首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Histone deacetylase inhibitors reside among the most promising targeted anticancer agents that are potent inducers of growth arrest, differentiation, and/or apoptotic cell death of transformed cells. In October 2006, the US Food and Drug Administration approved the first drug of this new class, vorinostat (1, Zolinza, Merck). Several histone deacetylase (HDAC) inhibitors more are in clinical trials. HDAC inhibitors have shown significant activity against a variety of hematological and solid tumors at doses that are well tolerated by patients, both in monotherapy as well as in combination therapy with other drugs. This paper reviews the most recent developments in HDAC inhibitor design, particularly in the context of anticancer therapy, and other possible pharmaceutical applications.  相似文献   

2.
Poly(ADP-ribose) polymerase (PARP) is a nuclear enzyme which plays an important role in regulating cell death and cellular responses to DNA repair. Pharmacological inhibitors of PARP are being considered as treatment for cancer both in monotherapy as well as in combination with chemotherapeutic agents and radiation, and were also reported to be protective against untoward effects exerted by certain anticancer drugs. Here we show that pharmacological inhibition of PARP with 3-aminobenzamide or PJ-34 dose-dependently reduces VEGF-induced proliferation, migration, and tube formation of human umbilical vein endothelial cells in vitro. These results suggest that treatment with PARP inhibitors may exert additional benefits in various cancers and retinopathies by decreasing angiogenesis.  相似文献   

3.
Breast cancer is one of the most common cancers among women and its incidence tends to increase year by year. Chemotherapy is an effective treatment for many types of cancer, however its toxicity in normal cells and acquired tumor resistance to the drug used are considered as the main barriers. New strategies have been proposed to increase the success of anticancer drugs namely it combination with natural dietary compounds, decreasing drug dose administered and reducing its toxicity to normal cells. Seaweeds are rich in bioactive compounds and, in Traditional Chinese Medicine and Japanese folk medicine are used to “treat” tumors. Attending to the attractive biological effects of some seaweed several efforts have been made to isolate the bioactive compounds and explore its action mechanisms. Phloroglucinol, fucoxanthin and fucoidan are bioactive compounds present in brown seaweed showing chemopreventive and chemotherapeutic effects against cancer. Several mechanisms namely antioxidant, cell cycle arrest, induction of cell death and inhibition of metastasis and angiogenesis have been mentioned as responsible for it anticancer activity. Beside the promising biological effects of these compounds, synergistic effects with cytotoxic drugs have been less explored. This review focuses on the potential protective and therapeutic effect – mainly against breast cancer – of the bioactive compounds phloroglucinol, fucoxanthin and fucoidan present in the brown seaweeds. Current knowledge about interaction between each of these compounds and the conventional anticancer drugs and the further research opportunities are discussed.  相似文献   

4.
《Autophagy》2013,9(3):353-365
The traditional treatments for fibrosarcoma have limited efficacy. Therefore, new therapeutic strategies and/or new adjuvant drugs still need to be explored. Accumulating evidence indicates that programmed cell death (PCD) is closely related to anticancer therapy. Many studies have shown that tumor cells treated with anticancer drugs experience the induction of type I PCD, apoptosis, and type II PCD, autophagy. In the present study, we investigated the anticancer effects of ionizing radiation (IR) combined with arsenic trioxide (ATO) in human fibrosarcoma cells in vitro and in xenograft tumors in SCID mice in vivo. We found that IR increased the population of HT1080 cells in the G2/M phase in a time-dependent manner within 9 h. IR treatment combined with ATO at this time point induced a significantly prolonged G2/M arrest and consequently enhanced cell death. Furthermore, damage of mitochondria membrane potential could be involved in the underlying mechanisms. The enhanced cytotoxic effect of combined treatment occurred due to the increased induction of more autophagy and apoptosis through the inhibition of Akt and the activation of ERK1/2 signaling pathways in HT1080 cells. The combined treatment of HT1080 cells pretreated with Z-VAD or 3-MA resulted in a significant reduction in AO-positive cells, apoptotic cells and cytotoxicity. In in vivo studies, the combination of IR and ATO significantly reduced the tumor volume in SCID mice that had received a subcutaneous injection of HT1080 cells. The data suggest that a combination of IR and ATO could be a new potential therapeutic strategy for the treatment of fibrosarcoma.  相似文献   

5.
Caspases play important roles in cell apoptosis. Measurement of the dynamics of caspase activation in tumor cells not only facilitates understanding of the molecular mechanisms of apoptosis but also contributes to the development, screening, and evaluation of anticancer drugs that target apoptotic pathways. The fluorescence resonance energy transfer (FRET) technique provides a valuable approach for defining the dynamics of apoptosis with high spatio-temporal resolution. However, FRET generally functions in the single-cell level and becomes ineffective when applied in the high throughput detection of caspase activation. In the current study, a FRET sensor was combined with capillary electrophoresis (CE) to achieve a high throughput method for cellular caspase detection. The FRET-based CE system is composed of a homemade CE system and a laser source for detecting the dynamics of caspase-3 in various cells expressing sensors of caspase-3 that have been treated with anticancer drugs, such as cell cycle-independent drug cisplatin and specific cell cycle drugs camptothecin and etoposide, as well as their combination with tumor necrosis factor (TNF). A positive correlation between the caspase-3 activation velocity and drug concentration was observed when the cells were treated with cisplatin, but cells induced by camptothecin and etoposide did not show any apparent correlation with their concentrations. Moreover, different types of cells presented distinct sensitivities under the same drug treatment, and the combination treatment of TNF and anticancer drugs significantly accelerated the caspase-3 activation process. Its high throughput capability and detection sensitivity make the FRET-based CE system a useful tool for investigating the mechanisms of anticancer drugs and anticancer drug screening.  相似文献   

6.
The usefulness of Marine-derived products as the source of anticancer agents has been explored for many decades. The objective of our study was to investigate the molecular mechanism by which C-PC induces apoptosis in monotherapy as well as in combination treatment with a known chemotherapeutic drug named Topotecan (TPT) using prostate cancer cells (LNCaP). To determine the intracellular mechanism of action, we analyzed the gene expression profile of C-PC treated cells using human apoptosis RT2 profiler PCR array, which indicated that C-PC was able to regulate both anti- and pro-apoptotic genes significantly. Detailed analysis revealed increases in the levels of Bax, Apaf-1 (pro-apoptotic proteins) along with the activation of the key apoptotic proteases such as caspase-8, caspase-9, and caspase-3. Similarly, analysis of anti-apoptotic proteins demonstrated a decrease in the expression of Bcl-2, Mcl-1, and survivin. Results from the whole-cell incubation studies indicated that C-PC was only binding to the plasma membrane-associated receptor proteins. LNCaP cells treated with C-PC alone and in combination with TPT showed increased expression of the death receptor FAS (also known as FAS or CD95) along with cleaved PARP, confirming its importance. Our study is significant since it is providing greater insight into the apoptotic mechanisms triggered by C-PC as well as emphasizing the involvement of FAS in mediating its effects. Furthermore, our results with combination treatments suggest that-PC could improve the anticancer effects of drugs such as TPT that are currently used for cancer treatments. In addition, use of C-PC in combination can also diminish the side effects resulting from conventional chemotherapeutic agents such as TPT.  相似文献   

7.
(-)-Epigallocatechin-3-O-gallate(EGCG), the highest catechins from green tea, has promisingly been found to sensitize the efficacy of several chemotherapy agents like doxorubicin (DOX) in hepatocellular carcinoma (HCC) treatment. However, the detailed mechanisms by which EGCG augments the chemotherapeutic efficacy remain unclear. Herein, this study was designed to determine the synergistic impacts of EGCG and DOX on hepatoma cells and particularly to reveal whether the autophagic flux is involved in this combination strategy for the HCC. Electron microscopy and fluorescent microscopy confirmed that DOX significantly increased autophagic vesicles in hepatoma Hep3B cells. Western blot and trypan blue assay showed that the increasing autophagy flux by DOX impaired about 45% of DOX-induced cell death in these cells. Conversely, both qRT-PCR and western blotting showed that EGCG played dose-dependently inhibitory role in autophagy signaling, and that markedly promoted cellular growth inhibition. Amazingly, the combined treatment caused a synergistic effect with 40 to 60% increment on cell death and about 45% augmentation on apoptosis versus monotherapy pattern. The DOX-induced autophagy was abolished by this combination therapy. Rapamycin, an autophagic agonist, substantially impaired the anticancer effect of either DOX or combination with EGCG treatment. On the other hand, using small interference RNA targeting chloroquine autophagy-related gene Atg5 and beclin1 to inhibit autophagy signal, hepatoma cell death was dramatically enhanced. Furthermore, in the established subcutaneous Hep3B cells xenograft tumor model, about 25% reduction in tumor growth as well as 50% increment of apoptotic cells were found in combination therapy compared with DOX alone. In addition, immunohistochemistry analysis indicated that the suppressed tendency of autophagic hallmark microtubule-associated protein light chain 3 (LC3) expressions was consistent with thus combined usage in vitro. Taken together, the current study suggested that EGCG emerges as a chemotherapeutic augmenter and synergistically enhances DOX anticancer effects involving autophagy inhibition in HCC.  相似文献   

8.
Alkylating agents are the most widely used anticancer drugs whose main target is the DNA, although how exactly the DNA lesions cause cell death is still not clear. The emergence of resistance to this class of drugs as well as to other antitumor agents is one of the major causes of failure of cancer treatment. This paper reviews some of the best characterized mechanisms of resistance to alkylating agents. Pre- and post-target mechanisms are recognized, the former able to limit the formation of lethal DNA adducts, and the latter enabling the cell to repair or tolerate the damage. The role in the pre-target mechanisms of reduced drug accumulation and the increased detoxification or activation systems (such as DT-diaphorase, metallothionein, GST/GSH system, etc...) are discussed. In the post-target mechanisms the different DNA repair pathways, tolerance to alkylation damage and the ‘downstream’ effects (cell cycle arrest and/or apoptosis) are examined. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
Death of cancer cells influences tumor development and progression, as well as the response to anticancer therapies. This can occur through different cell death programmes which have recently been shown to implicate components of the acidic organelles, lysosomes. The role of lysosomes and lysosomal enzymes, including cathepsins and some lipid hydrolases, in programmed cell death associated with apoptotic or autophagic phenotypes is presented, as evidenced from observations on cultured cells and living animals. The possible molecular mechanisms that underlie the action of lysosomes during cell death are also described. Finally, the contribution of lysosomal proteins and lysosomes to tumor initiation and progression is discussed. Elucidation of this role and the underlying mechanisms will shed a new light on these 'old' organelles and hopefully pave the way for the development of novel anticancer strategies.  相似文献   

10.
Combination therapy is a novel cancer therapy approach that combines two or more chemotherapy drugs. This treatment modality enhances the efficacy of chemotherapy by targeting key pathways in an additive or synergistic manner. Therefore, we investigated the efficacy of combination therapy by widely used chemotherapy drug doxorubicin (DOX) and oleanolic acid (OA) to induction of apoptosis for pancreatic cancer (PC) therapy. The effects of DOX, OA, and their combination (DOX-OA) were investigated on proliferation and viability of PC cell line (PANC-1) by MTT assay. Moreover, migration and invasion of the cancer cells were evaluated by trans-well migration assay and wound healing assay. Flow cytometry and DAPI (4′,6-diamidino-2-phenylindole) staining were employed to investigate apoptosis quantification and qualification of the treated cancer cells. Finally, mRNA expression of apoptosis-related genes was assessed by quantitative real-time polymerase chain reaction. Our results demonstrated that the proliferation and metastasis potential of PC cells significantly decreased after treatment by DOX, OA, and DOX-OA. Moreover, we observed an increase in apoptosis percentage in the treated cancer cells. The apoptosis-related gene expression was modified to increase the apoptosis rate in all of the treatment groups. However, the anticancer potency of DOX-OA combination was significantly more than that of DOX and OA treatments alone. Our study suggested that DOX-OA combination exerts more profound anticancer effects against PC cell lines than DOX or OA monotherapy. This approach may increase the efficiency of chemotherapy and reduce unintended side effects by lowering the prescribed dose of DOX.  相似文献   

11.
Induction of cell death and inhibition of cell survival are the main principles of cancer therapy. Resistance to chemotherapeutic agents is a major problem in oncology, which limits the effectiveness of anticancer drugs. A variety of factors contribute to drug resistance, including host factors, specific genetic or epigenetic alterations in the cancer cells and so on. Although various mechanisms by which cancer cells become resistant to anticancer drugs in the microenvironment have been well elucidated, how to circumvent this resistance to improve anticancer efficacy remains to be defined. Autophagy, an important homeostatic cellular recycling mechanism, is now emerging as a crucial player in response to metabolic and therapeutic stresses, which attempts to maintain/restore metabolic homeostasis through the catabolic lysis of excessive or unnecessary proteins and injured or aged organelles. Recently, several studies have shown that autophagy constitutes a potential target for cancer therapy and the induction of autophagy in response to therapeutics can be viewed as having a prodeath or a prosurvival role, which contributes to the anticancer efficacy of these drugs as well as drug resistance. Thus, understanding the novel function of autophagy may allow us to develop a promising therapeutic strategy to enhance the effects of chemotherapy and improve clinical outcomes in the treatment of cancer patients.  相似文献   

12.
These days, cancer can still not be effectively cured because cancer cells readily develop resistance to anticancer drugs. Therefore, an effective combination of drugs with different mechanisms to prevent drug resistance has become a very important issue. Furthermore, the BH3‐only protein BNIP3 is involved in both apoptotic and autophagic cell death. In this study, lung cancer cells were treated with a chemotherapy drug alone or in combination to identify the role of BNIP3 and autophagy in combination chemotherapy for treating cancer. Our data revealed that various combinational treatments of two drugs could increase cancer cell death and cisplatin in combination with rapamycin or LBH589, which triggered the cell cycle arrest at the S phase. Cells with autophagosome and pEGFP‐LC3 puncta increased when treated with drugs. To confirm the role of autophagy, cancer cells were pre‐treated with the autophagy inhibitor 3‐methyladenine (3‐MA). 3‐MA sensitized cancer cells to chemotherapy drug treatments. These results suggest that autophagy may be responsible for cell survival in combination chemotherapy for lung cancer. Moreover, BNIP3 was induced and localized in mitochondria when cells were treated with drugs. The transfection of a dominant negative transmembrane deletion construct of BNIP3 (BNIP3ΔTM) and treatment of a reactive oxygen species (ROS) inhibitor suppressed chemo drug‐induced cell death. These results indicate that BNIP3 and ROS may be involved in combination chemo drug‐induced cell death. However, chemo drug‐induced autophagy may protect cancer cells from drug cytotoxicity. As a result, inhibiting autophagy may improve the effects of combination chemotherapy when treating lung cancer.  相似文献   

13.
Tumors arising “spontaneously” in genetically modified mice now make it possible to study mechanisms of drug resistance in animal tumors resembling their human counterparts. We have studied mouse mammary tumors induced by conditional deletion of Brca1 and p53. These tumors respond to monotherapy with the maximal tolerable dose of doxorubicin, or docetaxel, but eventually always become resistant to the drugs. Resistance in most tumors is caused by upregulation of drug transporters and not by interference with apoptosis/senescence. The tumors also respond to cisplatin, but do not become resistant, even after repeated treatments at the maximum tolerable dose. We conclude that resistance due to interference with cell death effector pathways (apoptosis/senescence) is not an option in these tumors, re-emphasizing doubts that such mechanisms play a role in epithelial tumors. Tumors responding to drug may shrink to less than 5% of their volume before relapsing. We argue that this resistant remnant fraction may provide a test for the tumor stem cell hypothesis and, more generally, that “spontaneous” mouse tumors resembling their human counterparts provide a useful new tool for drug development and for improving treatment regimens.  相似文献   

14.
Human cancer chemotherapy is limited by two major problems: the failure of commonly used anticancer drugs to act against tumor cells in a specific manner and the ability of malignant cells to resist killing by antineoplastic agents. Experimentally, both of these problems can be solved by using L-histidinol in combination with conventional anticancer drugs. A structural analogue of the essential amino acid L-histidine and an inhibitor of protein biosynthesis. L-histidinol improves the selectivity and the efficacy of a variety of cancer drugs in several transplantable murine tumors. Furthermore, L-histidinol circumvents the drug-resistant traits of a variety of cancer cells, including those showing multidrug resistance. This review will summarize these properties of L-histidinol, present new evidence on its ability to increase the vulnerability of both drug-sensitive and drug-resistant human leukemia cells to various anticancer drugs, and show that, in addition to inhibiting protein synthesis, L-histidinol acts as an intracellular histamine antagonist. The establishment of a connection between the latter mechanism and the capacity to modulate anticancer drug action has resulted in a clinical trial in the treatment of human cancer.  相似文献   

15.
恶性肿瘤的靶向治疗已经成为现阶段肿瘤治疗的热点。随着人们对癌基因认知的加深,借助合成致死的方法靶向治疗肿瘤已成为针对肿瘤特异性治疗的新策略。p53基因突变在肿瘤的形成和发展过程中具有重要作用。因此,了解肿瘤中与突变型p53基因有合成致死关系的靶基因的作用方式,有助于指导由突变型p53基因诱发肿瘤的个性化治疗。与突变型p53基因具有合成致死关系的靶基因可分为细胞周期调控基因和细胞非周期调控基因,文章综述了这两类靶基因与突变型p53基因如何构成合成致死作用以及此作用的现实意义。  相似文献   

16.
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor super-family and signals via two death receptors, TRAIL-R1 and TRAIL-R2, and two decoy receptors, TRAIL-R3 and TRAIL-R4, differently expressed in normal and cancer cells. TRAIL is mainly studied for its capacity to induce apoptosis preferentially in cancer cells. TRAIL is expressed in a variety of human tissues, in particular in the lymphoid system, suggesting a strong physiological role in the innate immunity. This review will focus on TRAIL gene structure and regulation, protein folding, tissue expression and molecular signalling. Finally, the potential use of TRAIL as anticancer treatment alone or in combination therapy as well as the use of drugs which signal via TRAIL and its receptors will be analyzed.  相似文献   

17.
Cancer remains a major health issue in the world and the effectiveness of current therapies is limited resulting in disease recurrence and resistance to therapy. Therefore to overcome disease recurrence and have improved treatment efficacy there is a continued effort to develop and test new anticancer drugs that are natural or synthetic - (conventional chemotherapeutics, small molecule inhibitors) and biologic (antibody, tumor suppressor genes, oligonucleotide) product. In parallel, efforts for identifying molecular targets and signaling pathways to which cancer cells are “addicted” are underway. By inhibiting critical signaling pathways that is crucial for cancer cell survival, it is expected that the cancer cells will undergo a withdrawal symptom akin to “de-addiction” resulting in cell death. Thus, the key for having an improved and greater control on tumor growth and metastasis is to develop a therapeutic that is able to kill tumor cells efficiently by modulating critical signaling pathways on which cancer cells rely for their survival.Currently several small molecule inhibitors targeted towards unique molecular signaling pathways have been developed and tested in the clinic. Few of these inhibitors have shown efficacy while others have failed. Thus, targeting a single molecule or pathway may be insufficient to completely block cancer cell proliferation and survival. It is therefore important to identify and test an anticancer drug that can inhibit multiple signaling pathways in a cancer cell, control growth of both primary and metastatic tumors and is safe.One biologic agent that has the characteristics of serving as a potent anticancer drug is interleukin (IL)-24. IL-24 suppresses multiple signaling pathways in a broad-spectrum of human cancer cells leading to tumor cell death, inhibition of tumor angiogenesis and metastasis. Additionally, combining IL-24 with other therapies demonstrated additive to synergistic antitumor activity. Clinical testing of IL-24 as a gene-based therapeutic for the treatment of solid tumors demonstrated that IL-24 is efficacious and is safe. The unique features of IL-24 support its further development as an anticancer drug for cancer treatment.In this review we summarize the current understanding on the molecular targets and signaling pathways regulated by IL-24 in mediating its anticancer activity.  相似文献   

18.
Cyclophosphamide (CYC) is a known chemotherapeutic drug used widely for the treatment of leukemias, lymphomas and some solid tumors. Copper is an essential constituent of chromatin and its level is usually elevated in various malignancies. Combined modality chemotherapy involves the use of drug with other components for cancer treatment, such as radiation therapy or surgery. Photosensitizer anticancer drugs can be used in combination with light and may have synergistic effect on cancer. The present study is an attempt to show that CYC acts as prooxidant when used in combination with Cu(II) and white light. We hypothesize that CYC when given as a chemotherapeutic agent possibly interact with endogenous copper associated with chromatin of the cancer cells and generate ROS besides acting as DNA alkylating agent. Thus, during chemotherapy the oxidative stress is possibly generated by the drug through mobilizing endogenous Cu(II) which may attribute to the cytotoxic death of cancer cell.  相似文献   

19.
Malignant melanoma is a highly aggressive form of skin cancer with a high mortality rate if not discovered in early stages. Although a limited number of treatment options for melanoma currently exist, patients with a more aggressive form of this cancer frequently decline treatment. DM-1 is a sodium phenolate and curcumin analog with proven anticancer, anti-proliferative and anti-metastatic properties. In this paper, the DM-1 compound showed in vivo antitumor activity alone or in combination with chemotherapeutic DTIC in B16F10 melanoma-bearing mice. Beneficial effects such as melanoma tumor burden reduction with pyknotic nuclei, decreased nuclei/cytoplasmic ratio and nuclear degradation occurred after DM-1 treatment. No toxicological changes were observed in the liver, kidneys, spleen and lungs after DM-1 monotherapy or DTIC combined therapy. DTIC+DM-1 treatment induced the recovery of anemia arising from melanoma and immunomodulation. Both DM-1 treatment alone and in combination with DTIC induced apoptosis with the cleavage of caspase-3, -8 and -9. Furthermore, melanoma tumors treated with DM-1 showed a preferential apoptotic intrinsic pathway by decreasing Bcl-2/Bax ratio. Considering the chemoresistance exhibited by melanoma towards conventional chemotherapy drugs, DM-1 compound in monotherapy or in combination therapy provides a promising improvement in melanoma treatment with a reduction of side effects.  相似文献   

20.
Dihydroartemisinin (DHA) exhibits anticancer activity in tumor cells but its mechanism of action is unclear. Cisplatin (DDP) is currently the best known chemotherapeutic available for ovarian cancer. However, tumors return de novo with acquired resistance over time. Mammalian target of rapamycin (mTOR) is an important kinase that regulates cell apoptosis and autophagy, and its dysregulation has been observed in chemoresistant human cancers. Here, we show that compared with control ovarian cancer cells (SKOV3), mTOR phosphorylation was abnormally activated in cisplatin-resistant ovarian cancer cells (SKOV3/DDP) following cisplatin monotherapy. Treatment with cisplatin combined with DHA could enhance cisplatin-induced proliferation inhibition in SKOV3/DDP cells. This mechanism is at least partially due to DHA deactivation of mTOR kinase and promotion of apoptosis. Although autophagy was also induced by DHA, the reduced cell death was not found by suppressing autophagic flux by Bafilomycin A1 (BAF). Taken together, we conclude that inhibition of cisplatin-induced mTOR activation is one of the main mechanisms by which DHA dramatically promotes its anticancer effect in cisplatin-resistant ovarian cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号