首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
The impact of repeated culture of perennial plants (i.e. in long-term monoculture) on the ecology of plant-beneficial bacteria is unknown. Here, the influence of extremely long-term monocultures of grapevine (up to 1603 years) on rhizosphere populations of fluorescent pseudomonads carrying the biosynthetic genes phlD for 2,4-diacetylphloroglucinol and/or hcnAB for hydrogen cyanide was determined. Soils from long-term and adjacent short-term monoculture vineyards (or brushland) in four regions of Switzerland were baited with grapevine or tobacco plantlets, and rhizosphere pseudomonads were studied by most probable number (MPN)-PCR. Higher numbers and percentages of phlD + and of hcnAB + rhizosphere pseudomonads were detected on using soil from long-term vineyards. On focusing on phlD , restriction fragment length polymorphism profiling of the last phlD -positive MPN wells revealed seven phlD alleles (three exclusively on tobacco, thereof two new ones). Higher numbers of phlD alleles coincided with a lower prevalence of the allele displayed by the well-studied biocontrol strain Pseudomonas fluorescens F113. The prevalence of this allele was 35% for tobacco in long-term monoculture soils vs. >60% in the other three cases. We conclude that soils from long-term grapevine monocultures represent an untapped resource for isolating novel biocontrol Pseudomonas strains when tobacco is used as bait.  相似文献   

2.
Pseudomonas populations producing the biocontrol compounds 2,4-diacetylphloroglucinol (Phl) and hydrogen cyanide (HCN) were found in the rhizosphere of tobacco both in Swiss soils suppressive to Thielaviopsis basicola and in their conducive counterparts. In this study, a collection of Phl+ HCN+Pseudomonas isolates from two suppressive and two conducive soils were used to assess whether suppressiveness could be linked to soil-specific properties of individual pseudomonads. The isolates were compared based on restriction analysis of the biocontrol genes phlD and hcnBC, enterobacterial repetitive intergenic consensus (ERIC)-PCR profiling and their biocontrol ability. Restriction analyses of phlD and hcnBC yielded very concordant relationships between the strains, and suggested significant population differentiation occurring at the soil level, regardless of soil suppressiveness status. This was corroborated by high strain diversity (ERIC-PCR) within each of the four soils and among isolates harboring the same phlD or hcnBC alleles. No correlation was found between the origin of the isolates and their biocontrol activity in vitro and in planta. Significant differences in T. basicola inhibition were however evidenced between the isolates when they were grouped according to their biocontrol alleles. Moreover, two main Pseudomonas lineages differing by the capacity to produce pyoluteorin were evidenced in the collection. Thus, Phl+ HCN+ pseudomonads from suppressive soils were not markedly different from those from nearby conducive soils. Therefore, as far as biocontrol pseudomonads are concerned, this work yields the hypothesis that the suppressiveness of Swiss soils may rely on the differential effects of environmental factors on the expression of key biocontrol genes in pseudomonads rather than differences in population structure of biocontrol Pseudomonas subcommunities or the biocontrol potential of individual Phl+ HCN+ pseudomonad strains.  相似文献   

3.
In biocontrol Pseudomonads, phlD is an essential gene involved in the biosynthesis of 2,4-diacetylphloroglucinol (DAPG). HaeIII restriction of amplified phlD gene, previously proposed as the most discriminant analysis, showed no polymorphism among 144 Pseudomonas strains isolated from maize roots. However, these strains fell into three statistically significant DAPG production level groups. phlD sequences of 13 strains belonging to the three DAPG groups revealed a KspI restriction site only in good DAPG-producing strains. This result was confirmed on the 144 strains, 82 of which were identified as good-DAPG producers by both biochemical and amplified phlD KspI restriction analysis. They are candidates as potential biocontrol agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号