首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
《Gene》1998,222(1):133-144
The A-factor receptor protein (ArpA) plays a key role in the regulation of secondary metabolism and cellular differentiation in Streptomyces griseus. ArpA binds the target DNA site forming a 22 bp palindrome in the absence of A-factor, and exogenous addition of A-factor to the ArpA–DNA complex immediately releases ArpA from the DNA. An amino acid (aa) replacement at Val-41 to Ala in an α-helix–turn–α-helix (HTH) motif at the N-terminal portion of ArpA abolished DNA-binding activity but not A-factor-binding activity, suggesting the involvement of this HTH in DNA-binding. On the other hand, an aa replacement at Trp-119 to Ala generated a mutant ArpA that was unable to bind A-factor, thus resulting in an A-factor-insensitive mutant that bound normally to its target DNA in both the presence and absence of A-factor. These data suggest that ArpA consisting of two functional domains, one for HTH-type DNA-binding at the N-terminal portion and one for A-factor-binding at the C-terminal portion, is a member of the LacI family. Consistent with this, two ArpA homologues, CprA and CprB, from Streptomyces coelicolor A3(2), each of which contains a very similar aa sequence of the HTH to that of ArpA, also recognized and bound the same DNA target. However, neither CprA nor CprB recognized A-factor, probably due to much less similarity in the C-terminal domains.  相似文献   

2.
3.
A-factor (2-isocapryloyl-3R-hydroxymethyl-gamma-butyrolactone) and its specific receptor protein control streptomycin production, streptomycin resistance, and aerial mycelium formation in Streptomyces griseus. The A-factor receptor protein (ArpA) was purified from a cell lysate of S. griseus IFO 13350. The NH2-terminal amino acid sequences of ArpA and lysyl endopeptidase-generated fragments were determined for the purpose of preparing oligonucleotide primers for cloning arpA by the PCR method. The arpA gene cloned in this way directed the synthesis of a protein having A-factor-specific binding activity when expressed in Escherichia coli under the control of the T7 promoter. The arpA gene was thus concluded to encode a 276-amino-acid protein with a calculated molecular mass of 29.1 kDa, as determined by nucleotide sequencing. The A-factor-binding activity was observed with a homodimer of ArpA. The NH2-terminal portion of ArpA contained an alpha-helix-turn-alpha-helix DNA-binding motif that showed great similarity to those of many DNA-binding proteins, which suggests that it exerts its regulatory function for the various phenotypes by directly binding to a certain key gene(s). Although a mutant strain deficient in both the ArpA protein and A-factor production overproduces streptomycin and forms aerial mycelium and spores earlier than the wild-type strain because of repressor-like behavior of ArpA, introduction of arpA into this mutant abolished simultaneously its streptomycin production and aerial mycelium formation. All of these data are consistent with the idea that ArpA acts as a repressor-type regulator for secondary metabolite formation and morphogenesis during the early growth phase and A-factor at a certain critical intracellular concentration releases the derepression, thus leading to the onset of secondary metabolism and aerial mycelium formation. The presence of ArpA-like proteins among Streptomyces spp., as revealed by PCR, together with the presence of A-factor-like compounds, suggests that a hormonal control similar to the A-factor system exists in many species of this genus.  相似文献   

4.
5.
A-factor (2-isocapryloyl-3R-hydroxymethyl-gamma-butyrolactone) and its specific receptor protein (ArpA) are required for streptomycin production and aerial mycelium formation in Streptomyces griseus. A mutant strain HO1 that produced streptomycin and formed aerial mycelium and spores was derived from an A-factor-deficient mutant, S. griseus HH1. The phenotypes of mutant HO1 were found to result from a single amino acid replacement of ArpA; the proline residue at position 115 in the wild-type ArpA was replaced by serine, yielding mutant ArpA (P115S). The mutant ArpA (P115S) was still able to form a homodimer and possessed A-factor-binding ability but lost the ability to bind DNA. The properties of P115S suggest that ArpA consists of two independently functional domains, one for A-factor binding and one for DNA binding, and that proline-115 plays an important role in DNA binding. This is in agreement with the idea that A-factor binding to the COOH-terminal domain of ArpA causes a subtle conformational change of the distal NH2-terminal DNA-binding domain, resulting in dissociation of ArpA from DNA.  相似文献   

6.
7.
8.
9.
10.
11.
Repair by recombination of DNA containing a palindromic sequence   总被引:6,自引:1,他引:5  
We report here that homologous recombination functions are required for the viability of Escherichia coli cells maintaining a 240 bp chromosomal inverted repeat (palindromic) sequence. Wild-type cells can successfully replicate this palindrome but recA , recB or recC mutants carrying the palindrome are unviable. The dependence on homologous recombination for cell viability is overcome in sbcC mutants. Directly repeated copies of the DNA containing the palindrome are rapidly resolved to single copies in wild-type cells but not in sbcC mutants. Our results suggest that double-strand breaks introduced at the palindromic DNA sequence by the SbcCD nuclease are repaired by homologous recombination. The repair is conservative and the palindrome is retained in the repaired chromosome. We conclude that SbcCD can attack secondary structures but that repair conserves the DNA sequence with the potential to fold.  相似文献   

12.
13.
An S1-hypersensitive site was found at the 60 bp direct repeats of the cis-acting, stability and/or copy number control region of the yeast 2 micron DNA in the supercoiled hybrid plasmid pDB248'. It was retained in a different plasmid, pYK2121, consisting of pBR322 and the 300 bp long repeated DNA. Analyses of 5'-end-labeled fragments and nucleotide sequence determination showed that the S1-cleavage site was at the central part of an AT-rich 19 bp palindrome present in the repeats. Two other homologous palindromes (21 and 15 bp) containing the 12 bp consensus sequences were not cleaved. The nucleotide sequences at the base of the stem and/or loop may determine the efficiency of the cruciform extrusion.  相似文献   

14.
Nucleotide sequences homologous to arpA encoding the A-factor receptor protein (ArpA) of Streptomyces griseus are distributed in a wide variety of streptomycetes. Two genes, cprA and cprB , each encoding an ArpA-like protein were found and cloned from Streptomyces coelicolor A3(2). CprA and CprB shared 90.7% identity in amino acid sequence and both showed about 35% identity to ArpA. Disruption of cprA by use of an M13 phage-derived single-stranded vector resulted in severe reduction of actinorhodin and undecylprodigiosin production. In addition, the timing of sporulation in the cprA disruptants was delayed by 1 day. The cprA gene thus appeared to act as a positive regulator or an accelerator for secondary metabolite formation and sporulation. Consistent with this idea, introduction of cprA on a low-copy-number plasmid into the parental strain led to overproduction of these secondary metabolites and accelerated the timing of sporulation. On the other hand, cprB disruption resulted in precocious and overproduction of actinorhodin. However, almost no effect on undecylprodigiosin was detected in the cprB disruptants. Sporulation of the cprB disruptant began 1 day earlier than the parental strain. The cprB gene thus behaved as a negative regulator on actinorhodin production and sporulation. Consistent with this, extra copies of cprB in the parental strain caused reduced production of actinorhodin and delay in sporulation. It is thus concluded that both cprA and cprB play regulatory roles in both secondary metabolism and morphogenesis in S. coelicolor A3(2), just as the arpA /A-factor system in Streptomyces griseus .  相似文献   

15.
16.
We have localized an origin of DNA replication at the L terminus of the pseudorabies virus genome. This origin differs in location as well as in general structure from the origins of replication of other herpesviruses that have been identified. The 600 leftmost nucleotides of the genome that were found to include origin function have been analyzed. This sequence is composed of an 82-bp palindrome whose center of symmetry is separated by 352 unique bp (UL2). Within the UL2, a sequence that fits the consensus sequence of the NF1 binding site, as well as one that has partial homology to the binding site of UL9 of herpes simplex virus, is present. Using truncated fragments of DNA, sequences essential for minimal origin function were delimited to within a fragment that includes the terminal 104 bp of the left end of the genome. Within these 104 bp, two elements essential to origin function have been identified. One of these elements is present within the terminal 64 bp of the L component (within one of the palindromic arms). The other is present within the 22 bp of the UL2 adjacent to this palindromic arm. Other auxiliary elements, although not essential for origin function, contribute to more efficient replication. The NF1 and UL9 binding site homologies were found to be nonessential to origin function.  相似文献   

17.
K A Jones  R M Myers    R Tjian 《The EMBO journal》1984,3(13):3247-3255
We have tested the effects of various mutations within SV40 T antigen DNA recognition sites I and II on specific T antigen binding using the DNase footprint technique. In addition, the replication of plasmid DNA templates carrying these T antigen binding site mutations was monitored by Southern analysis of transfected DNA in COS cells. Deletion mapping of site I sequences defined a central core of approximately 18 bp that is both necessary and sufficient for T antigen recognition; this region contains the site I contact nucleotides that were previously mapped using methylation-interference and methylation-protection experiments. A similar deletion analysis delineated sequences that impart specificity of binding to site II. We find that T antigen is capable of specific recognition of site II in the absence of site I sequences, indicating that binding to site II in vitro is not dependent on binding of T antigen at site I. Site II binding was not diminished by small deletion or substitution mutations that perturb the 27-bp palindrome central to binding site II, whereas extensive substitution of site II sequences completely eliminated specific site II binding. Analysis of the replication in COS7 cells of plasmids that contain these mutant origins revealed that sequences both at the late side of binding site I and within the site II palindrome are crucial for viral DNA replication, but are not involved in binding T antigen.  相似文献   

18.
19.
In the A-factor regulatory cascade leading to the onset of streptomycin biosynthesis and aerial mycelium formation in Streptomyces griseus, the A-factor receptor protein (ArpA) serves as a DNA-binding repressor and A-factor releases the repression by binding to ArpA and dissociating it from the DNA. Mutants defective in arpA therefore produce streptomycin and aerial hyphae in the absence of A-factor. A gene that inhibits streptomycin production and aerial hyphae formation in an arpA mutant was cloned on a high-copy-number plasmid and found to encode a eukaryotic-type adenylate cyclase (CyaA). Consistent with this, an exogenous supply of cAMP at high concentration almost abolished streptomycin production and aerial hyphae formation. On the other hand, cAMP at lower concentrations stimulated or accelerated these developmental processes. The effects of cAMP were detectable only in arpA mutants, and not in the wild-type strain; an exogenous supply of cAMP or cyaA disruption in the wild-type strain caused almost no effect on these phenotypes. Thus the effects of cAMP became apparent only in the arpA-defective background. cAMP at high concentrations inhibited stringent response factor ppGpp production, which is important for the onset of antibiotic biosynthesis. cAMP also influenced the timing of tyrosine phosphorylation of more than nine proteins. These findings show that a cAMP regulatory relay for physiological and morphological development functions in a concerted and interdependent way with other signal transduction pathways. Journal of Industrial Microbiology & Biotechnology (2001) 27, 177–182. Received 21 September 1999/ Accepted in revised form 14 September 2000  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号