首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the hepatoprotective and anti‐fibrotic actions of nootkatone (NTK) were investigated using carbon tetrachloride (CCl4)‐induced liver fibrosis in mice. CCl4 administration elevated serum aspartate and alanine transaminases levels, respectively. In addition, CCl4 produced hepatic oxidative and nitrative stress, characterized by diminished hemeoxygenase‐1 expression, antioxidant defenses, and accumulation of 4‐hydroxynonenal and 3‐nitrotyrosine. Furthermore, CCl4 administration evoked profound expression of pro‐inflammatory cytokine expressions such as tumor necrosis factor‐α, monocyte chemoattractant protein‐1, and interleukin‐1β in hepatic tissues, which corroborated with nuclear factor κB activation. Additionally, CCl4‐treated animals exhibited higher apoptosis, characterized by increased caspase 3 activity, DNA fragmentation, and poly (ADP‐ribose) polymerase activation. Moreover, histological and biochemical investigations revealed marked fibrosis in the livers of CCl4‐administered animals. However, NTK treatment mitigated CCl4‐induced phenotypic changes. In conclusion, our findings suggest that NTK exerts hepatoprotective and anti‐fibrotic actions by suppressing oxidative stress, inflammation, and apoptosis.  相似文献   

2.

Background

Graptopetalum paraguayense (GP) is a folk herbal medicine with hepatoprotective effects that is used in Taiwan. The aim of this study was to evaluate the hepatoprotective and antifibrotic effects of GP on experimental hepatic fibrosis in both dimethylnitrosamine (DMN)- and carbon tetrachloride (CCl4)-induced liver injury rats.

Methods

Hepatic fibrosis-induced rats were fed with the methanolic extract of GP (MGP) by oral administration every day. Immunohistochemistry, biochemical assays, and Western blot analysis were performed. The effects of MGP on the expression of fibrotic markers and cytokines in the primary cultured hepatic stellate cells (HSCs) and Kupffer cells, respectively, were evaluated.

Results

Oral administration of MGP significantly alleviated DMN- or CCl4-induced liver inflammation and fibrosis. High levels of alanine transaminase, aspartate transaminase, bilirubin, prothrombin activity and mortality rates also decreased in rats treated with MGP. There were significantly decreased hydroxyproline levels in therapeutic rats compared with those of the liver-damaged rats. Collagen I and alpha smooth muscle actin (α-SMA) expression were all reduced by incubation with MGP in primary cultured rat HSCs. Furthermore, MGP induced apoptotic cell death in activated HSCs. MGP also suppressed lipopolysaccharide-stimulated rat Kupffer cell activation by decreasing nitric oxide, tumor necrosis factor-α and interleukin-6 production, and increasing interleukin-10 expression.

Conclusions

The results show that the administration of MGP attenuated toxin-induced hepatic damage and fibrosis in vivo and inhibited HSC and Kupffer cell activation in vitro, suggesting that MGP might be a promising complementary or alternative therapeutic agent for liver inflammation and fibrosis.  相似文献   

3.
The effect of moderate alcohol consumption on liver fibrosis is not well understood, but evidence suggests that adenosine may play a role in mediating the effects of moderate ethanol on tissue injury. Ethanol increases the concentration of adenosine in the liver. Adenosine 2A receptor (A2AR) activation is known to enhance hepatic stellate cell (HSC) activation and A2AR deficient mice are protected from fibrosis in mice. Making use of a novel mouse model of moderate ethanol consumption in which female C57BL/6J mice were allowed continued access to 2% (vol/vol) ethanol (11% calories) or pair-fed control diets for 2 days, 2 weeks or 5 weeks and superimposed with exposure to CCl4, we tested the hypothesis that moderate ethanol consumption increases fibrosis in response to carbon tetrachloride (CCl4) and that treatment of mice with an A2AR antagonist prevents and/or reverses this ethanol-induced increase in liver fibrosis. Neither the expression or activity of CYP2E1, required for bio-activation of CCl4, nor AST and ALT activity in the plasma were affected by ethanol, indicating that moderate ethanol did not increase the direct hepatotoxicity of CCl4. However, ethanol feeding enhanced HSC activation and exacerbated liver fibrosis upon exposure to CCl4. This was associated with an increased sinusoidal angiogenic response in the liver. Treatment with A2AR antagonist both prevented and reversed the ability of ethanol to exacerbate liver fibrosis.

Conclusion

Moderate ethanol consumption exacerbates hepatic fibrosis upon exposure to CCl4. A2AR antagonism may be a potential pharmaceutical intervention to decrease hepatic fibrosis in response to ethanol.  相似文献   

4.
Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is critical in the pathogenesis of alcoholic liver cirrhosis. However, the effect of ALHD2 on liver fibrosis remains to be further elucidated. This study aimed to demonstrate whether ALDH2 regulates carbon tetrachloride (CCl4)‐induced liver fibrosis and to investigate the efficacy of Alda‐1, a specific activator of ALDH2, on attenuating liver fibrosis. ALDH2 expression was increased after chronic CCl4 exposure. ALDH2 deficiency accentuated CCl4‐induced liver fibrosis in mice, accompanied by increased expression of collagen 1α1, α‐SMA and TIMP‐1. Moreover, ALDH2 knockout triggered more ROS generation, hepatocyte apoptosis and impaired mitophagy after CCl4 treatment. In cultured HSC‐T6 cells, ALDH2 knockdown by transfecting with lentivirus vector increased ROS generation and α‐SMA expression in an in vitro hepatocyte fibrosis model using TGF‐β1. ALDH2 overexpression by lentivirus or activation by Alda‐1 administration partly reversed the effect of TGF‐β1, whereas ALDH2 knockdown totally blocked the protective effect of Alda‐1. Furthermore, Alda‐1 administration protected against liver fibrosis in vivo, which might be mediated through up‐regulation of Nrf2/HO‐1 cascade and activation of Parkin‐related mitophagy. These findings indicate that ALDH2 deficiency aggravated CCl4‐induced hepatic fibrosis through ROS overproduction, increased apoptosis and mitochondrial damage, whereas ALDH2 activation through Alda‐1 administration alleviated hepatic fibrosis partly through activation of the Nrf2/HO‐1 antioxidant pathway and Parkin‐related mitophagy, which indicate ALDH2 as a promising anti‐fibrotic target and Alda‐1 as a potential therapeutic agent in treating CCl4‐induced liver fibrosis.  相似文献   

5.
Summary. The aim of this study was to investigate the effect of betaine or taurine on liver fibrogenesis and lipid peroxidation in rats. Fibrosis was induced by treatment of rats with drinking water containing 5% ethanol and CCl4 (2×weekly, 0.2ml/kg, i.p.) for 4 weeks. Ethanol plus CCl4 treatment caused increased lipid peroxidation and disturbed antioxidant system in the liver. Histopathological findings suggested that the development of liver fibrosis was prevented in rats treated with betaine or taurine (1% v/v in drinking water) together with ethanol plus CCl4 for 4 weeks. When hepatic taurine content was depleted with -alanine (3% v/v in drinking water), portal-central fibrosis induced by ethanol+CCl4 treatment was observed to proceed cirrhotic structure. Betaine or taurine was also found to decrease serum transaminase activities and hepatic lipid peroxidation without any change in hepatic antioxidant system in rats with hepatic fibrosis. In conclusion, the administration of betaine or taurine prevented the development of liver fibrosis probably associated with decreased oxidative stress.  相似文献   

6.
This study investigated the pro-fibrogenic role of high mobility group box 1 (HMGB1) peptides in liver fibrogenesis. An animal model of carbon tetrachloride (CCl4)-induced liver fibrosis was used to examine the serum HMGB1 levels and its intrahepatic distribution. The increased serum HMGB1 levels were positively correlated with elevation of transforming growth factor-β1 (TGF-β1) and collagen deposition during fibrogenesis. The cytoplasmic distribution of HMGB1 was noted in the parenchymal hepatocytes of fibrotic livers. In vitro studies confirmed that exposure to hydrogen peroxide and CCl4 induced an intracellular mobilization and extracellular release of nuclear HMGB1 peptides in clone-9 and primary hepatocytes, respectively. An uptake of exogenous HMGB1 by hepatic stellate cells (HSCs) T6 cells indicated a possible paracrine action of hepatocytes on HSCs. Moreover, HMGB1 dose-dependently stimulated HSC proliferation, up-regulated de novo synthesis of collagen type I and α-smooth muscle actin (α-SMA), and triggered Smad2 phosphorylation and its nuclear translocation through a TGF-β1-independent mechanism. Blockade with neutralizing antibodies and gene silencing demonstrated the involvement of the receptor for advanced glycation end-products (RAGE), but not toll-like receptor 4, in cellular uptake of HMGB1 and the HMGB1-mediated Smad2 and ERK1/2 phosphorylation as well as α-SMA up-regulation in HSC-T6 cells. Furthermore, anti-RAGE treatment significantly ameliorated CCl4-induced liver fibrosis. In conclusion, the nuclear HMGB1 peptides released from parenchymal hepatocytes during liver injuries may directly activate HSCs through stimulating HSC proliferation and transformation, eventually leading to the fibrotic changes of livers. Blockade of HMGB1/RAGE signaling cascade may constitute a therapeutic strategy for treatment of liver fibrosis.  相似文献   

7.
Regulation on the function of the hepatic stellate cells (HSCs) is one of the proposed therapeutic approaches to liver fibrosis. In the present study, we examined the in vitro and in vivo effects of CPU-II2, a novel synthetic oleanolic acid (OLA) derivative with nitrate, on hepatic fibrosis. This compound alleviated CCl4-induced hepatic fibrosis in mice with a decrease in hepatic hydroxyproline (Hyp) content and histological changes. CPU-II2 also attenuated the mRNA expression of α-smooth muscle actin (α-SMA) and tissue inhibitor of metalloproteinase type 1 (TIMP-1) induced by CCl4 in mice and reduced both mRNA and protein levels of α-SMA in HSC-T6 cells. Interestingly, CPU-II2 did not affect the survival of HSC-T6 cells but decreased the expression of procollagen-α1 (I) in HSC-T6 cells through down-regulating the phosphorylation of p38 MAPK. Conclusion: CPU-II2 attenuates the development of liver fibrosis rather by regulating the function of HSCs through p38 MAPK pathway than by damaging the stellate cells.  相似文献   

8.
Tibetan medicine Herpetospermum caudigerum Wall. (HCW) has long been employed to treat hepatitis, inflammatory diseases and jaundice according to the records of “The Four Medical Tantras” in China. This study was investigated to explore the protective effects of HCW on hepatic fibrosis and the possible mechanism in a rat model. Hepatic fibrosis was established by intragastric administration of 3 ml/kg carbon tetrachloride (CCl4) twice a week for 6 weeks. CCl4‐treated rats were received HCW (1 and 3 g/kg/d) and silymarin (0.1 g/kg/d) from 3 to 6 weeks. The results showed that HCW could significantly decrease the levels of AST, ALT, HA, LN, PCIII, Col IV, TNF‐α, IL‐1β and IL‐6. Moreover, HCW could effectively inhibit collagen deposition and reduce the pathological damage. Analysis experiments finally exhibited that HCW was able to markedly inhibit hepatic fibrosis by modulating the expressions of NF‐κB p65, IκBα, Samd3 and TGF‐β1 proteins. Therefore, our results suggest that HCW has hepatoprotective activity against CCl4‐induced hepatic fibrosis in rats by regulating the inflammatory responses.  相似文献   

9.
Chronic liver diseases are accompanied by changes in the biochemical pathways related to the regulation of apoptosis and extra-cellular matrix deposition. The present study was designed to investigate, using low density arrays, changes in the hepatic gene expression together with hepatic biochemical and histological alterations in rats that had liver impairment induced by chronic exposure to CCl4. Further, we examined the possible recovery of genetic and pathological changes following the cessation of the hepatotoxic injury. Experimental fibrosis was induced in male Wistar rats by CCl4 administration. Animals were subdivided into two groups. One group was given CCl4 and animals were killed at 8 and 12 weeks of treatment. The other group was treated with CCl4 for 6 weeks, the CCl4 was then stopped and, subsequently, subgroups of animals were killed after 1 and 2 weeks of recovery. CCl4 administration over 12 weeks was associated with significant changes in B-cell leukemia/lymphoma 2, procollagen type I α 2, matrix metalloproteinases 3 and 8, tissue inhibitors of metalloproteinases 1, 2, and 3 and the inhibitor of apoptosis 4 gene expressions. Recovery after CCl4 cessation was associated with changes in procollagen type I α 2, matrix metalloproteinase 7, tissue inhibitors of metalloproteinases 1 and 2, inhibitor of apoptosis 4, and survivin gene expressions. This study shows an association between changes in the expression of several genes regulating hepatic cell apoptosis, the fibrosis process, and the recovery of the hepatic function after removal of the toxic injury.  相似文献   

10.
Overexpression of nuclear factor (NF-κB) or activation of Smad3 by transforming growth factor β (TGF-β1) induced by oncogenes results in overexpression of fibrotic processes and hence cell death. The objective of this study is to examine whether Silymarin (Sil) alone or in combination with Vitamin E (Vit E) and/or Curcumin (Cur) plays a modulatory role against the overexpression of NF-κB, and TGF-β that induced in response to carbon tetrachloride (CCl4) administration. The present work revealed that CCl4 induced elevation of in serum alanine aminotransferase (ALT), Apoptosis regulator (Bax), Smad3, TGF-β, and NF-kB hepatic mRNA expression (using Real-time PCR), administration of Sil alone downregulated these expressions. Treatment with Vit E acid and/ or Cur along with Sil produced best results in this concern. B-cell lymphoma 2 (Bcl-2) expressions were downregulated by CCl4; whereas concurrent treatment of Vit E and/or Cur along with Sil increased its expression. On conclusion, the use of Vit E and/or Cur could potentiate the antiapoptotic action of Sil.  相似文献   

11.

Aims

We studied that a potent antifibrotic effect of decursin on in vivo liver damage model and the mechanism in inhibiting which transforming growth factor (TGF)-β1-induced human hepatic stellate cells (HSCs) activation.

Main methods

Liver injury was induced in vivo by intraperitoneal injection of carbon tetrachloride (CCl4) with or without decursin for 4 weeks in mice. Human hepatic stellate cell line, an immortalized human HSC line, was used in in vitro assay system. The effects of decursin on HSC activation were measured by analyzing the expression of α-smooth muscle actin (α-SMA) and collagen I in liver tissue and human HSCs.

Key findings

Decursin treatment significantly reduced the ratio of liver/body weight, α-SMA activation, and type I collagen overexpression in CCl4 treated mice liver. The elevated serum levels, including ALT, AST, and ALP, were also decreased by decursin treatment. Treatment of decursin markedly proved the generation of reactive oxygen species, NAD(P)H oxidase (NOX) protein (1, 2, and 4) upregulation, NOX activity, and superoxide anion production in HSCs by TGF-β1. It also significantly reduced TGF-β1-induced Smad 2/3 phosphorylation, nuclear translocation of Smad 4, and association of Smad 2/3–Smad 4 complex. Consistent with in vitro results, decursin treatment effectively blocked the levels of NOX protein, and Smad 2/3 phosphorylation in injured mice liver.

Significance

Decursin blocked CCl4-induced liver fibrosis and inhibited TGF-β1-mediated HSC activation in vitro. These data demonstrated that decursin exhibited hepatoprotective effects on experimental fibrosis, potentially by inhibiting the TGF-β1 induced NOX activation and Smad signaling.  相似文献   

12.
Liver fibrosis is a critical pathological process in the early stage of many liver diseases, including hepatic cirrhosis and liver cancer. However, the molecular mechanism is not fully revealed. In this study, we investigated the role of F-box protein 31 (FBXO31) in liver fibrosis. We found FBXO31 upregulated in carbon tetrachloride (CCl4) induced liver fibrosis and in activated hepatic stellate cells, induced by transforming growth factor-β (TGF-β). The enforced expression of FBXO31 caused enhanced proliferation and increased expression of α-smooth muscle actin (α-SMA) and Col-1 in HSC-T6 cells. Conversely, suppression of FBXO31 resulted in inhibition of proliferation and decreased accumulation of α-SMA and Col-1 in HSC-T6 cells. In addition, upregulation of FBXO31 in HSC-T6 cells decreased accumulation of Smad7, the negative regulator of the TGF-β/smad signaling pathway, and suppression of the FBXO31 increased accumulation of Smad7. Immunofluorescence staining showed FBXO31 colocalized with Smad7 in HSC-T6 cells and in liver tissues of BALB/c mice treated with CCl4. Immunoprecipitation demonstrated FBXO31 interacted with Smad7. Moreover, FBXO31 enhanced ubiquitination of Smad7. In conclusion, FBXO31 modulates activation of HSCs and liver fibrogenesis by promoting ubiquitination of Smad7.  相似文献   

13.
Hepatic COX-2 overexpression is sufficient to induce hepatitis, but its role on liver fibrosis remains unknown. We aim to elucidate possible biological effects of COX-2 in liver fibrosis using both gain-of-function and loss-of-function mouse models. COX-2 transgenic (TG) mice that specifically overexpress the human COX-2 cDNA in the liver, knockout (KO), and wild type (WT) mice were studied in two different murine fibrosis models induced by carbon tetrachloride (CCl4) injection or methionine and choline-deficient (MCD) diet. Liver injury was assessed by serum ALT and bilirubin levels and histological examination. Hepatic collagen content was determined by picrosirius red stain morphometry assay and quantitation of hydroxyproline. Hepatic stellate cell (HSC) activation was determined by immunohistochemical analysis of α-smooth muscle actin (α-SMA). mRNA expression of fibrogenic genes was assayed by real-time quantitative PCR. COX-2 protein was overexpressed in the liver of TG mice compared with WT littermates. CCl4 or MCD-induced liver fibrotic injury was equally severe in TG and WT mice, as demonstrated by similar elevated levels of hepatic collagen contents. Enhanced COX-2 expression in TG liver did not affect HSC activation and fibrogenic gene expression upon CCl4 or MCD treatment. Importantly, CCl4-treated KO mice did not show significant difference in liver fibrotic damage and fibrogenic gene expression compared with the WT counterparts. This is the first report on the effect of COX-2 in liver fibrosis based on genetic mouse models. The results suggest that COX-2 does not appear to mediate the development of liver fibrosis.  相似文献   

14.
Activated factor X has a central role in the coagulation activation and also contributes to chronic inflammation and tissue fibrosis. In this study, rivaroxaban, a direct factor X inhibitor, attenuates liver fibrosis induced by carbon tetrachloride (CCl4). Male rats were randomly allocated into three groups: a control group, CCl 4 fibrotic group, and CCl 4+rivaroxaban (5 mg/kg) group. Liver fibrosis was induced by subcutaneous injection of CCl 4 twice a week for 6 weeks. Rivaroxaban significantly restored the biochemical parameter including inflammatory and fibrosis markers with histopathological evidence using routine and Masson trichrome staining. It reduced also the expression of tissue factor, fibrin, transforming growth factor and α‐smooth muscle actin in the liver tissues. This concludes that rivaroxaban attenuates liver injury caused by CCl 4, at least in part by inhibiting coagulation and proinflammatory activation. In conclusion, rivaroxaban may be used for the management of liver fibrosis.  相似文献   

15.
Quiescent hepatic stellate cells (HSCs) store vitamin A as lipid droplets in the cytoplasm. When activated, these cells lose vitamin A and exhibit an increased capacity for proliferation, mobility, contractility, and the synthesis of collagen and other components of the extracellular matrix. Our previous work demonstrated that the lipid hydrolytic gene pancreatic lipase-related protein 2 (mPlrp2) is involved in the hydrolysis of retinyl esters (REs) in the liver. Here, we showed that bile duct ligation (BDL)-induced liver injury triggered the conditional expression of mPlrp2 in livers and describe evidence of a strong relationship between the expression of mPlrp2 and Acta-2, a marker for activated HSCs. RNA interference targeting mPlrp2 inhibited HSC activation and ameliorated hepatic fibrosis induced by BDL in mice. Liver BDL markedly reduced the adenosine level and increased the ratio between S-adenosyl-L-methionine (SAM) and S-adenosyl-L-homocysteine (SAH). Chromatin immunoprecipitation (ChIP) analysis demonstrated an increase in trimethylated histone H3K4 at the mPlrp2 promoter in BDL mice, which was associated with the conditional expression of mPlrp2 in the liver. SAM, a well-known hepatoprotective substance, inhibited mPlrp2 expression and reduced RE hydrolysis in mice with hepatic fibrosis induced by chronic CCl4 treatment. Liver fibrosis induced by CCl4 or BDL was improved in Plrp2?/? mice. Our results reveal that mPlrp2 suppression is a potential approach for treating hepatic fibrosis.  相似文献   

16.
Liver fibrosis is the excessive accumulation of extracellular matrix (ECM) proteins including collagen that occurs in most types of chronic liver diseases. Studies concerning the capacity of mesenchymal stem cells (MSCs) and simvasatain (SIMV) to repair fibrotic tissues through reducing inflammation, collagen deposition, are still controversial. This study aimed to investigate the therapeutic efficacy of bone marrow (BM)-derived MSCs and SIMV on carbon tetrachloride (CCl4)-induced liver fibrosis in rats. Rats were divided into: normal, CCl4, CCl4/MSCs, CCl4/SIMV, CCl4/MSCs/SIMV, and SIMV groups. BM-derived MSCs were detected by RT-PCR of CD29 and were then infused into the tail vein of female rats that received CCl4 injection to induce liver fibrosis. Sex-determining region Y (SRY) gene on Y-chromosome gene was assessed by PCR to confirm homing of the male stem cells in liver tissue of the female recipients. Serum liver function tests, liver procollagens I and III, tissue inhibitors of metalloproteinase-1 (TIMP-1), endoglin, matrix metalloproteinase-1 (MMP-1) gene expressions, transforming growth factor-beta (TGF-β1) immunostaining, and histopathologicl examination were performed. MSCs and SIMV decreased liver procollagens I and III, TIMP-1 and endoglin gene expressions, TGF-β1 immunostaining, and serum liver function tests compared with the CCl4 group. MMP-1 expression was increased in the CCl4/MSCs group. Histopathological examination as well as fibrosis score supports the biochemical and molecular findings. It can be concluded that MSCs and SIMV were effective in the treatment of hepatic CCl4-induced fibrosis-rat model. Treatment with MSCs was superior to SIMV. This antifibrotic effect can be attributed to their effect on the MMPs/TIMPs balance which is central in fibrogenesis.  相似文献   

17.
BackgroundHepatic fibrosis is considered integral to the progression of chronic liver diseases, as it leads to the development of cirrhosis and hepatocellular carcinoma. The activation of hepatic stellate cells (HSCs) is the dominant event in hepatic fibrogenesis. The transforming growth factor-β1 (TGF-β1) and Yes-associated protein (YAP) pathways play a pivotal role in HSC activation, hepatic fibrosis and cirrhosis progression. Therefore, targeting the TGF-β/Smad and YAP signaling pathways is a promising strategy for antifibrotic therapy.PurposeThe present study investigated the protective effects of Physalin D (PD), a withanolide isolated from Physalis species (Solanaceae), against liver fibrosis and further elucidated the mechanisms involved in vitro and in vivo.Study design/methodsWe conducted a series of experiments using carbon tetrachloride (CCl4)- and bile duct ligation (BDL)-induced fibrotic mice and cultured LX-2 cells. Serum markers of liver injury, and the morphology, histology and fibrosis of liver tissue were investigated. Western blot assays and quantitative real-time PCR were used to investigate the mechanisms underlying the antifibrotic effects of PD.ResultPD decreased TGF-β1-induced COL1A1 promoter activity. PD inhibited TGF-β1-induced expression of Collagen I and α-smooth muscle actin (α-SMA) in human hepatic stellate LX-2 cells. PD significantly ameliorated hepatic injury, including transaminase activities, histology, collagen deposition and α-SMA, in CCl4- or BDL-induced mice. Moreover, PD markedly decreased the expression of phosphorylated Smad2/3 in vitro and in vivo. Furthermore, PD significantly decreased YAP protein levels, and YAP knockdown did not further enhance the effects of PD, namely α-SMA inhibition, Collagen I expression and YAP target gene expression in LX-2 cells.ConclusionThese results clearly show that PD ameliorated experimental liver fibrosis by inhibiting the TGF-β/Smad and YAP signaling pathways, indicating that PD has the potential to effectively treat liver fibrosis.  相似文献   

18.
The present study was undertaken to investigate the possible protective effect of L-carnosine (CAR), an endogenous dipeptide of alanine and histidine, on carbon tetrachloride (CCl4)-induced hepatic injury. Liver injury was induced in male Sprague-Dawley rats by intraperitoneal (i.p.) injections of CCl4, twice weekly for six weeks. CAR was administered to rats daily, at dose of 250 mg/kg, i.p. At the end of six weeks, blood and liver tissue specimens were collected. Results show that CAR treatment attenuated the hepatic morphological changes, necroinflammation and fibrosis induced by CCl4, as indicated by hepatic histopathology scoring. In addition, CAR treatment significantly reduced the CCl4-induced elevation of liver-injury parameters in serum. CAR treatment also combated oxidative stress; possibly by restoring hepatic nuclear factor erythroid 2-related factor 2 (Nrf-2) levels. Moreover, CAR treatment prevented the activation of hepatic stellate cells (HSCs), as indicated by reduced α-smooth muscle actin (α-SMA) expression in the liver, and decreased hepatic inflammation as demonstrated by a reduction in hepatic tumor necrosis factor-α (TNF-α) and restoration of interleukin-10 (IL-10) levels. In conclusion, CCl4-induced hepatic injury was alleviated by CAR treatment. The results suggest that these beneficial, protective effects are due, at least in part, to its anti-oxidant, anti-inflammatory and anti-fibrotic activities.  相似文献   

19.
Liver fibrosis is a major health problem that can lead to the development of liver cirrhosis and hepatocellular carcinoma. On the other hand, several antioxidants have been shown to possess protective effect against liver fibrosis. Therefore, in the present work, the effectiveness of curcumin, α-lipoic acid, and N-acetylcysteine in protecting against carbon tetrachloride (CCl4)-induced liver fibrosis as well as the mechanism(s) implicated in this protective effect was studied. The antioxidants used in this study resulted in hepatoprotective effect as evident by substantial decreases in collagen deposition in histopathological examinations in addition to significant decrease in serum levels of alanine aminotransferase, aspartate aminotransferase, gamma glutamyl transpeptidase, bilirubin, and transforming growth factor-alpha (TGF-α) as well as hepatic malondialdehyde concentration, with a concurrent increase in serum matrix metalloproteinase-13 (MMP-13) and hepatic reduced glutathione (GSH) levels as compared to CCl4 fibrotic group. In conclusion, curcumin, α-lipoic acid, and N-acetylcysteine protect rats against CCl4-induced liver fibrosis most possibly through their antioxidant activities and their capacities to induce MMP-13 and to inhibit TGF-α levels.  相似文献   

20.
Alcoholic liver disease (ALD)-related fibrosis results from a variety of mechanisms including the accumulation of acetaldehyde, reactive oxygen species, and hepatic overload of endogenous lipopolysaccharide (LPS). Alcohol cessation is the therapeutic mainstay for patients with all stages of ALD, whereas pharmacological strategies for liver fibrosis have not been established. Sulforaphane, a phytochemical found in cruciferous vegetables, activates nuclear factor erythroid 2-related factor 2 (Nrf2) and exerts anticancer, antidiabetic, and antimicrobial effects; however, few studies investigated its efficacy in the development of ALD-related fibrosis. Herein, we investigated the effect of sulforaphane on acetaldehyde metabolism and liver fibrosis in HepaRG and LX-2 cells, human hepatoma and hepatic stellate cell lines, respectively, as well as in a mouse model of alcoholic liver fibrosis induced by ethanol plus carbon tetrachloride (EtOH/CCl4). Sulforaphane treatment induced the activity of acetaldehyde-metabolizing mitochondrial aldehyde dehydrogenase in HepaRG cells and suppressed the acetaldehyde-induced proliferation and profibrogenic activity in LX-2 cells with upregulation of Nrf2-regulated antioxidant genes, including HMOX1, NQO1, and GSTM3. Moreover, sulforaphane attenuated the LPS/toll-like receptor 4-mediated sensitization to transforming growth factor-β with downregulation of NADPH oxidase 1 (NOX1) and NOX4. In EtOH/CCl4-treated mice, oral sulforaphane administration augmented hepatic acetaldehyde metabolism. Additionally, sulforaphane significantly inhibited Kupffer cell infiltration and fibrosis, decreased fat accumulation and lipid peroxidation, and induced Nrf2-regulated antioxidant response genes in EtOH/CCl4-treated mice. Furthermore, sulforaphane treatment blunted hepatic exposure of gut-derived LPS and suppressed hepatic toll-like receptor 4 signaling pathway. Taken together, these results suggest sulforaphane as a novel therapeutic strategy in ALD-related liver fibrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号