首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Glioblastomas (GBL) are the most common and aggressive brain tumors. They are distinguished by high resistance to radiation and chemotherapy. To find novel approaches for GBL classification, we obtained 16 primary GBL cell cultures and tested them with real-time PCR for mRNA expression of several genes (YB-1, MGMT, MELK, MVP, MDR1, BCRP) involved in controlling cell proliferation and drug resistance. The primary GBL cultures differed in terms of proliferation rate, wherein a group of GBL cell cultures with low proliferation rate demonstrated higher resistance to temozolomide. We found that GBL primary cell cultures characterized by high proliferation rate and lower resistance to temozolomide expressed higher mRNA level of the YB-1 and MDR1 genes, whereas upregulated expression of MVP/LRP mRNA was a marker in the group of GBL with low proliferation rate and high resistance. A moderate correlation between expression of YB-1 and MELK as well as YB-1 and MDR1 was found. In the case of YB-1 and MGMT expression, no correlation was found. A significant negative correlation was revealed between mRNA expression of MVP/LRP and MELK, MDR1, and BCRP. No correlation in expression of YB-1 and MVP/LRP genes was observed. It seems that mRNA expression of YB-1 and MVP/LRP may serve as a marker for GBL cell cultures belonging to distinct groups, each of which is characterized by a unique pattern of gene activity.  相似文献   

3.

Key message

Reactive oxygen species (ROS) oxidize methionine to methionine sulfoxide (MetSO) and thereby inactivate proteins. Methionine sulfoxide reductase (MSR) enzyme converts MetSO back to the reduced form and thereby detoxifies the effect of ROS. Our results show that Arabidopsis thaliana MSR enzyme coding gene MSRB8 is required for effector-triggered immunity and containment of stress-induced cell death in Arabidopsis.

Abstract

Plants activate pattern-triggered immunity (PTI), a basal defense, upon recognition of evolutionary conserved molecular patterns present in the pathogens. Pathogens release effector molecules to suppress PTI. Recognition of certain effector molecules activates a strong defense, known as effector-triggered immunity (ETI). ETI induces high-level accumulation of reactive oxygen species (ROS) and hypersensitive response (HR), a rapid programmed death of infected cells. ROS oxidize methionine to methionine sulfoxide (MetSO), rendering several proteins nonfunctional. The methionine sulfoxide reductase (MSR) enzyme converts MetSO back to the reduced form and thereby detoxifies the effect of ROS. Though a few plant MSR genes are known to provide tolerance against oxidative stress, their role in plant–pathogen interaction is not known. We report here that activation of cell death by avirulent pathogen or UV treatment induces expression of MSRB7 and MSRB8 genes. The T-DNA insertion mutant of MSRB8 exaggerates HR-associated and UV-induced cell death and accumulates a higher level of ROS than wild-type plants. The negative regulatory role of MSRB8 in HR is further supported by amiRNA and overexpression lines. Mutants and overexpression lines of MSRB8 are susceptible and resistant respectively, compared to the wild-type plants, against avirulent strains of Pseudomonas syringae pv. tomato DC3000 (Pst) carrying AvrRpt2, AvrB, or AvrPphB genes. However, the MSRB8 gene does not influence resistance against virulent Pst or P. syringae pv. maculicola (Psm) pathogens. Our results altogether suggest that MSRB8 function is required for ETI and containment of stress-induced cell death in Arabidopsis.
  相似文献   

4.
Human, rat, Xenopus, and Drosophila (DPx2540 and DPx6005) peroxiredoxin cDNAs were cloned and expressed in Escherichia coli. The recombinant enzymes were compared with respect to enzymatic activity toward various substrates and protection of plasmid DNA from the Fenton reaction products. The activity toward H2O2 decreased in the following order: DPx2540 > human Prx6 > Xenopus Prx6 > rat Prx6 > DPx6005. The activity toward tret-butyl hydroperoxide decreased in the following order: DPx2540 = DPx6005 > rat Prx6 > Xenopus Prx6 > human Prx6. The efficiency of plasmid DNA protection from oxidative damage mediated by the Fenton reaction decreased in the order of DPx2540 > DPx6005 = rat Prx6 = human Prx6 > Xenopus Prx6. The optimal temperature for activity of all enzymes was 37°C. Peroxiredoxins from rat, Xenopus, and Drosophila (DPx6005) retained no less than 50% of their activity in a wider temperature range (10–50°C) as compared with the human and Drosophila (DPx2540) enzymes (25–45°C). The thermostability of the enzymes decreased in the following order: DPx6005 = rat > human > Xenopus > DPx2540. The results confirmed a negative correlation between the activity and stability of peroxiredoxin 6, especially in the case of the Xenopus and Drosophila enzymes.  相似文献   

5.
6.
Zygote arrest 1 (Zar1) is an oocyte-specific maternal-effect gene. Previous studies indicate that Zar1 plays important role in early embryo development, but little is known about its function in rabbit. The objectives of this study were to clone the New Zealand white rabbit Zar1 gene and to investigate its expression in various organs in groups of animals with different reproductive traits. We obtained a 709-bp Zar1 cDNA fragment consisting of an 8-bp exon 1, 161-bp exon 2, 75-bp exon 3, 271-bp exon 4 and 194-bp 3 ' sequences. The rabbit Zar1 nucleotide sequence showed per cent identities of 91, 88, 88, 87, 86, 87, 76 and 82% with Zar1 orthologues in human, cattle, sheep, pig, mouse, rat, zebrafish and Xenopus laevis, respectively, indicating a high homology with other species and evolutionary conservation. Quantitative real-time polymerase chain reaction analyses revealed nonoocyte-specific Zar1 expression, with expression in spleen, lung, ovary, uterus, heart, liver and kidney. The expression level was highest in the lung. This study may lay the theoretical foundation for the study of ZAR1’s biological function.  相似文献   

7.
The cytochrome b 6 f complex of oxygenic photosynthesis produces substantial levels of reactive oxygen species (ROS). It has been observed that the ROS production rate by b 6 f is 10–20 fold higher than that observed for the analogous respiratory cytochrome bc1 complex. The types of ROS produced (O2??, 1O2, and, possibly, H2O2) and the site(s) of ROS production within the b 6 f complex have been the subject of some debate. Proposed sources of ROS have included the heme b p , PQ p ?? (possible sources for O2??), the Rieske iron–sulfur cluster (possible source of O2?? and/or 1O2), Chl a (possible source of 1O2), and heme c n (possible source of O2?? and/or H2O2). Our working hypothesis is that amino acid residues proximal to the ROS production sites will be more susceptible to oxidative modification than distant residues. In the current study, we have identified natively oxidized amino acid residues in the subunits of the spinach cytochrome b 6 f complex. The oxidized residues were identified by tandem mass spectrometry using the MassMatrix Program. Our results indicate that numerous residues, principally localized near p-side cofactors and Chl a, were oxidatively modified. We hypothesize that these sites are sources for ROS generation in the spinach cytochrome b 6 f complex.  相似文献   

8.
9.
This investigation demonstrates that programmed cell death (PCD) in a cyanobacterium, Microcystis aeruginosa, resulting from allelopathic stress induced by a submerged macrophyte, Myriophyllum spicatum, in a co-culture system. The hallmarks of PCD, caspase-3-like protease activity, DNA fragmentation, and destruction of cell ultrastructure, as well as intracellular PCD signaling radicals, reactive oxygen species (ROS), and nitric oxide (NO), were measured in M. aeruginosa cells co-cultured with M. spicatum for 7 days. The results showed a dose–response relationship between M. spicatum biomass and M. aeruginosa mortality. A caspase-3-like protease was activated and elevated from day 3. Thylakoid disintegration, cytoplasmic vacuolation, and fuzzy nuclear zone were observed by transmission electron microscopy, and distinct DNA fragmentation was detected in M. aeruginosa cells at a M. spicatum biomass of 6.0 g fresh weight (FW) L?1 during the 7 days. Allelochemicals of total phenolic compounds (TPCs) were determined in co-culture water, and the concentration increased with increasing of M. spicatum biomass and co-culture time. Compared with the level of ROS production in the control group, a significant overproduction of ROS was detected in M. aeruginosa cells in the treatment group, and this was positively correlated with TPC concentration. Furthermore, the level of intracellular NO increased with the percent mortality of M. aeruginosa. The results indicated that a PCD pathway was induced in the cyanobacterium M. aeruginosa when co-cultured with the submerged macrophyte M. spicatum.  相似文献   

10.
The sorbitol-6-phosphate dehydrogenase gene (S6PDH) sequences of eight tribe Pyreae species (Rosaceae) are studied for the first time. The exon–intron structure and polymorphism of the nucleotide and amino acid sequences of this gene are characterized. The interspecific polymorphism of the S6PDH coding sequences in the studied Pyreae species is 8.36%. Sorbitol-6-phosphate dehydrogenase gene expression in S. aucuparia, A. melanocarpa, and M. domestica (cv. Skala) leaves is studied. The highest level of S6PDH expression is detected in mature leaves.  相似文献   

11.
Glutathione reductase (EC 1.6.4.2) is one of the main antioxidant enzymes of the plant cell. In Arabidopsis thaliana, glutathione reductase is encoded by two genes: the gr1 gene encodes the cytosolic-peroxisomal form, and the gr2 gene encodes the chloroplast-mitochondrial form. Little is known about the regulation of expression of plant glutathione reductase genes. In the present work, we have demonstrated that gr2 (but not gr1) gene expression in Arabidopsis leaves changes depending on changes in redox state of the photosynthetic electron transport chain. Expression of both the gr1 and gr2 genes was induced by reactive oxygen species. In heterotrophic suspension cell culture of Arabidopsis, expression of both studied genes did not depend on H2O2 level or on changes in the redox state of the mitochondrial electron transport chain. Our data indicate that chloroplasts are involved in the regulation of the glutathione reductase gene expression in Arabidopsis.  相似文献   

12.
13.
14.
Reactive oxygen species (ROS) produced by NADPH oxidases can serve as signaling molecules to regulate a variety of physiological processes in multi-cellular organisms. In the nematophagous fungus Arthrobotrys oligospora, we found that ROS were produced during conidial germination, hyphal extension, and trap formation in the presence of nematodes. Generation of an AoNoxA knockout strain demonstrated the crucial role of NADPH oxidase in the production of ROS in A. oligospora, with trap formation impaired in the AoNoxA mutant, even in the presence of the nematode host. In addition, the expression of virulence factor serine protease P186 was up-regulated in the wild-type strain, but not in the mutant strain, in the presence of Caenorhabditis elegans. These results indicate that ROS derived from AoNoxA are essential for full virulence of A. oligospora in nematodes.  相似文献   

15.
The bacterial species of the genus Xenorhabdus in the family Enterobacteriaceae have a mutualistic association with steinernematid entomopathogenic nematodes (EPNs), which have been used as biological control agents against soil insect pests. In this study we present the genetic and phenotypic characterizations of the Xenorhabdus species isolated from steinernematid nematodes in Japan. The 18 Japanese Xenorhabdus isolates were classified into five bacterial species based on 16S ribosomal RNA (16S rRNA) gene sequences: Xenorhabdus bovienii, Xenorhabdus hominickii, Xenorhabdus indica, Xenorhabdus ishibashii, and Xenorhabdus japonica. There was no genetic variation between the 16S RNA sequences among the three X. ishibashii isolates, 0–0.1% variation among the five X. hominickii isolates, and 0–0.5% among the eight X. bovienii isolates. Phenotypic characterization demonstrated that representative isolates of the five bacterial species shared common characteristics of the genus Xenorhabdus, and only X. hominickii isolates produced indole. Symbiotic association and co-speciation of Xenorhabdus bacteria with Steinernema nematodes from Japan are discussed.  相似文献   

16.
17.
The effect of supplementation of reduced glutathione (GSH) to cryoprotectant solution on the generation of reactive oxygen species (ROS) (e.g., H2O2, OH·, and O 2 ·? ) and antioxidants (e.g., SOD, POD, CAT, AsA, and GSH), as well as membrane lipid peroxidation (i.e., MDA content) mitigation in cryopreserving of embryogenic calli (EC) of Agapanthus praecox subsp. orientalis was investigated. The vitrification-based cryopreservation method was used in this study. The addition of GSH at a final concentration of 0.08 mM to the cryoprotectant solution has significantly improved cryotolerance of A. praecox EC. The EC post-thaw survival rate increased by 68.34 % using the cryoprotectant solution containing 0.08 mM GSH as compared to the control (GSH-free). EC treated with GSH displayed the reduction in  OH· generation activity and the contents of H2O2 and MDA, as well as enhancement in the inhibition of O 2 ·? generation and the antioxidant activity. Treatment with exogenous GSH also increased endogenous AsA and GSH contents after dehydration step. Expression of stress-responsive genes, e.g., peroxidase (POD), peroxiredoxin, ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), and glutathione peroxidase (GPX), was also increased during cryopreservation processes. The expression of DAD1 (Defender against apoptotic cell death) was elevated, while cell death-related protease SBT was suppressed. These results demonstrated that the addition of GSH to cryoprotectant solution affects the ROS level and could effectively improve survival of A. praecox EC through enhancing antioxidant enzyme activities and decreasing cell death.  相似文献   

18.
The sequences of the PsSst1 and PsIgn1 genes of pea (Pisum sativum L.) homologous to the symbiotic LjSST1 and LjIGN1 genes of Lotus japonicus (Regel.) K. Larsen are determined. The expression level of PsSst1 and PsIgn1 genes is determined by real-time PCR in nodules of several symbiotic mutants and original lines of pea. Lines with increased (Sprint-2Fix (Pssym31)) and decreased (P61 (Pssym25)) expression level of both genes are revealed along with the lines characterized by changes in the expression level of only one of these genes. The revealed features of the PsSst1 and PsIgn1 expression allow us to expand the phenotypic characterization of pea symbiotic mutants. In addition, PsSst1 and PsIgn1 cDNA is sequenced in selected mutant lines, characterized by a decreased expression level of these genes in nodules, but no mutations are found.  相似文献   

19.
Brassinosteroids (BRs) are steroidal hormones that play crucial roles in various processes of plant growth and development. DWF1 encodes a delta(24)-sterol reductase that participates in one of the early stage in the brassinosteroids’ biosynthetic pathway: the conversion of 24-methylenecholesterol to campesterol. Here we report the isolation and expression of one DWF1 homologous gene, PeDWF1, in moso bamboo (Phyllostachys edulis (Carrière) J. Houz.). Sequence analysis revealed that the open reading frame of PeDWF1 was 1686-bp encoding a protein composed of 561 amino acid residues with a calculated molecular weight of 65.1 kD and a theoretic isoelectric point of 8.32. Phylogenetic analysis indicated that PeDWF1 was very close to the cell elongation protein Dwarf1 in rice (Oryza sativa). Furthermore, transient expression of a PeDWF1::GFP fusion protein showed that PeDWF1 was an integral membrane protein most probably associated with the endoplasmic reticulum similar to Dwarf1. Tissue specific expression analysis showed that PeDWF1 was constitutively expressed in moso bamboo with the highest level in shoots and the lowest level in mature leaves. In the early growing stage of shoots, the expression level of PeDWF1 had a rising trend with the increasing height of shoots. These results indicated that PeDWF1 might be involved in the regulation of shoot development by participating in BRs biosynthesis. Moreover, PeDWF1 was heterologously expressed in Escherichia coli and the recombinant protein was about 65 kD, which facilitated further study on the gene function of PeDWF1 in bamboo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号