首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The chloroperoxidase catalyzed oxidation of methyl phenyl sulfide to (R)-methyl phenyl sulfoxide was investigated, both in batch and membrane reactors, using as oxidant H2O2, or O2 in the presence of either dihydroxyfumaric acid or ascorbic acid. The effects of pH and nature and concentration of the oxidants on the selectivity, stability, and productivity of the enzyme were evaluated. The highest selectivity was displayed by ascorbic acid/O2, even though the activity of chloroperoxidase with this system was lower than that obtained with the others. When the reaction was carried out in a membrane reactor, it was possible to reuse the enzyme for several conversion cycles. The results obtained with ascorbic acid/O2 and dihydroxyfumaric acid/O2 as oxidants do not seem to be compatible with either a mechanism involving hydroxyl radicals as the active species or with the hypothesis that oxidation occurs through the initial formation of H2O2. Copyright 1999 John Wiley & Sons, Inc.  相似文献   

2.
The zinc-free derivative of bovine erythrocuprein, Cu2E2BE, was prepared and its superoxide dismutase activity was measured and compared with that of the holoprotein, Cu2Zn2BE. The dismutase activity of these proteins was measured by quantitating their inhibition of the superoxide-mediated autooxidation of 6-hydroxydopamine, dihydroxyfumaric acid, pyrogallol, and epinephrine. It was found that the superoxide dismutase activity of the zinc-free protein is pH dependent, ranging between 82 ± 5% (relative to Cu2Zn2BE) at pH 5.8, and 25 ± 10% at pH 10.2. The overlapping range of assays and buffers verified that these measurements are independent of the method of assay, buffer, and ionic strength (in the range of μ = 0.10 to 0.20). The variation in activity with pH is probably due, at least in part, to the migration of Cu(II) at high pH as described previously [J.S. Valentine, M.W. Pantoliano, P.J. McDonnell, A.R. Burger, and S.J. Lippard, Proc. Natl. Acad. Sci. USA 76, 4245 (1979)], since Cu(II) bound at the zinc binding site has been shown to have little or no dismutase activity. The observation of high activity (82%) for the zinc-free protein at pH 5.8, where Cu(II) is predominantly in the native Cu binding site, and less susceptible to removal by ethylenediaminetetraacetic acid, demonstrates that the presence of Zn(II) in Cu2Zn2BE does not greatly enhance the inherent dismutase activity of Cu(II) in the holoprotein.  相似文献   

3.
Dihydroxyfumaric acid induced lipid peroxidation in rat liver microsomes. This reaction was heat-insensitive contrary to the mitochondrial peroxidation reported in the previous paper, and was enhanced by p-chloromercuribenzoate. Additions of Fe2+ and Fe3+ stimulated both the lipid peroxidation and the disappearance of dihydroxyfumaric acid. On the other hand, addition of Mn2+ or Cu2+, which stimulated the disappearance of dihydroxyfumaric acid, inhibited the lipid peroxidation. Hydroxyl radical scavengers, superoxide dismutase and catalase had no effect on this lipid peroxidation and dihydroxyfumaric acid disappearance. The cytochrome p-450 content decreased about 70 % in parallel with the lipid peroxidation.  相似文献   

4.
Dihydroxyfumaric acid induces lipid peroxidation in rat liver mitochondria as reported previously. When the mitochondria were solubilized with 0.35% (WV) sodium cholate, the supernatant itself could not catalyze lipid peroxidation with dihydroxyfumaric acid, but the precipitate slightly induced the reaction. The supernatant produced lipid peroxide in the presence of the precipitate and dihydroxyfumaric acid. The supernatant was heat sensitive contrary to the stability of the precipitate. An attempt was made to isolate active entity through a sephadex G-200 column and a DEAE-cellulose column, resulting in about 10-fold purification. At 408–410 nm the partially purified agent showed a maximum absorption, which disappeared rapidly after reduction with sodium dithionite and was slowly diminished with dihydroxyfumaric acid. The molecular weight was much larger than that of oxidized cytochrome c.  相似文献   

5.
A kinetic analysis of the inhibition of malt alpha-amylase by compounds based on ascorbic acid has shown the mode of inhibition to be competitive for the parent compound, but more complex for its derivatives. We have further simplified the ascorbic acid ene-diol pharmacophore by demonstrating that dihydroxyfumaric acid is also a good inhibitor of malt alpha-amylase.  相似文献   

6.
Phenotypic expression of chondrocytes can be modulated in vitro by changing the culture technique and by agents such vitamins and growth factors. We studied the effects of ascorbic acid, retinoic acid (0.5 and 10 μM), and dihydrocytochalasin B (3, 10, 20 μM DHCB), separately or in combination (ascorbic acid + retinoic acid or ascorbic acid + DHCB), on the induction of maturation of fetal bovine epiphyseal chondrocytes grown for up to 4 weeks at high density in medium containing 10% fetal calf serum and the various agents. In the absence of any agent or with retinoic acid or DHCB alone, the metabolic activity of the cells remained very low after day 6, with no induction of type I or X collagen synthesis nor increase in alkaline phosphatase activity. Chondrocytes treated with fresh ascorbic acid showed active protein synthesis associated with expression of types I and X after 6 and 13 days, respectively. This maturation was not accompanied by obvious hypertrophy of the cells or high alkaline phosphatase activity. Addition of retinoic acid to the ascorbic acid‐treated cultures decreased the level of type II collagen synthesis and delayed the induction of types I and X collagen, which were present only after 30 days. A striking increase in alkaline phosphatase activity (15–20‐fold) was observed in the presence of both ascorbic acid and the highest dose of retinoic acid (10 μM). DHCB was also a potent inhibitor of the maturation induced by treatment with ascorbic acid, as the chondrocytes maintained their rounded shape and synthesized type II collagen without induction of type I or X collagen. The pattern of protein secretion was compared under all culture conditions by two‐dimensional gel electrophoresis. The different regulations of chondrocyte differentiation by ascorbic acid, retinoic acid, and DHCB were confirmed by the important qualitative and quantitative changes in the pattern of secreted proteins observed by two‐dimensional gel electrophoresis along the study. J. Cell. Biochem. 76:84–98, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

7.
Ascorbic acid and dehydroascorbic acid are unstable in aqueous solution in the presence of copper and iron ions, causing problems in the routine analysis of vitamin C. Their stability can be improved by lowering the pH below 2, preferably with metaphosphoric acid. Dehydroascorbic acid, an oxidised form of vitamin C, gives a relatively low response on the majority of chromatographic detectors, and is therefore routinely determined as the increase of ascorbic acid formed after reduction. The reduction step is routinely performed at a pH that is suboptimal for the stability of both forms. In this paper, the reduction of dehydroascorbic acid with tris-[2-carboxyethyl] phosphine (TCEP) at pH below 2 is evaluated. Dehydroascorbic acid is fully reduced with TCEP in metaphosphoric acid in less than 20 min, and yields of ascorbic acid are the same as at higher pH. TCEP and ascorbic acid formed by reduction, are more stable in metaphosphoric acid than in acetate or citrate buffers at pH 5, in the presence of redox active copper ions. The simple experimental procedure and low probability of artefacts are major benefits of this method, over those currently applied in a routine assay of vitamin C, performed on large number of samples.  相似文献   

8.
The degradation of hyaluronic acid induced by ascorbic acid and the effect of synovial fluid proteins, such as ceruloplasmin, transferrin, and albumin, were investigated on the basis of the elution volume and the molecular weight of hyaluronic acid using high-performance gel permeation chromatography. Hyaluronic acid was degraded to less than one-third of the original molecular weight in the range of the physiological concentrations of ascorbic acid. Synovial fluid proteins protected against the ascorbate-dependent degradation of hyaluronic acid at their physiological concentrations. It is suggested that the inhibitory activity of ceruloplasmin mainly depends on the ferroxidase activity and that of transferrin is probably due to iron binding property.  相似文献   

9.
The claim that peroxidase (rather than tyrosinase) is the enzyme responsible for the conversion of tyrosine into dopa (3,4-dihydroxyphenylalanine) in melanogenesis was investigated. The spectral changes that occurred during the action of horseradish peroxidase in the presence of H2O2 on dopa, tyrosine and mixtures of dopa with tyrosine or other phenolic compounds were studied. The effect of ascorbic acid or dihydroxyfumaric acid on some of these changes was also investigated. No evidence was found that tyrosine was hydroxylated by peroxidase in the presence of H2O2 and dopa as cofactor, although tyrosine or other phenolic compounds increased the rate of oxidation of dopa to dopachrome (indoline-5,6-quinone-2-carboxylic acid). Peroxidase was, however, effective in oxidizing tyrosine to dopa in the presence of dihydroxyfumaric acid and oxygen.  相似文献   

10.
Three experiments were conducted with chicks to examine the effects of dietary iron and ascorbic acid on the accumulation of lead in various organs. Lead was fed as PbCl2, 500 or 1000 ppm Pb, iron as FeSO4·7H2O, 1000 ppm Fe, and ascorbic acid at 0.5%. Iron was effective in reducing the accumulation of lead in the femur and kidneys at both levels of lead. Ascorbic acid reduced the lead level in the kidneys when the concentration of lead in the diet was 500 ppm, but not at 1000 ppm. The effects of ascorbic acid on bone accumulation was variable. In two experiments the lead concentration was increased and in one it was decreased. These findings may reflect two influences of ascorbic acid found by others, namely an increase in absorption and an increase in urinary excretion. The rapid accumulation of lead in chick bones suggests that it may be an excellent experimental animal for lead studies.  相似文献   

11.
Vigna cutjang Endl. cv. Pusa Barsati seedlings, subjected to increasing degrees of water stress (−0.5, −1.0, −1,5 MPa), produced an approximately proportional increase in glycolate oxidase activity, hydrogen peroxide (H2O2) and proline content but a decrease in catalase activity, ascorbic acid and protein content. Leaf water potential (leaf ψ) and relative water content (RWC) were also lowered with increasing stress. Pretreatment with l -cysteine and reduced glutathione (10-3 M) decreased glycolate oxidase activity, H2O2 content, ascorbic acid oxidase activity, proline content and also slightly improved the water status of leaves stressed (−1.0 MPa) for 2 days. Pretreatment of non-stressed seedlings with these antioxidants had little or no effect. These studies indicate that treatment with antioxidants makes the plant tolerant against water stress by modulating the endogenous levels of H2O2 and ascorbic acid in stressed tissue.  相似文献   

12.
The effect of ascorbic acid on microsomal thiamine diphosphate activity in rat brain was examined. Ascorbic acid at 0.02–0.1 mM increased the thiamine diphosphate activity by 20–600% and produced a significant amount of lipid peroxide, which was measured with thiobarbiturate under the same conditions as the enzyme. A lag period of about 10 min was observed in the process of stimulation of enzyme activity by ascorbic acid. The stimulation of enzyme activity and the lipid peroxidation induced by ascorbic acid were blocked by metal-binding compounds (EDTA, α,α′-dipyridyl, o-phenanthroline) and an antioxidant (N,N′-diphenyl p-phenylenediamine). GSH significantly enhanced the stimulation of enzyme activity and formation of lipid peroxide by 0.02–0.05 mM ascorbic acid. The effect of GSH was due in part to maintenance of the concentration of ascorbic acid in the medium, since GSH could convert dehydroascorbic acid, an oxidized form of ascorbic acid, to ascorbic acid.  相似文献   

13.
The apoplastic fluid of pine ( Pinus pinaster Aiton) hypocotyls contains ascorbic acid (AA) and dehydroascorbic acid (DHA). The amounts of ascorbic and dehydroascorbic acids were in the nmol (g fresh weight)−1 range and decreased with the hypocotyl age as well as along the hypocotyl axis. The ratio AA/(AA+DHA) also decreased with the hypocotyl age and along the hypocotyl. Both ascorbic oxidase and peroxidase activity against ascorbic acid showed very low activity not only in the apoplastic fluid but also in the fractions ionically and covalently bound to the cell walls. However, the peroxidase activity in the three abovementioned fractions was strongly increased in the presence of ferulic acid. That stimulation effect increased with the hypocotyl age and from the apical towards the basal region of the hypocotyls of 10-day-old seedlings. Furthermore, the oxidation of ferulic acid by apoplastic and ionically- and covalently-bound peroxidases was inhibited by ascorbic acid as long as ascorbate was available. A regulatory role of apoplastic ascorbic acid levels in the formation of dehydrodiferulic bridges between wall polysaccharides catalysed by cell wall peroxidases and thus in the cell wall stiffening during plant growth is proposed.  相似文献   

14.
Ascorbic acid is a strong inhibitor of indole-3-acetic oxidation catalyzed by commercial horse-radish peroxidase. In the presence of excess ascorbic acid, the indole-acetic acid oxidation catalysis is apparently blocked. The activity of peroxidase for indoleacetic acid at pH 3.7 and 33°C, in the presence of 2,4-dichlorophenol and MnCl2 as promotors was measured by polarographic technique. The Km was 0.27 m M and the maximum velocity was 1.02 mmol O2 (mg protein)−1 min−1. Dixon plots lead to an apparent Ki of 1.25 (μ M for ascorbic acid and the inhibition was apparently competitive. Ascorbic acid, besides appearing to be a strong inhibitor of the IAA oxidase activity of peroxidase, seemed to protect IAA from total degradation. Addition of more than 5 μ M ascorbic acid produced both an exponential increase in the lag time before the onset of reaction and, at the end, an oxidation protection of 26 μ M IAA when 111 μ M IAA was present at the stawrt. The possibility of ascorbic acid-IAA auxin from endogenous oxidation in plants, is proposed.  相似文献   

15.
Erythroascorbic acid (eAsA) is a five-carbon analog of ascorbic acid, and it is synthesized from D-arabinose by D-arabinose dehydrogenase (ARA) and D-arabinono-gamma-lactone oxidase. We found an NAD+-specific ARA activity which is operative under submillimolar level of d-arabinose in the extracts of Saccharomyces cerevisiae. The hypothetical protein encoded by YMR041c showed a significant homology to a l-galactose dehydrogenase which plays in plant ascorbic acid biosynthesis, and we named it as Ara2p. Recombinant Ara2p showed NAD+-specific ARA activity with Km=0.78 mM to d-arabinose, which is 200-fold lower than that for the conventional NADP+-specific ARA, Ara1p. Gene disruptant of ARA2 lost entire NAD+-specific ARA activity and the conspicuous increase in intracellular eAsA by exogenous d-arabinose feeding, while the double knockout mutant of ARA1 and ARA2 still retained measurable amount of eAsA. It demonstrates that Ara2p, not Ara1p, mainly contributes to the production of eAsA from d-arabinose in S. cerevisiae.  相似文献   

16.
17.
The objectives of this study were to determine ascorbic acid stability and its effect on antiproteinase activity of seminal plasma in the presence of an oxidant. Effect of seminal plasma, and additives: glutathione, albumin, hydrogen peroxide and Tris buffer, on ascorbic acid degradation was investigated by UV absorbance. Antiproteinase against trypsin amidase activity was measured spectrophotometrically using N-benzoyl-DL-arginine-p-nitroanilide (BAPNA) as substrate. Ascorbic acid was destroyed much more rapidly with the addition of hydrogen peroxide than in Tris buffer at pH 8.2 alone. Seminal plasma protected ascorbic acid more efficiently than glutathione and albumin alone. The protective effect of seminal plasma on ascorbic acid degradation may closely relate to the function of ascorbic acid in reproductive system of scurvy-prone animals including teleost fish. Within the range of 1–8 mM concentrations, ascorbic acid had a pro-oxidant action on seminal plasma antiproteinase activityin vitro when they were incubated with hydrogen peroxide.Abbreviations AA Ascorbic acid - BAPNA N-benzoyl-DL-arginine-p-nitroanilide - DMSO dimethyl sulfoxide - GSH glutathione - H2O2 hydrogen peroxide  相似文献   

18.
Uptake and recycling of ascorbic acid (AA) were studied in erythrocytes of 1- to 12-month-old Beagle dogs. At 1 month, both AA uptake and recycling capacity were high. Ascorbic acid entered erythrocytes mainly in the oxidized form with elevated activity of Glut 1 glucose transporter. However, this trait of erythrocytes was rapidly lost in the course of postnatal growth. At 3 months, ascorbic acid uptake and recycling capacity decreased to almost adult levels. Thereafter, AA was transported mainly in the reduced form, and its uptake and recycling capacity became one-third the levels of 1-month-old dogs. Postnatal anemia and recovery were indicated by changes in hemoglobin and packed cell volume levels at 1 and 3 months. Glutathione reductase (GR) activity was twice as high as in adults in 1-month-old dogs, allowing efficient reduction of oxidized ascorbic acid, which enters cells in large amounts due to elevated activity of the Glut 1 glucose transporter. One-month-old dogs need high levels of AA for antioxidant protection and skeletal development. The high AA recycling capacity of erythrocytes is considered to balance the expenditure of AA in young Beagle dogs.  相似文献   

19.
20.
To study the structure-function relationship of the oxidative-damage effect of ascorbic acid, we have focused on the interaction between plasmid DNA pUC19 and a series of ascorbic acid derivatives modified on different OH groups in the presence of transition metal ions. Some ascorbic acid derivatives can selectively cleave plasmid DNA from Form I to Form II in the presence of low concentration of Cu2+ just like ascorbic acid itself, while other derivatives oxidatively damage plasmid DNA slightly. We found that those derivatives with unattached 2-OH and 3-OH groups retain the ability to cleave the plasmid DNA. The derivatives that have been methylated on 2-OH or 3-OH can only cleave plasmid DNA softly, and those derivatives that have been protected on both 2-OH and 3-OH can hardly exert an oxidative damage on plasmid DNA under the same condition. Form these results, we can draw the conclusion that 2-OH and 3-OH groups of the ascorbic acid molecule contribute most to this biological activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号