首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
In vitro evolution of the polyhydroxyalkanoate (PHA) synthase gene from Pseudomonas sp. 61-3 (phaC1(Ps)) has been performed to generate highly active enzymes. In this study, a positive mutant of PHA synthase, Glu130Asp (E130D), was characterized in detail in vivo and in vitro. Recombinant Escherichia coli strain JM109 harboring the E130D mutant gene accumulated 10-fold higher (1.0 wt %) poly(3-hydroxybutyrate) [P(3HB)] from glucose, compared to recombinant E. coli harboring the wild-type PHA synthase gene (0.1 wt %). Recombinant E. coli strain LS5218 harboring the E130D PHA synthase gene grown on dodecanoate produced more poly(3HB-co-3-hydroxyalkanoate) [P(3HB-co-3HA)] (20 wt %) copolymer than an LS5218 strain harboring the wild-type PHA synthase gene (13 wt %). The E130D mutation also resulted in the production of copolymer with a slight increase in 3HB composition, compared to copolymer produced by the wild-type PHA synthase. In vitro enzyme activities of the E130D PHA synthase toward various 3-hydroxyacyl-CoAs (4-10 carbons in length) were all higher than those of the wild-type enzyme. The combination of the E130D mutation with other beneficial mutations, such as Ser325Thr and Gln481Lys, exhibited a synergistic effect on in vivo PHA production and in vitro enzyme activity. Interestingly, gel-permeation chromatography analysis revealed that the E130D mutation also had a synergistic effect on the molecular weight of polymers produced in vivo.  相似文献   

2.
By in vitro evolution experiment, we have first succeeded in acquiring higher active mutants of a synthase that is a key enzyme essential for bacterial synthesis of biodegradable polyester, polyhydroxyalkanoate (PHA). Aeromonas caviae FA440 synthase, termed PhaC(Ac), was chosen as a good target for evolution, since it can synthesize a PHA random copolyester of 3-hydroxybutyrate and 3-hydroxyhexanoate [P(3HB-co-3HHx)] that is a tough and flexible material compared to polyhydroxybutyrate (PHB) homopolyester. The in vitro enzyme evolution system consists of PCR-mediated random mutagenesis targeted to a limited region of the phaC(Ac) gene and screening mutant enzymes with higher activities based on two types of polyester accumulation system by using Escherichia coli for the synthesis of PHB (by JM109 strain) (S. Taguchi, A. Maehara, K. Takase, M. Nakahara, H. Nakamura, and Y. Doi, FEMS Microbiol. Lett. 198:65-71, 2001) and of P(3HB-co-3HHx) [by LS5218 [fadR601 atoC(Con)] strain]. The expression vector for the phaC(Ac) gene, together with monomer-supplying enzyme genes, was designed to synthesize PHB homopolyester from glucose and P(3HB-co-3HHx) copolyester from dodecanoate. Two evolved mutant enzymes, termed E2-50 and T3-11, screened through the evolution system exhibited 56 and 21% increases in activity toward 3HB-coenzyme A, respectively, and consequently led to enhanced accumulation (up to 6.5-fold content) of P(3HB-co-3HHx) in the recombinant LS5218 strains. Two single mutations in the mutants, N149S for E2-50 and D171G for T3-11, occurred at positions that are not highly conserved among the PHA synthase family. It should be noted that increases in the 3HHx fraction (up to 16 to 18 mol%) were observed for both mutants compared to the wild type (10 mol%).  相似文献   

3.
By in vitro evolution experiment, we have first succeeded in acquiring higher active mutants of a synthase that is a key enzyme essential for bacterial synthesis of biodegradable polyester, polyhydroxyalkanoate (PHA). Aeromonas caviae FA440 synthase, termed PhaCAc, was chosen as a good target for evolution, since it can synthesize a PHA random copolyester of 3-hydroxybutyrate and 3-hydroxyhexanoate [P(3HB-co-3HHx)] that is a tough and flexible material compared to polyhydroxybutyrate (PHB) homopolyester. The in vitro enzyme evolution system consists of PCR-mediated random mutagenesis targeted to a limited region of the phaCAc gene and screening mutant enzymes with higher activities based on two types of polyester accumulation system by using Escherichia coli for the synthesis of PHB (by JM109 strain) (S. Taguchi, A. Maehara, K. Takase, M. Nakahara, H. Nakamura, and Y. Doi, FEMS Microbiol. Lett. 198:65-71, 2001) and of P(3HB-co-3HHx) {by LS5218 [fadR601 atoC(Con)] strain}. The expression vector for the phaCAc gene, together with monomer-supplying enzyme genes, was designed to synthesize PHB homopolyester from glucose and P(3HB-co-3HHx) copolyester from dodecanoate. Two evolved mutant enzymes, termed E2-50 and T3-11, screened through the evolution system exhibited 56 and 21% increases in activity toward 3HB-coenzyme A, respectively, and consequently led to enhanced accumulation (up to 6.5-fold content) of P(3HB-co-3HHx) in the recombinant LS5218 strains. Two single mutations in the mutants, N149S for E2-50 and D171G for T3-11, occurred at positions that are not highly conserved among the PHA synthase family. It should be noted that increases in the 3HHx fraction (up to 16 to 18 mol%) were observed for both mutants compared to the wild type (10 mol%).  相似文献   

4.
Polyhydroxyalkanoate (PHA) synthase activity in Synechocystis sp. PCC6803 was increased two-fold by introducing the PHA biosynthetic genes of Ralstonia eutropha. The resulting recombinant Synechocystis sp. PCC6803 strain was subjected to conditions that favor PHA accumulation and the effects of various carbon sources were studied. In addition, the fine structure of both wild-type and recombinant Synechocystis sp. PCC6803 was examined using freeze-fracture electron microscopy technique. The PHA granules in the recombinant Synechocystis sp. PCC6803 were localised near the thylakoid membranes. Maximum amount of PHA accumulation was obtained in the presence of acetate, where the number of granules in the recombinant cells ranged from 4 to 6 and their sizes were in the range of 70-240 nm. In comparison to wild-type Synechocystis sp. PCC6803, recombinant cells with increased PHA synthase activity showed only a marginal increase in PHA content suggesting that PHA synthase is not the rate limiting enzyme of PHA biosynthesis in Synechocystis sp. PCC6803.  相似文献   

5.
In order to investigate the in vivo substrate specificity of the type I polyhydroxyalkanoate (PHA) synthase from Ralstonia eutropha, we functionally expressed the PHA synthase gene in various Escherichia coli mutants affected in fatty acid beta-oxidation and the wild-type. The PHA synthase gene was expressed either solely (pBHR70) or in addition to the R. eutropha genes encoding beta-ketothiolase and acetoacetyl-coenzyme A (CoA) reductase comprising the entire PHB operon (pBHR68) as well as in combination with the phaC1 gene (pBHR77) from Pseudomonas aeruginosa encoding type II PHA synthase. The fatty acid beta-oxidation route was employed to provide various 3-hydroxyacyl-CoA thioesters, depending on the carbon source, as in vivo substrate for the PHA synthase. In vivo PHA synthase activity was indicated by PHA accumulation and substrate specificity was revealed by analysis of the comonomer composition of the respective polyester. Only in recombinant E. coli fad mutants harboring plasmid pBHR68, the R. eutropha PHA synthase led to accumulation of poly(3-hydroxybutyrate-co-3-hydroxyoctanoate) (poly(3HB-co-3HO)) and poly(3HB-co-3HO-co-3-hydroxydodecanoate (3HDD)), when octanoate and decanoate or dodecanoate were provided as carbon source, respectively. Coexpression of phaC1 from P. aeruginosa indicated and confirmed the provision of PHA precursor via the beta-oxidation pathway and led to the accumulation of a blend of two different PHAs in the respective E. coli strain. These data strongly suggested that R. eutropha PHA synthase accepts, besides the main substrate 3-hydroxybutyryl-CoA, also the CoA thioesters of 3HO and 3HDD.  相似文献   

6.
Evolutionary engineered polyhydroxyalkanoate (PHA) synthases from Pseudomonas sp. 61-3 enhance PHA accumulation and enable the monomer composition of PHAs to be regulated. We characterized a newly screened Ser477Arg (S477R) mutant of PHA synthase by in vivo analyses of P(3-hydroxybutyrate) [P(3HB)] homopolymer and P(3HB-co-3-hydroxyalkanoate) [P(3HB-co-3HA)] copolymer productions in the recombinants of Escherichia coli. The results indicated that the S477R mutation contributed to a shift in substrate specificity to smaller monomers containing a 3HB unit rather than to an enhancement in catalytic activity. Multiple mutations of S477R with other beneficial mutations, for example, Ser325Cys, exhibited synergistic effects on both an increase in PHA production (from 9 wt % to 21 wt %) and an alteration of substrate specificity. Furthermore, the effects of complete amino acid substitutions at position 477 were characterized in terms of in vivo PHA production and in vitro enzymatic activity. The five mutations, S477Ala(A)/Phe(F)/His(H)/Arg(R)/Tyr(Y), resulted in a shift in substrate specificity to smaller monomer units. The S477Gly(G) mutant greatly enhanced activity toward all different sizes of substrates with carbon numbers ranging from 4 to 12. These results indicated that the residue 477 contributes to both the catalytic activity and substrate specificity of PHA synthase. In recombinant E. coli, the S477A/F/G/H/R/Y mutations consistently led to increases (up to 6 times that of wild-type enzyme) in weight average molecular weights of P(3HB) homopolymers. On the basis of our studies, we created a structural feasibility accounting for the mutational effects on enzymatic activity and substrate specificity of PHA synthase.  相似文献   

7.
A library of 20 000 transposon (Tn5) mutants of the gram-negative bacterium Pseudomonas putida CA-3 was generated and screened for adverse affects in polyhydroxyalkanoates (PHA) accumulation. Two mutants of interest were characterized phenotypically. CA-3-126, a mutant disrupted in a stress-related protein Clp protease subunit ClpA, demonstrated greater decreases in PHA accumulation compared with the wild type at reduced and elevated temperatures under PHA-accumulating growth conditions. CA-3-M, which is affected in the aminotransferase class I enzyme, accumulated reduced levels of PHA relative to the wild type and had lower growth yields on all carbon sources tested. Mutant CA-3-M produced up to 10-fold higher levels of lipopolysaccharide relative to the wild type and exhibited 1.2-fold lower aminotransferase activity with phenylalanine as a substrate compared with the wild-type strain. The composition of the lipopolysaccharide produced by the mutant differed from that produced by the wild-type strain. Growth and PHA accumulation by CA-3-M was the same as the wild type when the nitrogen concentration in the medium was increased to 265 mg N L−1.  相似文献   

8.
In vitro evolution was applied to obtain highly active mutants of Ralstonia eutropha polyester synthase (PhbC(Re)), which is a key enzyme catalyzing the formation of polyhydroxybutyrate (PHB) from (R)-3-hydroxybutyryl-CoA (3HB-CoA). To search for beneficial mutations for activity improvement of this enzyme, we have conducted multi-step mutations, including activity loss and intragenic suppression-type activity reversion. Among 259 revertants, triple mutant E11S12 was obtained as the most active one via PCR-mediated secondary mutagenesis from mutant E11 with a single mutation (Ser to Pro at position 80), which exhibited reduced activity (as low as 27% of the wild-type level) but higher thermostability compared to the wild-type enzyme. Mutant E11S12 exhibited up to 79% of the wild-type enzyme activity. Mutation separation of E11S12 revealed that the replacement of Phe by Ser at position 420 (F420S), located in a highly conserved alpha/beta hydrolase fold region, of the E11S12 mutant contributes to the improvement of the enzyme activity. A purified sample of the genetically engineered mutant, termed E11S12-1, with the F420S mutation alone was found to exhibit a 2.4-fold increase in specific activity toward 3HB-CoA, compared to the wild-type.  相似文献   

9.
In this study, the enhancement of photosynthetic PHA production was achieved using the highly active mutants of PHA synthase created by the in vitro evolutionally techniques. The wild-type and mutated PHA synthase genes from Aeromonas caviae were introduced into Arabidopsis thaliana together with the NADPH-dependent acetoacetyl-CoA reductase gene from Ralstonia eutropha. Expression of the highly active mutated PHA synthase genes, N149S and D171G, led to an 8-10-fold increase in PHA content in the T1 transgenic Arabidopsis, compared to plants harboring the wild-type PHA synthase gene. In homozygous T2 progenies, PHA content was further increased up to 6.1 mg/g cell dry weight. GC/MS analysis of the purified PHA from the transformants revealed that these PHAs were poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] copolymers consisting of 0.2-0.8 mol % 3HV. The monomer composition of the P(3HB-co-3HV) copolymers synthesized by the wild-type and mutated PHA synthases reflected the substrate specificities observed in Escherichia coli. These results indicate that in vitro evolved PHA synthases can enhance the productivity of PHA and regulate the monomer composition in transgenic plants.  相似文献   

10.
The biosynthesis of polyhydroxyalkanoates (PHAs) was studied, for the first time, in the thermophilic bacterium Thermus thermophilus. Using sodium gluconate (1.5% w/v) or sodium octanoate (10 mM) as sole carbon sources, PHAs were accumulated to approximately 35 or 40% of the cellular dry weight, respectively. Gas chromatographic analysis of PHA isolated from gluconate-grown cells showed that the polyester (Mw: 480,000 g.mol–1) was mainly composed of 3-hydroxydecanoate (3HD) with a molar fraction of 64%. In addition, 3-hydroxyoctanoate (3HO), 3-hydroxyvalerate (3HV) and 3-hydroxybutyrate (3HB) occurred as constituents. In contrast, the polyester (Mw: 391,000 g mol–1) from octanoate-grown cells was composed of 24.5 mol% 3HB, 5.4 mol% 3HO, 12.3 mol% 3-hydroxynonanoate (3HN), 14.6 mol% 3HD, 35.4 mol% 3-hydroxyundecanoate (3HUD) and 7.8 mol% 3-hydroxydodecanoate (3HDD). Activities of PHA synthase, a -ketothiolase and an NADPH-dependent reductase were detected in the soluble cytosolic fraction obtained from gluconate-grown cells of T. thermophilus. The soluble PHA synthase was purified 4271-fold with 8.5% recovery from gluconate-grown cells, presenting a Km of 0.25 mM for 3HB-CoA. The optimal temperature of PHA synthase activity was about 70°C and acts optimally at pH near 7.3. PHA synthase activity was inhibited 50% with 25 M CoA and lost all of its activity when it was treated with alkaline phosphatase. PHA synthase, in contrary to other reported PHA synthases did not exhibit a lag phase on its kinetics, when low concentration of the enzyme was used. Incubation of PHA synthase with 1 mM N-ethyl-maleimide inhibits the enzyme 56%, indicating that cysteine might be involved in the catalytic site of the enzyme. Acetyl phosphate (10 mM) activated both the native and the dephosphorylated enzyme. A major protein (55 kDa) was detected by SDS-PAGE. When a partially purified preparation was analyzed on native PAGE the major band exhibiting PHA synthase activity was eluted from the gel and analyzed further on SDS-PAGE, presenting the first purification of a PHA synthase from a thermophilic microorganism.  相似文献   

11.
A threading model of the Ralstonia eutropha polyhydroxyalkanoate (PHA) synthase was developed based on the homology to the Burkholderia glumae lipase, whose structure has been resolved by X-ray analysis. The lid-like structure in the model was discussed. In this study, various R. eutropha PHA synthase mutants were generated employing random as well as site-specific mutagenesis. Four permissive mutants (double and triple mutations) were obtained from single gene shuffling, which showed reduced activity and whose mutation sites mapped at variable surface-exposed positions. Six site-specific mutations were generated in order to identify amino acid residues which might be involved in substrate specificity. Replacement of residues T323 (I/S) and C438 (G), respectively, which are located in the core structure of the PHA synthase model, abolished PHA synthase activity. Replacement of the two amino acid residues Y445 (F) and L446 (K), respectively, which are located at the surface of the protein model and adjacent to W425, resulted in reduced activity without changing substrate specificity and indicating a functional role of these residues. The E267K mutant exhibited only slightly reduced activity with a surface-exposed mutation site. Four site-specific deletions were generated to evaluate the role of the C-terminus and variant amino acid sequence regions, which link highly conserved regions. Deleted regions were D281-D290, A372-C382, E578-A589 and V585-A589 and the respective PHA synthases showed no detectable activity, indicating an essential role of the variable C-terminus and the linking regions between conserved blocks 2 and 3 as well as 3 and 4. Moreover, the N-terminal part of the class II PHA synthase (PhaC(Pa)) from Pseudomonas aeruginosa and the C-terminal part of the class I PHA synthase (PhaC(Re)) from R. eutropha were fused, respectively, resulting in three fusion proteins with no detectable in vivo activity. However, the fusion protein F1 (PhaC(Pa)-1-265-PhaC(Re)-289-589) showed 13% of wild type in vitro activity with the fusion point located at a surface-exposed loop region.  相似文献   

12.
For the first time a functional protein was fused to a PHA synthase resulting in PHA granule formation and display of the respective function at the PHA granule surface. The GFP reporter protein was N-terminally fused to the class I PHA synthase of Cupriavidus necator (PhaC) and the class II PHA synthase of Pseudomonas aeruginosa PAO1 (PhaC1), respectively, while maintaining PHA synthase activity and PHA granule formation. Fluorescence microscopy studies of GFP-PHA synthase attached to emerging PHA granules indicated that emerging PHA granules locate to cell poles and to midcell representing the future cell poles. A rapid oscillating movement of GFP-PHA synthase foci from pole to pole was observed. In cell division impaired Escherichia coli, PHA granules were localized between nucleoids at regular spacing suggesting that nucleoid occlusion occurred. Accordingly, anucleate regions of the E. coli mukB mutant showed no regular spacing, but PHA granules with twofold increased diameter were formed. First evidence was provided that the cell division and the localization of GFP-PHA synthase foci are in vivo co-located.  相似文献   

13.
Polyhydroxyalkanoate (PHA) synthase PhaC plays a very important role in biosynthesis of microbial polyesters PHA. Compared to the extensively analyzed C-terminus of PhaC, N-terminus of PhaC was less studied. In this paper, the N-terminus of two class I PHA synthases PhaCRe and PhaCAh from Ralstonia eutropha and Aeromonas hydrophila, respectively, and one class II synthase PhaC2Ps of Pseudomonas stutzeri strain 1317, were investigated for their effect on PHA synthesis. For PhaCRe, deletion of 2–65 amino acid residues on the N-terminus led to enhanced PHB production with high PHB molecular weight of 2.50 × 106 Da. For PhaCAh, the deletion of the N-terminal residues resulted in increasing molecular weights and widening polydispersity accompanied by a decreased PHA production. It was found that 3-hydroxybutyrate (3HB) monomer content in copolyesters of 3-hydroxybutyrate and 3-hydroxyhexanoate (3HHx) increased when the first 2–9 and 2–13 amino acid residues in the N-terminus of PhaC2Ps were deleted. However, deletion up to the 40th amino acid disrupted the PHA synthesis. This study confirmed that N-terminus in different types of PHA synthases showed significant roles in the PHA productivity and elongation activity. It was also indicated that N-terminal mutation was very effective for the location of functional regions at N-terminus.  相似文献   

14.
The F420S substitution enhances the specific activity of Ralstonia eutropha PHA synthase (PhaCRe). We have now carried out site-directed saturation mutagenesis of F420 of PhaCRe and, amongst the F420 mutants, the F420S mutant gave the highest poly(3-hydroxybutyrate) (PHB) content. In vitro activity assay showed that the F420S enzyme had a significant decrease in its lag phase compared to that of the wild-type enzyme. Enhancement of PHB accumulation was achieved by combination of the F420S mutation with a G4D mutation, which conferred high PHB content and high in vivo concentration of PhaCRe enzyme. The G4D/F420S mutant gave a higher PHB content and in vivo concentration of PhaCRe enzyme than the F420S mutant, while the molecular weight of the PHB polymer of the double mutant was similar to that of the F420S mutant.  相似文献   

15.
In the genome of Burkholderia cepacia strain IPT64, which accumulates a blend of the two homopolyesters poly(3-hydroxybutyrate), poly(3HB), and poly(3-hydroxy-4-pentenoic acid), poly(3H4PE), from sucrose or gluconate as single carbon source, the polyhydroxyalkanoate (PHA) synthase structural gene was disrupted by the insertion of a chloramphenicol-resistant gene cassette (phaC1::Cm). The suicide vector pSUP202 harboring phaC1::Cm was transferred to B. cepacia by conjugation. The inactivated gene was integrated into the chromosome of B. cepacia by homologous recombination. This mutant and also 15 N-methyl-N'-nitrosoguanidine (NMG)-induced mutants still accumulated low amounts of PHAs and expressed low PHA synthase activity. The analysis of the mutant phaC1::Cm showed that it accumulated about 1% of PHA consisting of 68.2 mol% 3HB and 31.8 mol% 3H4PE from gluconate. The wild-type, in contrast, accumulated 49.3% of PHA consisting of 96.5 mol% 3HB and 3. 5 mol% 3H4PE. Our results indicated that the genome of B. cepacia possesses at least two PHA synthase genes, which probably have different substrate specificities.  相似文献   

16.
A previously established improved two-phase reaction system has been applied to analyze the substrate specificities and polymerization activities of polyhydroxyalkanoate (PHA) synthases. We first analyzed the substrate specificity of propionate coenzyme A (CoA) transferase and found that 2-hydroxybutyrate (2HB) was converted into its CoA derivative. Then, the synthesis of PHA incorporating 2HB was achieved by a wild-type class I PHA synthase from Ralstonia eutropha. The PHA synthase stereoselectively polymerized (R)-2HB, and the maximal molar ratio of 2HB in the polymer was 9 mol%. The yields and the molecular weights of the products were decreased with the increase of the (R)-2HB concentration in the reaction mixture. The weight-average molecular weight of the polymer incorporating 9 mol% 2HB was 1.00 × 105, and a unimodal peak with polydispersity of 3.1 was observed in the GPC chart. Thermal properties of the polymer incorporating 9 mol% 2HB were analyzed by DSC and TG-DTA. T g, T m, and T d (10%) were observed at −1.1°C, 158.8°C, and 252.7°C, respectively. In general, major components of PHAs are 3-hydroxyalkanoates, and only engineered class II PHA synthases have been reported as enzymes having the ability to polymerize HA with the hydroxyl group at C2 position. Thus, this is the first report to demonstrate that wild-type class I PHA synthase was able to polymerize 2HB.  相似文献   

17.
Ectothiorhodospira shaposhnikovii is able to accumulate polyhydroxybutyrate (PHB) photoautotrophically during nitrogen-limited growth. The activity of polyhydroxyalkanoate (PHA) synthase in the cells correlates with PHB accumulation. PHA synthase samples collected during the light period do not show a lag phase during in vitro polymerization. Synthase samples collected in the dark period displays a significant lag phase during in vitro polymerization. The lag phase can be eliminated by reacting the PHA synthase with the monomer, 3-hydroxybutyryl-CoA (3HBCoA). The PHA synthase genes (phaC and phaE) were cloned by screening a genomic library for PHA accumulation in E. coli cells. The PHA synthase expressed in the recombinant E. coli cells was purified to homogeneity. Both sequence analysis and biochemical studies indicated that this PHA synthase consists of two subunits, PhaE and PhaC and, therefore, belongs to the type III PHA synthases. Two major complexes were identified in preparations of purified PHA synthase. The large complex appears to be composed of 12 PhaC subunits and 12 PhaE subunits (dodecamer), whereas the small complex appears to be composed of 6 PhaC and 6 PhaE subunits (hexamer). In dilute aqueous solution, the synthase is predominantly composed of hexamer and has low activity accompanied with a significant lag period at the initial stage of reaction. The percentage of dodecameric complex increases with increasing salt concentration. The dodecameric complex has a greatly increased specific activity for the polymerization of 3HBCoA and a negligible lag period. The results from in vitro polymerizations of 3HBCoA suggest that the PHA synthase from E. shaposhnikovii may catalyze a living polymerization and demonstrate that two PhaC and two PhaE subunits comprise a single catalytic site in the synthase complex.  相似文献   

18.
Recombinant strains of Ralstonia eutropha PHB 4, which harbored Aeromonas caviae polyhydroxyalkanoates (PHA) biosynthesis genes under the control of a promoter for R. eutropha phb operon, were examined for PHA production from various alkanoic acids. The recombinants produced poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHx)] from hexanoate and octanoate, and poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxypentano ate) [P(3HB-co-3HV-co-3HHp)] from pentanoate and nonanoate. One of the recombinant strains, R. eutropha PHB 4/pJRDBB39d3 harboring ORF1 and PHA synthase gene of A. caviae (phaC(Ac)) accumulated copolyesters with much more 3HHx or 3HHp fraction than the other recombinant strains. To investigate the relationship between PHA synthase activity and in vivo PHA biosynthesis in R. eutropha, the PHB- 4 strains harboring pJRDBB39d13 or pJRDEE32d13 were used, in which the heterologous expression of phaC(Ac) was controlled by promoters for R. eutropha phb operon and A. caviae pha operon, respectively. The PHA contents and PHA accumulation rates were similar between the two recombinant strains in spite of the quite different levels of PHA synthase activity, indicating that the polymerization step is not the rate-determining one in PHA biosynthesis by R. eutropha. The molecular weights of poly(3-hydroxybutyrate) produced by the recombinant strains were also independent of the levels of PHA synthase activity. It has been suggested that a chain-transfer agent is generated in R. eutopha cells to regulate the chain length of polymers.  相似文献   

19.
Type II synthase (PhaC1(Ps)) for polyhydroxyalkanoate (PHA) from Pseudomonas sp. 61-3 was subjected to an in vitro evolution system including PCR-mediated mutagenesis in order to improve the function of PhaC1(Ps) in terms of its ability to produce poly(3-hydroxybutyrate) [P(3HB)] in recombinant Escherichia coli. Based on our established in vivo assay system, two positions (Ser325 and Gln481) where mutations provided remarkable increases in P(3HB) synthesis were identified. Saturation mutagenesis at these positions was carried out to explore whether there might be more beneficial sequences for P(3HB) synthesis than those identified in the point mutation library. As a result, five single mutants [S325C (T) and Q481M (K, R)] gave rise to highly enhanced P(3HB) synthesis. Drastically enhanced P(3HB) synthesis (up to 340- to 400-fold the amount of that of the wild type) was further achieved by generation of all five variants of the double mutants combining the codons for residues 325/481. It is feasible that the replacement of Ser (specific for type II synthase) by Thr (specific for type I synthase) at position 325 resulted in acquiring greater P(3HB) synthesis ability as exhibited by type I synthases. The other hot spot, 481, that positively contributes to enhanced P(3HB) synthesis is located adjacent to a His479, a residue that forms a putative catalytic diad that can be inferred by sequence alignment.  相似文献   

20.
Medium-chain-length (mcl) poly(3-hydroxyalkanoates) (PHAs) are storage polymers that are produced from various substrates and accumulate in Pseudomonas strains belonging to rRNA homology group I. In experiments aimed at increasing PHA production in Pseudomonas strains, we generated an mcl PHA-overproducing mutant of Pseudomonas putida KT2442 by transposon mutagenesis, in which the aceA gene was knocked out. This mutation inactivated the glyoxylate shunt and reduced the in vitro activity of isocitrate dehydrogenase, a rate-limiting enzyme of the citric acid cycle. The genotype of the mutant was confirmed by DNA sequencing, and the phenotype was confirmed by biochemical experiments. The aceA mutant was not able to grow on acetate as a sole carbon source due to disruption of the glyoxylate bypass and exhibited two- to fivefold lower isocitrate dehydrogenase activity than the wild type. During growth on gluconate, the difference between the mean PHA accumulation in the mutant and the mean PHA accumulation in the wild-type strain was 52%, which resulted in a significant increase in the amount of mcl PHA at the end of the exponential phase in the mutant P. putida KT217. On the basis of a stoichiometric flux analysis we predicted that knockout of the glyoxylate pathway in addition to reduced flux through isocitrate dehydrogenase should lead to increased flux into the fatty acid synthesis pathway. Therefore, enhanced carbon flow towards the fatty acid synthesis pathway increased the amount of mcl PHA that could be accumulated by the mutant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号