) rats represent an attractive model of metabolic syndrome without overt type 2 diabetes. Although pathological manifestation caused by the absence of a functional leptin receptor has been extensively studied in SHROB rats, it is unknown whether these animals elicited sex-specific differences in the development of hepatic steatosis.

Methods

We compared hepatic pathology in male and female SHROB rats. Additionally, we examined key biochemical and molecular parameters of signaling pathways linked with hyperinsulinemia and hyperlipidemia. Finally, using methods of quantitative polymerase chain reaction (qPCR) and western blot analysis, we quantified expression of 45 genes related to lipid biosynthesis and metabolism in the livers of male and female SHROB rats.

Results

We show that all SHROB rats developed hepatic steatosis that was accompanied by enhanced expression of SREBP1, SREBP2, ACC1, and FASN proteins. The livers of male rats also elicited higher induction of Pparg, Ppara, Slc2a4, Atox1, Skp1, Angptl3, and Pnpla3 mRNAs. In contrast, the livers of female SHROB rats elicited constitutively higher levels of phosphorylated JNK and AMPK and enhanced expression of Cd36.

Conclusion

Based on these data, we conclude that the severity of hepatic steatosis in male and female SHROB rats was mainly driven by increased de novo lipogenesis. Moreover, male and female SHROB rats also elicited differential severity of hepatic steatosis that was coupled with sex-specific differences in fatty acid transport and esterification.
  相似文献   

8.
Methylation of promoter CpG islands and microRNA (miRNA) interactions with mRNAs of target genes are epigenetic mechanisms that play a crucial role in deregulation of gene expression and signaling pathways in tumors. Altered expression of six chromosome 3p genes (RARB(2), SEMA3B, RHOA, GPX1, NKIRAS1, and CHL1) and two miRNA genes (MIR-129-2 and MIR-9-1) was observed in primary clear cell renal cell carcinomas (ccRCCs, 31–48 samples) by RT-PCR and qPCR. Significant downregulation (p < 0.05, Fisher’s exact test) was observed for SEMA3B, NKIRAS1, and CHL1; and differential expression, for the other chromosome 3p and miRNA genes. Methylation-specific PCR with primers to RARB(2), SEMA3B, MIR-129-2, and MIR-9-1 showed that their methylation frequency was significantly (p < 0.05, Fisher’s exact test) elevated in the ccRCC samples. Significant correlations between promoter methylation and expression were confirmed for SEMA3B and observed for the first time for RARB(2), GPX1, and MIR-129-2 in ccRCC (Spearman’s correlation coefficient r s ranging 0.31–0.60, p < 0.05). The MIR-129-2 and RARB(2) methylation frequencies significantly correlated with ccRCC progression. MIR-129-2 methylation correlated with upregulation of RARB(2), RHOA, NKIRAS1, and CHL1 (r s ranging 0.35–0.53, p < 0.05). The findings implicate methylation in regulating RARB(2), SEMA3B, GPX1, and MIR-129-2 and indicate that miR-129-2 and methylation of its gene affect RARB(2), RHOA, NKIRAS1, and CHL1 expression.  相似文献   

9.
10.
The morphogenesis of macromycetes is a complex multilevel process resulting in a set of molecular-genetic, physiological-biochemical, and morphological-ultrastructural changes in the cells. When the xylotrophic basidiomycetes Lentinus edodes, Grifola frondosa, and Ganoderma lucidum were grown on wood waste as the substrate, the ultrastructural morphology of the mycelial hyphal cell walls differed considerably between mycelium and morphostructures. As the macromycetes passed from vegetative to generative development, the expression of the tyr1, tyr2, chi1, chi2, exg1, exg2, and exg3 genes was activated. These genes encode enzymes such as tyrosinase, chitinase, and glucanase, which play essential roles in cell wall growth and morphogenesis.  相似文献   

11.
African Americans (AAs) are at higher risk for developing end-stage kidney disease (ESKD) compared to European Americans. Genome-wide association studies have identified variants associated with diabetic and non-diabetic kidney diseases. Nephropathy loci, including SLC7A9, UMOD, and SHROOM3, have been implicated in the maintenance of normal glomerular and renal tubular structure and function. Herein, 47 genes important in podocyte, glomerular basement membrane, mesangial cell, mesangial matrix, renal tubular cell, and renal interstitium structure were examined for association with type 2 diabetes (T2D)-attributed ESKD in AAs. Single-variant association analysis was performed in the discovery stage, including 2041 T2D-ESKD cases and 1140 controls (non-diabetic, non-nephropathy). Discrimination analyses in 667 T2D cases-lacking nephropathy excluded T2D-associated SNPs. Nominal associations were tested in an additional 483 T2D-ESKD cases and 554 controls in the replication stage. Meta-analysis of 4218 discovery and replication samples revealed three significant associations with T2D-ESKD at CD2AP and MMP2 (P corr < 0.05 corrected for effective number of SNPs in each locus). Removal of APOL1 renal-risk genotype carriers revealed additional association at five loci, TTC21B, COL4A3, NPHP3-ACAD11, CLDN8, and ARHGAP24 (P corr < 0.05). Genetic variants at COL4A3, CLDN8, and ARHGAP24 were potentially pathogenic. Gene-based associations revealed suggestive significant aggregate effects of coding variants at four genes. Our findings suggest that genetic variation in kidney structure-related genes may contribute to T2D-attributed ESKD in the AA population.  相似文献   

12.
Recently, more and more studies indicate that iron overload would cause osteopenia or osteoporosis. However, the molecular mechanism of it remains unclear. Moreover, very little is known about the iron metabolism in bone tissue at present. Therefore, the mRNA expression of iron-regulators, transferrin receptor1 (Tfr1), divalent metal transporter1 (Dmt1?+?IRE and Dmt1???IRE), ferritin (FtH and FtL), and ferroportin1 (Ireg1), and the localization of ferroportin1 protein were examined in the bone tissue of rats. In addition, the mRNA expression of each gene was compared between groups of rats with and without iron overload. The results showed that ferroportin1 protein was localized in the cytoplasm of osteoblast, osteocyte, chondrocyte and osteoclast of rats’ femur. The six iron-regulatory genes, Tfr1, ferritin (FtH and FtL), (Dmt1?+?IRE and Dmt1???IRE) and ferroportin1 (Ireg1), were found in femurs of rats. In addition, significantly up-regulated expression of FtH and FtL mRNA, and markedly down-regulated expression of Tfr1, Dmt1?+?IRE and Ireg1 mRNA, were observed in the iron overload group compared with the control group. The result indicates that ferroportin1 protein is localized in the cytoplasm of bone cells of rats. Tfr1, Dmt1, ferritin and ferroportin1 exist in bone tissue of rats, and they may be involved in the pathological process of iron overload-induced bone lesion.  相似文献   

13.
The functions of serotonin include the growth and development regulation of female germ cells as well as early embryo development. RT-PCR analysis of mRNA expression of the genes of the enzymes for synthesis and degradation and transporters and receptors of serotonin during folliculogenesis and preimplantation development of mice was performed to discover the particular mechanisms of these functions. The mRNA of tryptophan hydroxylase tph1 and monoaminoxidase maoa; membrane transporter sert and vesicular transporter vmat2; and serotonin receptors htr1b, htr1d, htr2a, htr5b, and htr7 were revealed in granulosa cells. The expression of mRNA of the aromatic amino acid decarboxylase ddc and the htr2b receptor additionally appears in the yellow body. The expression of mRNA of the genes of the tph2, ddc, and maoa enzymes; the sert, vmat1, and vmat2 transporters; and quite a number of receptors is observed during the preimplantation development, and it is transitory in most of them. The expression of all components and its dynamics suggest that the serotonergic signaling system is functionally active in mouse folliculogenesis and preimplantation development.  相似文献   

14.
Rice (Oryza sativa L.) is a salt-sensitive species. Salt stress can cause injury to the plant cellular membrane. Plant lipid transfer proteins (LTPs) are abundant lipid binding proteins that are important in membrane vesicle biogenesis and trafficking, however, the biological importance of LTPs on salt-stress response in rice remains unclear. Therefore, salt-responsive rice LTPs were identified and characterized in this study. Microarray analysis showed seven genes positively regulated by salinity, including five Ltp genes (LtpII.3, LtpII.5, LtpII.6, LtpV.1, and LtpV.2) and two Ltp-like (LtpL; LtpL1, and LtpL2) genes. Amino acid alignment revealed that all these Ltp and LtpL genes contained the N-terminal signal peptide. Apart from LtpL1, all salt-inducible Ltp genes had the conserved eight cysteine residue motifs backbone. Verification of gene expression to different stimuli in rice seedlings revealed that salt-regulated Ltp genes differentially responded to drought, cold, H2O2, abscisic acid (ABA) and CaCl2. Furthermore, the expression of Ltp and LtpL genes was tissue-specifically regulated by ABA-dependent and independent pathway. In silico analysis of a 1.5-kb 5’-upstream region of these genes showed regulatory cis-elements associated with ABA, calcium, and cold/drought responses. Three LtpII subfamily genes, including LtpII.3, LtpII.5, and LtpII.6, were strictly expressed in flowers and seeds, and LtpIII.1 mRNA strongly accumulated in stem tissue. Subcellular localization analysis of LTP-DsRed fusion proteins revealed that the five LTPs and two LTPLs localized at the endoplasmic reticulum. The results provide new clues to further understanding the biological functions of Ltp genes.  相似文献   

15.
Suppression subtractive hybridization was used to identify genes showing differential expression profile associated with growth rate in skeletal muscle tissue of Landrace weanling pig. Two subtracted cDNA populations were generated from musculus longissimus muscle tissues of selected pigs with extreme expected breeding values at the age of 100 kg. Three upregulated genes (EEF1A2, TSG101 and TTN) and six downregulated genes (ATP5B, ATP5C1, COQ3, HADHA, MYH1 and MYH7) in pig with genetic propensity for higher growth rate were identified by sequence analysis of 12 differentially expressed clones selected by differential screening following the generation of the subtracted cDNA population. Real-time PCR analysis confirmed difference in expression profiles of the identified genes in musculus longissimus muscle tissues between the two Landrace weanling pig groups with divergent genetic propensity for growth rate. Further, differential expression of the identified genes except for the TTN was validated by Western blot analysis. Additionally, the eight genes other than the ATP5C1 co-localized with the same chromosomal positions as QTLs that have been previously identified for growth rate traits. Finally, the changes of expression predicted from gene function suggested association of upregulation of expression of the EEF1A2, TSG101 and TTN genes and downregulation of the ATP5B, ATP5C1, COQ3, HADHA, MYH1 and MYH7 gene expression with increased growth rate. The identified genes will provide an important insight in understanding of the molecular mechanism underlying growth rate in Landrace pig breed.  相似文献   

16.
17.

Background

A genetic study was performed to identify candidate genes associated with day blindness in the standard wire haired dachshund. Based on a literature review of diseases in dogs and human with phenotypes similar to day blindness, ten genes were selected and evaluated as potential candidate genes associated with day blindness in the breed.

Results

Three of the genes, CNGB3, CNGA3 and GNAT2, involved in cone degeneration and seven genes and loci, ABCA4, RDH5, CORD8, CORD9, RPGRIP1, GUCY2D and CRX, reported to be involved in cone-rod dystrophies were studied. Polymorphic markers at each of the candidate loci were studied in a family with 36 informative offspring. The study revealed a high frequency of recombinations between the candidate marker alleles and the disease.

Conclusion

Since all of the markers were at the exact position of the candidate loci, and several recombinations were detected for each of the loci, all ten genes were excluded as causal for this canine, early onset cone-rod dystrophy. The described markers may, however, be useful to screen other canine resource families segregating eye diseases for association to the ten genes.
  相似文献   

18.
We present an overview of the gene content and organization of the mitochondrial genome of Dictyostelium discoideum. The mitochondria genome consists of 55,564?bp with an A + T content of 72.6%. The identified genes include those for two ribosomal RNAs (rnl and rns), 18 tRNAs, ten subunits of the NADH dehydrogenase complex (nad1, 2, 3, 4, 4L, 5, 6, 7, 9 and 11), apocytochrome b (cytb), three subunits of the cytochrome oxidase (cox1/2 and 3), four subunits of the ATP synthase complex (atp1, 6, 8 and 9), 15 ribosomal proteins, and five other ORFs, excluding intronic ORFs. Notable features of D. discoideum mtDNA include the following. (1) All genes are encoded on the same strand of the DNA and a universal genetic code is used. (2) The cox1 gene has no termination codon and is fused to the downstream cox2 gene. The 13 genes for ribosomal proteins and four ORF genes form a cluster 15.4?kb long with several gene overlaps. (3) The number of tRNAs encoded in the genome is not sufficient to support the synthesis of mitochondrial protein. (4) In total, five group I introns reside in rnl and cox1/2, and three of those in cox1/2 contain four free-standing ORFs. We compare the genome to other sequenced mitochondrial genomes, particularly that of Acanthamoeba castellanii.  相似文献   

19.
Polycystic ovary syndrome (PCOS) is a common endocrine disorder in females, and is associated with altered metabolic processes in particular insulin resistance and diabetes mellitus. PCOS shares with type-2 diabetes (T2D) a number of features, including beta cell dysfunction, impaired glucose tolerance and dyslipidaemia. Recently, genomewide association studies (GWAS) have reported a number of genes with reproducible associations and susceptibilities to T2D. To address this, we examined the association between the T2D GWAS candidate genes (CDKAL1, CDKN2B, COL8A1, HHEX, IGF2BP2, KCNJ1, KCNQ1 and SLC30A8) and PCOS in Saudi women. A case–control study, includes 162 cases and 162 controls was enrolled. Genotyping was carried out by the allelic discrimination method. Our results showed that the variants including rs792837 of COL8A1, rs61873498 of KCNQ1 and rs13266634 of SLC30A8 genes to be significantly more frequent in PCOS patients than in controls. Our results suggest that COL8A1, KCNQ1 and SLC30A8, which are previously identified through GWAS as T2D-associated genes, are associated with PCOS.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号