首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interactions between κ-carrageenan and chitosan, two oppositely charged polysaccharides, have been investigated through microcalorimetric and quartz crystal microbalance measurements. Microcalorimetric measurements show that κ-carrageenan/chitosan interaction is an exothermic process and that the alternate deposition of κ-carrageenan and chitosan results in the formation of a nanolayered coating mainly due to the electrostatic interactions existing between the two polyelectrolytes (though other types of interactions may also be involved). Quartz crystal microbalance measurements confirmed that the alternating deposition of κ-carrageenan and chitosan resulted in the formation of a stable multilayer structure. The κ-carrageenan/chitosan nanolayered coating, assembled on a polyethylene terephthalate (PET) support, was characterized in terms of its surface (contact angle measurements) and gas barrier properties (water vapor and O2 permeabilities) and analyzed by scanning electron microscopy (SEM). The water vapor permeability (WVP) and the oxygen permeability (O2P) of the κ-carrageenan/chitosan nanolayers were found to be 0.020 ± 0.002 × 10−11 and 0.043 ± 0.027 × 10−14 g m−1 s−1 Pa−1, respectively. These results contribute to a better understanding of the type of interactions that play role during the construction of this type of nanostructures. This knowledge can be used in the establishment of an approach to produce edible, biodegradable multilayered nanostructures with improved mechanical and barrier properties for application in, e.g. food and biomedical industries.  相似文献   

2.
The optimum relationships of κ-carrageenan and carob bean gum were investigated in order to obtain an immobilization system with better compression resistance, trapping capacity, and storage stability, and less syneresis phenomenon, when compared to κ-carrageenan itself. With that objective, different concentrations of polyols (glycerol and propylene glycol) were added, because of their water-retention characterization in the containing system. In this way, an improved system with good compression resistance was obtained: 15 × 10−4 N/m2 in modified κ-carrageenan gel without E. coli cells and 11 × 10−4 N/m2 with Escherichia coli cells. In the modified κ-carrageenan gel, the syneresis phenomenon decreased. The enzymatic activity in the system was 18 U/g, which did not present a change over a storage period of six months.  相似文献   

3.
Carrageenans are sulfated polysaccharides that are found in the cell walls of red algae. These polysaccharides have gelling and texturizing properties that are widely appreciated in industrial applications. However, these functional properties depend strongly on the sulfation of the moieties of the carrabiose repetition unit. Here we aimed to monitor the sulfate composition of gelling carrageenan. To do so, we screened and purified from Pseudoalteromonas atlantica a 4S-iota carrageenan sulfatase that converts ι-carrabiose into α-carrabiose units. The sequence of this protein matched the annotated Q15XH3 (Uniprot databank) formylglycine-dependent sulfatase found in the P. atlantica genome. With pure enzyme, ι-carrageenan could be transformed into a hybrid ι-/α-carrageenan or pure α-carrageenan. Analysis of the distribution of the carrabiose moieties in hybrid carrageenan chain using enzymatic degradation with Alteromonas fortis ι-carrageenase, coupled with chromatography and NMR spectroscopy experiments, showed that the sulfatase has an endo mode of action. The endo-character and the specificity of the sulfatase made it possible to prepare hybrid κ-/ι-/α-carrageenan and κ-/α-carrageenan starting from κ-/ι-carrageenan.  相似文献   

4.
New fluorescent polymeric materials were synthesized by grafting the nucleobase cytosine on to the backbone of agarose and κ-carrageenan, employing a rapid water based method under microwave irradiation using potassium persulphate (KPS) as an initiator. The emission spectrum of the modified agarose and κ-carrageenan recorded in aqueous solution (5 × 10−5 M) exhibited emission maxima (λem,max) at 348 nm by excitation at 266 nm. The emission intensity was enhanced by ca. 104% and 60% compared to that of pure cytosine solution of the same concentration. When the concentration of the pure cytosine solution is made equivalent to the concentration of the cytosine molar component (3.09 × 10−5) and (3.5 × 10−5) present in 5 × 10−5 M solution of modified agarose and κ-carrageenan, respectively, then ca. 143% and 81% enhancement in emission intensity was observed. The remarkable fluorescent activity of the agarose-cytosine derivative may have potential uses as sensor in various applications.  相似文献   

5.
Protoplastization of Brevibacterium flavum cultured in a medium containing 50 μg l−1 and 5 units penicillin per ml was performed by lysozyme treatment. The protoplasts were immobilized in various polymer matrices, such as agar, polyacrylamide, calcium alginate, and κ-carrageenan and then used for l-glutamate production from glucose and urea in a batch system. The protoplasts immobilized in κ-carrageenan gels showed the highest productivity of l-glutamate being twice that of immobilized whole cells under optimum conditions. The maximum productivity reached 2.3 mg ml−1 initially. The immobilized B. flavum protoplasts could be used 8 times (192 h) for l-glutamate production retaining about 22% of the initial productivity during the last reaction.  相似文献   

6.
This study describes acid-catalyzed production of 3,6-anhydro-D-galactose (D-AnG) from κ-carrageenan, a sulfated polysaccharide with an alternating backbone consisting of D-AnG and D-galactose (D-Gal). We analyzed four hydrolysis products (D-AnG, 5-hydroxymethylfurfural (HMF), levulinic acid (LA), and D-Gal) and reducing sugar contents during acid hydrolysis. Acid screening was carried out using seven acid catalysts which have different acidity. The catalysts showing high D-AnG production and high selectivity were chosen for subsequent experiments. We selected four acid catalysts (HCOOH, CH3COOH, HNO3, and HCl), and studied the effects of catalyst acidity, hydrolysis temperature T, and reaction time t on the production of D-AnG and other hydrolysis products. The optimal condition for maximum production of D-AnG by κ-carrageenan hydrolysis was T = 100°C and t = 30 min using 0.2 M HCl. Under this condition, 2.81 g/L D-AnG (33.5% of theoretical maximum) could be obtained from 2% (w/v) κ-carrageenan. In general, the maximum values of D-AnG, D-Gal, and the sum of two by-products (HMF and LA) increased with the acidity of catalysts. However, HNO3 was an exception in that the maximum production levels of HMF and LA were unusually low compared with other acid catalysts. D-AnG was successfully purified from acid hydrolysates using silica gel chromatography and the product was nearly 100% pure. This effective D-AnG production could facilitate future studies on the conversion of D-AnG to biofuels and biochemicals.  相似文献   

7.
A mixed-gel of κ-carrageenan and gelatin was used in l-phenylalanine production. The mixed-gel, containing 87.5% κ-carrageenan and 12.5% gelatin [the total gel concentration was 4 wt%], showed the best performance and was selected for further study with Escherichia coli EP8-10. The optimum pH and temperature were 8.5 and 37 °C, respectively. The effects of trehalose and Mg2+ were studied in the mixed-gel immobilization. Their optimum concentrations were 5 × 10?2 and 2 × 10?3 mol/L, respectively. Under the optimal conditions, 98.3% of the phenylpyruvic acid (PPA) was converted to l-phenylalanine. The activity recovery of the transaminase enzyme in the mixed-gel immobilization was higher than that in single κ-carrageenan immobilization, which was 93.6%. The total PPA conversion rate was over 80% in all 15 batches, suggesting great sustainability in the mixed-gel immobilization. The maximum reaction rate (rmax) was calculated to be 4.75 × 10?2 mol/(L g h).  相似文献   

8.
The effects of caseins on the rheological properties of κ-carrageenan-calcium gel was investigated by measuring the gel breaking strength. The existence of β-casein in the system promoted the gelation of κ-carrageenan in the presence of calcium ion. Beta-casein increased the strength of calcium gels of κ-carrageenan with increasing NaCl concentration up to 80 mM and strengthened the κ-carrageenan-calcium gel at neutral pH. The values obtained from the slopes of the logarithmic plots of the gel strength versus concentration were 2.15 for κ-carrageenan gel and 2.27 for a β-casein-κcarrageenan mixture gel, suggesting that β-casein may participate in the gelation of κ-carrageenan through the mediation of calcium ions.  相似文献   

9.
Qualitative and quantitative differences in carrageenan composition of gametophytes and tetrasporophytes of Chondrus crispus were observed in this study. Carrageenans in gametophytes belong to the kappa family (κ-, ι-, ν- and μ-carrageenan). The dominant fractions were κ- and ι-carrageenan (more than 50% of the total carrageenans). In tetrasporophytes, the presence of λ-carrageenan was confirmed. Carrageenan content in gametophytes (37.4?±?1.68% DW) was higher than in tetrasporophytes (29.13?±?0.76% DW). Spatial and temporal variation in carrageenan content in both life cycle phases appears to be related mainly to seawater and air temperatures, insolation, water movement and desiccation. The highest values of carrageenan content were recorded in those localities where higher values of precipitation, wind speed or water movement occurred. A bimodal temporal pattern on carrageenan content was observed. Fronds showed a high carrageenan content in spring and autumn. During these seasons, the content was over 40% in gametophytes and 30% in the tetrasporophytes. In summer and winter, these values down in both life cycle phases below 30%. In general the highest carrageenan contents were related to highest seawater temperatures. On the contrary, high air temperature and high insolation appeared to be unfavourable for carrageenan production. GLM models were obtained to predict carrageenan production from natural C. crispus populations, along Galician coast.  相似文献   

10.
The solution properties of κ-carrageenan and κ-carrageenan/locust bean gum mixtures have been studied by small deformation oscillation measurements and differential scanning calorimetry (DSC) in the presence of sodium chloride and sodium iodide. Both salts induced the κ-carrageenan to undergo a coil-helix conformational change as noted by an increase in the storage and loss moduli (G′, G′) and by an exothermic peak in the DSC cooling curves. The enthalpy ΔHc-h and temperature of the conformational transition Tc-h were higher in Nal compared to NaCl and Tc-h increased with increasing the concentration of both electrolytes. Gelation was not observed for carrageenan or carrageenan/locust bean gum mixtures in the presence of up to 200 mM Nal. Although carrageenan alone did not gel in the presence of 100 mM NaCl, a weak gel was obtained for a mixture containing 0.9%/0.1% carrageenan/locust bean gum. Furthermore, the mixture showed hysteresis in both the rheological and DSC cooling and heating curves. A strong gel was produced for carrageenan alone in the presence of 200 mM NaCl and the gel strength increased on adding a small proportion of locust bean gum (0.9%/0.1%). © 1997 John Wiley & Sons, Inc. Biopoly 41: 657–671, 1997  相似文献   

11.
Co-enzyme Q10 (CoQ10), a lipophilic compound that widely used in the food and pharmaceutical products was formulated in a κ-carrageenan coated oil-in-water (O/W) emulsion. In this work, we examined the solubility of CoQ10 in different carrier oils and effects of emulsifier type on the formation and stability of CoQ10-loaded O/W emulsion. Nine vegetable oils and four types of emulsifiers were used. CoQ10 was found significantly (p?<?0.05) more soluble in medium chain oils (coconut oil and palm kernel oil) as compared to other vegetable oils. The O/W emulsions were then prepared with 10 % (w/w) coconut oil and palm kernel oil containing 200 g CoQ10/L oil stabilized by 1 % (w/v) emulsifiers (sucrose laurate (SEL), sodium stearoyl lactate (SSL), polyglycerol ester (PE), or Tween 80 (Tw 80)) in 1 % (w/v) κ-carrageenan aqueous solution. Particle size distribution and physical stability of the emulsions were monitored. The droplet sizes (surface weighted mean diameter, D[3,2]) of fresh O/W emulsion in the range of 2.79 to 5.83 μm were observed. Irrespective of the oil used, results indicated that complexes of SSL/κ-carrageenan provided the most stable CoQ10-loaded O/W emulsion with smaller and narrower particle size distribution. Both macroscopic and microscopic observations showed that O/W emulsion stabilized by SSL/κ-carrageenan is the only emulsion that exhibited no sign of coalescence, flocculation, and phase separation throughout the storage period observed.  相似文献   

12.
Gels of κ-carrageenan were prepared in H2O and D2O. Rheological measurements revealed that in heavy water the elastic modulus is substantially higher. From the rheological view point, this result indicates the formation of a higher number of physical-crosslinking points in the structure of the gel. These crosslinking points are mainly associated with the aggregation of the double-helix of the κ-carrageenan, which is enhanced in D2O. The thermal stability of the gels in both solvents (relative to the sol-gel transition) was also investigated by using polarimetric measurements (to measure the relative fraction of helix-coil) and micro-differential scanning calorimetry (micro-DSC). The results obtained using these techniques are very consistent and allow us to propose a model to explain the differences for the gels formed in light and heavy water based on the degree of double-helix aggregation.  相似文献   

13.
A 60 day feeding trial was conducted to study the effect of dietary l-tryptophan on thermal tolerance and oxygen consumption rate of freshwater fish, mrigala, Cirrhinus mrigala reared under ambient temperature at low and high stocking density. Four hundred eighty fingerlings were distributed into eight experimental groups. Four groups each of low density group (10 fishes/75 L water) and higher density group (30 fishes/75 L water) were fed a diet containing 0, 0.68, 1.36 or 2.72% l-tryptophan in the diet, thus forming eight experimental groups namely, Low density control (LC) (basal feed +0% l-tryptophan); LT1 (basal feed+0.68% l-tryptophan); LT2 (basal feed+1.36% l-tryptophan); LT3 (basal feed+2.72% l-tryptophan); high density control (HC) (basal feed+0% l-tryptophan); HT1 (basal feed+0.68% l-tryptophan); HT2 (basal feed+1.36% l-tryptophan); and HT3 (basal feed+2.72% l-tryptophan) were fed at 3% of the body weight. The test diets having crude protein 34.33±0.23 to 35.81±0.18% and lipid 423.49±1.76 to 425.85±0.31 K Cal/100 g were prepared using purified ingredients. The possible role of dietary l-tryptophan on thermal tolerance and oxygen consumption rate was assessed in terms of critical thermal maxima (CTMax), critical thermal minima (CTMin), lethal thermal maxima (LTMax) and lethal thermal minima (LTMin). The CTMax, CTMin, LTMax and LTMin values were found to be significantly higher (p<0.05) in the treatment groups with CTMax 42.94±0.037 (LT2); LT Max 43.18±0.070 (LT2); CTMin 10.47±0.088 (LT2) and LTMin 9.42±0.062 (LT3), whereas the control group showed a lower tolerance level. The same trend was observed in the high density group (CTMax 42.09±0.066 (LT3); LTMax 43 23±0.067 (HT3); CTMin 10.98±0.040 (HT3) and LTMin 9.74±0.037 (HT3). However, gradual supplementation of dietary l-tryptophan in the diet significantly reduced the oxygen consumption rate in both the low density group (Y=−26.74x+222.4, r²=0.915) and the high density group (Y=−32.96x+296.5, r²=0.8923). Dietary supplementation of l-tryptophan at a level of 1.36% improved the thermal tolerance level and reduced the oxygen consumption rate in C. mrigala fingerlings.  相似文献   

14.
Uptake of l-tryptophan in Escherichia coli was carried out by three distinct permeases, Mtr, TnaB, and AroP, respectively. In the present study, the three genes of l-tryptophan uptake system were knocked out from an l-tryptophan-producing strain of E. coli, respectively. The knockout mutants all showed lower l-tryptophan uptake activities and higher l-tryptophan production than their parent. Among the three genes, the knockout of mtr was most critical for both l-tryptophan uptake and l-tryptophan production. The uptake activity of l-tryptophan of the mtr mutant was 1.5 nmol min?1 (mg dry weight)?1, which was decreased by 48% when compared to that of the parent; the production of l-tryptophan of the mtr mutant was 14.7 g/l, which was increased by 34% when compared to that of the parent. Furthermore, the physiological and fermentation characteristics caused by gene knockouts were also analyzed.  相似文献   

15.
Natural gelling agents such as gelatin, agar and κ-carrageenan have been tested for the formation of lecithin microemulsion-based gels as well as hydrogels (without surfactant and oil). The results presented in this work provide information concerning the utility of these solid gels as lipase immobilization matrices. It was found that lipase from Pseudomonas cepacia keeps its catalytic function after entrapment in the gels, catalyzing the esterification reaction of propanol with lauric acid in various hydrocarbons at room temperature. Various parameters which affect the lipase catalytic behavior such as the nature and the concentration of the gelling agent, as well as the concentration of the biocatalyst and the mole ratio of the substrates have been examined. High yields (80%) were obtained with agar and κ-carrageenan organogels in isooctane. The remaining lipase activity, in repeated syntheses was found to depend on the nature of the biopolymer used for the formation of the organogels. Gelatin and agar microemulsion-based gels showed the highest operational stability.  相似文献   

16.
Cyrille Rochas  Jean Mazet 《Biopolymers》1984,23(12):2825-2833
The interactions between inorganic cations and κ-carrageenan in aqueous solutions have been studied using microcalorimetry. The enthalpy of dilution and the enthalpy of mixing of κ-carrageenan in the coil conformation with an alkaline metal chloride have been investigated and are in agreement with theoretical predictions. The formation of helical dimer in a K+ salt form in the absence of a gel formation is confirmed.  相似文献   

17.
Effective diffusion coefficients (Dag) of carbohydrates in modified κ-carrageenan gels, with and without Escherichia coli immobilized cells were determined. A diffusion cell based on the phenomena of sorption from a “well-stirred fluid” was used. Dag values were smaller in the gel with cells than without them. The effect of temperature on Dag was also studied.  相似文献   

18.
Natural polysaccharides such as κ-carrageenan are an important class of biomaterials for drug delivery. The incorporation of magnetic nanoparticles in polysaccharide hydrogels is currently being explored as a strategy to confer to the hydrogels novel functionalities valuable for specific bio-applications. Within this context, κ-carrageenan magnetic hydrogel nanocomposites have been prepared and the effect of magnetic (Fe3O4) nanofillers in the swelling of the hydrogels and in the release kinetics and mechanism of a model drug (methylene blue) has been investigated. In vitro release studies demonstrated the applicability of the composites in sustained drug release. The mechanism controlling the release seems to be determined by the strength of the gel network and the extent of gel swelling, both being affected by the incorporation of nanofillers. Furthermore, it was demonstrated that the release rate and profile could be tailored using variable Fe3O4 nanoparticles load. Thus, this seems to be a promising strategy for the development of drug delivery systems with tailored released behavior.  相似文献   

19.
In order to produce l-phenylalanine efficiently from acetamidocinnamic acid with immobilized microbial cells, a two-step enzyme reaction using the acetamidocinnamate amidohydrolase activity of Corynebacterium sp. C-23 cells and the aminotransferase activity of Paracoccus denitrificans pFPr-1 cells was investigated. It was found that the useage of co-immobilized Corynebacterium sp. and P. denitrificans cells with κ-carrageenan was superior to that of the mixture of immobilized Corynebacterium sp. cells and immobilized P. denitrificans cells. When the space velocity was 0.06 h−1 at 30°C, 147 mml-phenylalanine were produced with a 98% conversion ratio from acetamidocinnamic acid. The half-life of the l-phenylalanine-forming activity of the column was calculated to be ≈ 14 days at 30°C.  相似文献   

20.
Micron size κ-carrageenan hydrogel particles, p(CRN) from linear κ-carrageenan, were prepared via microemulsion polymerization using divinyl sulfone (DVS) as chemical crosslinker in a sodium bis(2-ethylhexyl) sulfosuccinate (AOT) reverse miceller system. Magnetic field responsive (m-p(CRN)) composite particles were also synthesized by encapsulating magnetic ferrite (Fe3O4) nanoparticles together with linear κ-carrageenan within the AOT reverse micelle before the crosslinking reaction. The synthesized bare p(CRN) particles were further modified to produce positive charges on the particles (q-p(CRN)) by a quaternization reaction with an 3-chloro-2-hydroxypropyl trimethyl ammonium chloride aqueous solution. Scanning electron microscopy (SEM), dynamic light scattering (DLS), zeta potential measurements and FT-IR analysis confirmed that particle sizes and charges were altered by chemical modification. Furthermore, a model drug, phenylephrine HCl was used for in vitro drug delivery studies to compare the effectiveness of modification of p(CRN) microgels by comparing bare p(CRN), m-p(CRN) and q-p(CRN) particles drug release capabilities in phosphate buffer solution (PBS) at pH 7.4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号