首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method to determine total and free mycophenolic acid (MPA) and its metabolites, the phenolic (MPAG) and acyl (AcMPAG) glucuronides, using HPLC and mass spectrometry was developed. Mean recoveries in plasma and urine samples were >85%, and the lower limits of quantification for MPA, MPAG and AcMPAG were 0.05, 0.05 and 0.01 mg/L, respectively. For plasma, the assay was linear over 0.05-50 mg/L for MPA and MPAG, and from 0.01 to 10mg/L for AcMPAG. A validation study demonstrated good inter- and intra-day precision (CV相似文献   

2.
A simple and sensitive HPLC method for the simultaneous analysis of free MPA and free MPAG was developed. Separation was achieved on a X-Terra RP18 column with acetonitrile-40 mM orthophosphoric acid as eluents using a gradient elution mode over 35 min at a flow rate of 1.5 ml/min. The assay was linear in the range 0.005 mg/L (LOQ) to 5mg/L for free MPA and 0.05 mg/L (LOQ) to 200 mg/L for free MPAG. Isolation of free MPA and free MPAG was done by ultrafiltration and the ultrafiltrate was directly injected. A positive correlation between MPA free fractions and free MPAG concentrations was found. Likewise, free MPAG was related to total MPAG concentrations in the seven heart transplant patients.  相似文献   

3.
Simultaneous determination of mycophenolic acid (MPA) and mycophenolic acid glucuronide (MPAG) in plasma was accomplished by isocratic HPLC with UV detection. After protein precipitation and phase separation with saturated sodium dihydrogenphosphate, chromatographic separation was achieved on a monolithic column "Chromolith Performance RP-18e", with acetonitrile/0.01 M phosphate buffer, pH 3, (25:75, v/v), as the mobile phase; flow rate 3.3 ml/min and measurement at 214 nm. Linearity was verified up to 40 mg/l for MPA and up to 400 mg/l for MPAG. Detection limits based on the analysis of 50 microl plasma were 0.05 and 0.5 mg/l for MPA and MPAG, respectively. Accuracy was 99.6-104% for MPA and 95.6-105% for MPAG and total imprecision (CV) was <7% for both compounds. Analytical recovery was >95% for MPA and MPAG. The method is simple, rapid, accurate and suitable for routine determination of MPA and MPAG in plasma.  相似文献   

4.
The immunosuppressant drug mycophenolic acid (MPA) and its major metabolite, mycophenolic acid glucuronide (MPAG), are highly bound to albumin. An HPLC-tandem-MS (HPLC/MS/MS) and an HPLC-UV assay were developed to measure free (unbound) concentrations of MPA and MPAG, respectively. Ultrafiltrate was prepared from plasma (500 microl) by ultrafiltration at 3000 x g for 20 min (20 degrees C). Both MPA and MPAG were isolated from ultrafiltrate (100 microl) by acidification and C18 solid-phase extraction. Free MPA was measured by electrospray tandem mass spectrometry using selected reactant monitoring (MPA: m/z 338.2--> 206.9) in positive ionisation mode. Chromatography was performed on a PFPP column (50 mm x 2 mm, 5 microm). Total analysis time was 7 min. The assay was linear over the range 1-200 microg/l with a limit of quantification of 1 microg/l. The inter-day accuracy and imprecision of quality controls (7.5, 40, 150 microg/l) were 94-99% and < 7%, respectively. Free MPAG was chromatographed on a C18 Nova-Pak column (150 mm x 3.9 mm, 5 microm) using a binary gradient over 20 min. The eluent was monitored at 254 nm. The assay was linear over the range 1-50 mg/l with the limit of quantification at 2.5 mg/l. The inter-day accuracy and imprecision of quality controls (5, 20, 45 mg/l) was 101-107% and < 8% (n = 4), respectively. For both methods no interfering substances were found in ultrafiltrate from patients not receiving MPA. The methods described have a suitable dynamic linear range to facilitate the investigation of free MPA and MPAG pharmacokinetics in transplant patients. Further, this is the first reported HPLC-UV method to determine free MPAG concentrations.  相似文献   

5.
A manual and an automated (Zymark PyTechnology robot) HPLC method for simultaneous determination of plasma mycophenolic acid (MPA) and its glucuronide conjugate (MPAG) are described here. Both methods are reproducible and accurate, and both are equivalent in all respects, including quantification limits (MPA, 0.100 μg/ml; MPAG, 4.00 μg/ml), range (using 0.05–0.5 ml of plasma: MPA, 0.0500–20.0 μg/aliquot; MPAG, 2.00–200 μg/aliquot), precision, and accuracy. MPA and MPAG were stable under the conditions used with both methods. Results from aliquots of paired control samples, analyzed by the manual method over three years at six analytical laboratories, showed excellent agreement in precision and accuracy.  相似文献   

6.
An high performance liquid chromatography (HPLC)-UV method for the simultaneous determination of the free forms of mycophenolic acid (MPA) and its phenol glucuronide (MPAG) in human serum samples was developed for the first time. Chromatographic separation was performed on octadecylsilane based stationary phase in combination with a mobile phase of methanol/buffered tetrabutylammonium (TBA) salt mixture. Sample pretreatment consisted of an ultrafiltration step followed by clean-up/enrichment on a C(18) solid-phase extraction (SPE) cartridge. Average recoveries of (99.7 +/- 0.2)% and (64.1 +/- 6.9)% for free MPA and MPAG, respectively, were estimated in the concentration range from 0.5 to 10 microg/ml. The within-day and between-days coefficients of variation were 0.4 and 0.8% for free MPA (0.1 microg/ml spiking level) and 0.8 and 1.6% for free MPAG (5 microg/ml spiking level), respectively. The linear ranges for free MPA and MPAG were 0.06-1 and 0.2-10microg/ml, respectively. Detection limits of 4 and 17 ng/ml for free MPA and MPAG were estimated in spiked serum. The same HPLC method was also capable of a simultaneous determination of the total concentration of MPA and MPAG when coupled to a proper sample pretreatment step. The potential of the method is demonstrated by excretion kinetics measurement in serum of patients receiving MMF therapy.  相似文献   

7.
Simultaneous determination of mycophenolic acid (MPA) and mycophenolate phenol glucuronide (MPAG) in plasma and urine was accomplished by isocratic HPLC with UV detection. Plasma was simply deproteinated with acetonitrile and concentrated, whereas urine was diluted prior to analysis. Linearity was observed from 0.2 to 50 μg/ml for both MPA and MPAG in plasma and from 1 to 50 μg/ml of MPA and 5 to 2000 μg/ml MPAG in urine with extraction recovery from plasma greater than 70%. Detection limits using 0.25 ml plasma were 0.080 and 0.20 μg/ml for MPA and MPAG, respectively. The method is more rapid and simple than previous assays for MPA and MPAG in biological fluids from patients.  相似文献   

8.
Two simple, sensitive and reproducible methods for determination of total mycophenolic acid (MPA) and its glucuronide metabolite (MPAG) as well as unbound MPA (fMPA) was developed by the use of HPLC-UV and LC-MS/MS methods, respectively. For the total MPA/MPAG method, the analytes were extracted using Isolute C(2) solid-phase extraction (SPE) cartridges and analyzed at 254 nm over a Zorbax Rx C(8) column (150 mm x 4.6 mm, 5 microm). The mobile phase was a gradient mixture of methanol and water (containing 0.1% (v/v) phosphoric acid). The total run time was 18 min and the extraction recovery was 77% for MPA and 84% for MPAG. The method was precise and accurate with a lower limit of quantification (LLOQ) of 0.5 mg/l for MPA and 5.0 mg/l for MPAG. For the fMPA method, plasma was subjected to ultrafiltration followed by SPE using C(18) cartridges. Analytical column was the same as the HPLC-UV method and the mobile phase was a gradient composition of methanol:0.05% formic acid with a flow rate of 0.6 ml/min for the first 3 min and 0.7 ml for the last 4 min. The chromatographic method separated MPA from its metabolites MPAG and Acyl-MPAG. Mass transitions in negative ionization mode for MPA and the internal standard, indomethacin were m/z: 319-->190.9 and m/z: 356-->312.2, respectively. The assay was linear in the concentration range of 1-1000 microg/l for fMPA with a LLOQ of 1 microg/l and an accuracy of >95%. The two methods reported have an adequate degree of robustness and dynamic concentration range for the measurement of MPA, MPAG and fMPA for therapeutic drug monitoring purposes or pharmacokinetics investigations.  相似文献   

9.
A high-performance liquid chromatographic method has been developed for the simultaneous determination of mycophenolic acid (MPA) and its glucuronide conjugate (MPAG) in human plasma. The method involves protein precipitation with acetonitrile, followed by ion-pair reversed-phase chromatography on C18 column, with a 40 mM tetrabutyl ammonium bromide (TBA)–acetonitrile (65:35, v/v) mobile phase. A 20-μl volume of clear supernatant was injected after centrifugation, and the eluent was monitored at 304 nm. No interference was found either with endogenous substances or with many concurrently used drugs, indicating a good selectivity for the procedure. Calibration curves were linear over a concentration range of 0.5–20.0 μg/ml for MPA and 5–200 μg/ml for MPAG. The accuracy of the method is good, that is, the relative error is below 5%. The intra- and inter-day reproducibility of the analytical method is adequate with relative statistical deviations of 6% or below. The limits of quantification for MPA and MPAG were lower than 0.5 and 5.0 μg/ml, respectively, using 50 μl of plasma. The method was used to determine the pharmacokinetic parameters of MPA and MPAG following oral administration in a patient with renal transplantation.  相似文献   

10.
A simple, sensitive and reproducible HPLC method is presented for the simultaneous determination of mycophenolic acid (MPA) and its metabolites phenolic MPA-glucuronide (MPAG) and acyl glucuronide (AcMPAG) in human plasma. Sample purification requires protein precipitation with 0.1 M phosphoric acid/acetonitrile in the presence of Epilan D as an internal standard (IS). Separation was performed by reversed-phase HPLC, using a Zorbax SB-C18 column, 32% acetonitrile and a 40 mM phosphoric acid buffer at pH 3.0 as mobile phase; column temperature was 50 degrees C, flow rate 1.4 ml/min, and measurement by UV detection was at 215 nm (run time 12 min). The method requires only 50 microl plasma. Detection limits were 0.1 microg/ml for MPA and AcMPAG, and 2.0 microg/ml for MPAG, respectively. Mean absolute recovery of all three analytes was >95%. This analytical method for the determination of MPA and its metabolites is a reliable and convenient procedure that meets the criteria for application in routine clinical drug monitoring and pharmacokinetic studies.  相似文献   

11.
A simple and reproducible reversed-phase ion-pair high-performance liquid chromatographic (HPLC) method using isocratic elution with UV absorbance detection is presented for the simultaneous quantitation of mycophenolic acid (MPA) and MPA-glucuronide (MPAG) in human plasma and urine. The sample preparation procedures involved simple protein precipitation for plasma and 10-fold dilution for urine. Each analytical run was completed within 15min, with MPAG and MPA being eluted at 3.8 and 11.4min, respectively. The optimized method showed good performance in terms of specificity, linearity, detection and quantitation limits, precision and accuracy. This assay was demonstrated to be applicable for clinical pharmacokinetic studies.  相似文献   

12.
A simple high-performance liquid chromatographic (HPLC) method was developed for the assay of total and free mycophenolic acid (MPA) in human plasma. Prior to analysis, total mycophenolic acid was extracted by protein precipitation and free drug was isolated from plasma samples using ultrafiltration. The extracts were injected onto a Kromasil C8 column at 30 degrees C with excitation and emission wavelengths set at 342 and 425 nm, respectively. The mobile phase was consisted of acetonitrile-32 mM glycine buffer, pH 9.2 (20:80, v/v), at a flow rate of 1.0 ml/min. The method was found to be linear over the concentration range investigated, 0.05-40 mg/l for total mycophenolic acid (r>0.999) and 5-1000 microg/l (r>0.99) for free drug. The percentage error of the analytical method was below 10.9%. The intra- and inter-day reproducibility was adequate with the coefficients of variation of 8.28% or below. The run time were 4 and 6 min for free and total MPA, respectively. The method thus can be effectively applied to measure mycophenolic acid concentrations in clinical samples.  相似文献   

13.
Chronic combination immunosuppressive regimens are commonly prescribed to renal transplant recipients. To develop an assay method for pharmacokinetic studies and therapeutic drug monitoring of multiple immunosuppressives, a liquid chromatography-tandem mass spectrometry (LC/MS/MS) approach for the simultaneous analysis of several glucocorticoids, mycophenolic acid (MPA) and mycophenolic acid glucuronide (MPAG) was investigated. The resultant method utilized a gradient reverse phase separation over a Symmetry C18 column using an ammonium acetate-methanol mobile phase at pH 3.5. The analytes were detected by coupling the chromatography system via electrospray to a triple quadrupole mass spectrometer. Multiple-reaction monitoring in the negative mode ion (MH-/product) was employed selecting MPA at 319.1/190.9, MPAG at 495.1/191.0, dexamethasone at 391.0/361.0, hydrocortisone at 361.1/331.1, methylprednisolone at 373.1/343.1, prednisone at 357.1/327.2, and prednisolone at 359.1/329.1. The calibration curve concentrations ranged from 3.60 ng/mL to 50 microg/mL with the lowest limit of quantitation for corticosteroids being 3.60-7.20 ng/mL and 0.656-6.75 microg/mL for MPA and MPAG, respectively. The relative standard deviation for quality control intraday variation and interday variation was between 0.76% and 9.57% for all analytes. This assay offers a versatile, unique method for multi-analyte immunosuppressive determinations during combination immunosuppression.  相似文献   

14.
A sensitive and specific HPLC-MS/MS method was developed for the analysis of mycophenolic acid glucuronide (MPAG) in incubations with human liver microsomes. Incubation samples were processed by protein precipitation with acetonitrile. MPAG and the internal standard phenolphthalein glucuronide were chromatographed on a C18 Synergi Fusion-RP column (100 mm x 2 mm, 4 microm) using gradient elution with a mixture of 1mM acetic acid in deionized water and 1mM acetic acid in acetonitrile at a flow rate of 0.22 mL/min. The mass spectrometer was operated with negative electrospray ionization and analysis was carried out in the single reaction monitoring (SRM) mode using the mass transitions of m/z 495-->319 and m/z 493-->175 for MPAG and phenolphthalein glucuronide, respectively. The MPAG calibration curve was linear over the concentration range of 1.0-20 microM. The within-day and between-day relative standard deviations ranged from 1.1 to 7.9% and accuracy was within 8%. The simple and reproducible method is suitable for measuring mycophenolic acid glucuronidation in microsomal incubations.  相似文献   

15.
Conjugates of medroxyprogesterone acetate (MPA) in human serum are investigated using chromatography and techniques (equilibrium dialysis, gel filtration, and polyacrylamide gel electrophoresis) previously described for studying the binding of MPA. 17 serum samples were obtained from 7 women at various times after the intramuscular injection of 150 mg Depo-Provera. Mean concentration of MPA in the unconjugated fraction of serum was 3.9 mg/ml (range 0.8-10.7 ng/ml); in the conjugated fraction, the value was 2.7 ng/ml (range 0.6-11.4 ng/ml), a mean value of 81.7% (range 18.4-286%) of that in the unconjugated fraction. The conjugate appears to be mainly a glucuronide since solvolysis released only small amounts of MPA. MPA metabolites were also detected in blood. The MPA levels in blood measured by radioimmunoassay were generally lower when serum was extracted with an organic solvent rather than when the assay was carried out directly in the serum. This finding suggests the presence in blood of either MPA in a conjugated form or metabolites interacting with the antiserum which were not extracted by the solvents used. Equilibrium dialysis showed that undiluted plasma bound 85.8% of triated hydrogen-MPA; with increasing dilution of the plasma, the amount of bound triated hydrogen-MPA decreased. The apparent association constant calculated according to the method of Vermeulen and Verdonck was 2.6 x 10 4 1/mol. MPA appeared to be loosely bound to albumin in blood but there was no specific binding protein for the steroid. MPA conversion to the glucuronide may be 1 of the factors regulating the level of the unconjugated but presumably biologically active steroid in blood.  相似文献   

16.
A molecularly imprinted solid-phase extraction coupled with high performance liquid chromatography (MISPE-HPLC) method was developed for rapid screening of mycophenolic acid (MPA) in human plasma. MPA imprinted polymers (MPA-MIP) were synthesized and then tested for their performance both in organic and in aqueous solution. MPA was selectively trapped and preconcentrated on the MPA-MIP sorbent using different loading and washing conditions. The good selectivity of MPA-MIP enabled further clean-up of the interfering components in human plasma. For the proposed MISPE-HPLC method, the linearity between responses (peak area) and concentration was found over the range of 1-100microg/ml with a linear regression coefficient (R(2)) of 0.9989. The limit of detection (LOD) and theoretical limit of quantification (LOQ) for MPA in plasma were 0.10 and 0.32microg/ml, respectively. The precisions were 7.3, 3.5 and 4.7% RSD for intra-day assay and 9.2, 4.1 and 5.5% RSD for inter-day reproducibility, respectively, at three concentration levels of MPA in spiked plasma (1, 10 and 100microg/ml). Both recoveries for the extraction (more than 74%) and for the analytical method (more than 87%) were acceptable for screening MPA in plasma samples. Twelve-hour pharmacokinetic profile of MPA for a renal transplant recipient receiving chronic oral dosing of 500mg mycophenolate mofetil (MMF) was investigated. Results indicated that this method could be applied for therapeutic drug monitoring of mycophenolic acid in patient plasma.  相似文献   

17.
The aim of this study was to validate, by capillary electrophoresis, the use of synthesized methyl malondialdehyde as the internal standard for the direct quantification of free and total (free+bound) malondialdehyde in biological samples. All analyses were performed in 20 cm x 50 microm uncoated capillaries at 20 degrees C, using 25 mmol/L borax (pH 9.3) and 5 mmol/L tetradecyltrimethylammonium bromide as running buffer. The applied voltage was -4kV (about 8 microA), the detector being set at 260 nm for a total run time of 8 min per sample. Free malondialdehyde was evaluated after acetonitrile extraction, while the samples evaluated for total malondialdehyde were, before extraction, hydrolyzed for 1h at 60 degrees C in the presence of 1 mol/L NaOH. The detection threshold was 0.2 micromol/L in microsomes and 0.4 micromol/L in plasma. As an application of the method, three pools of rat liver microsomes were quantified before (0.35+/-0.1 and 1.1+/-0.5 nmol/mg protein, free and total malondialdehyde, respectively, mean+/-SD) and after lipoperoxidation induction using systems able to generate oxygen free radicals (18.4+/-3.2 and 19.7+/-2.0 nmol/mg protein). The results were confirmed by isotopic dilution gas chromatography-mass spectrometry, used as the reference method. The feasibility of capillary electrophoresis for malondialdehyde determination in normal and pathological human plasma was also investigated.  相似文献   

18.
The effect of medroxyprogesterone acetate (MPA) on the mitotic activity of bone marrow and testis during chemotherapy was investigated experimentally in an animal study. A total of 120 male Swiss albino mice were included in this study. Six groups were formed, each consisting of 20 mice. Low-dose MPA (LD-MPA) (15 mg/kg), high-dose MPA (HD-MPA) (100 mg/kg), LD-MPA plus cyclophosphamide (CP) (65 mg/kg), HD-MPA plus CP (65 mg/kg), and CP (65 mg/kg) were administered to the test groups and no drug was administered to the control group. Bone marrow samples and testis were examined for mitotic activity rate (MAR) on days 0, 18, 22, 26, and 30. In groups with regimens containing CP, MAR of hematopoietic cells in bone marrow was suppressed significantly (p<0.05). There was no difference in MAR of hematopoietic cells in bone marrow between the groups given MPA or not (p>0.05). Mitotic activity rate of the testis cells was significantly suppressed in groups with regimens containing MPA (p<0.05). In conclusion, MPA inhibited mitotic activity of testis, but there was no effect on the mitotic activity of bone marrow. These data do not seem to confirm the hypothesis of a myeloprotective effect of MPA. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Mycophenolic acid (MPA) was produced from Penicillium brevicompactum by solid-state fermentation (SSF) using pearl barley, and submerged fermentation (SmF) using mannitol. It was found that SSF was superior to SmF in terms of MPA concentration (1219 mg/L vs. 60 mg/L after 144 h fermentation), and the product yields were 6.1 mg/g pearl barley for SSF and 1.2 mg/g mannitol for SmF. The volumetric productivities were 8.5 and 0.42 mg/L h for SSF and SmF, respectively.The optimum solid substrate of SSF for MPA production was pearl barley, producing 5470 mg/kg compared with wheat bran (1601 mg/kg), oat (3717 mg/kg) and rice (2597 mg/kg). The optimum moisture content, incubation time and inoculum concentrations were 70%, 144 h and 6%, respectively. Neither the addition of mannitol or (NH4)2HPO4 nor adjustment of media pH within the range of 3–7 significantly enhanced MPA production.MPA production by SSF using a packed-bed bioreactor was performed and an increased maximum production of MPA 6.9 mg/g was achieved at 168 h incubation time. The higher volumetric productivity and concentrations makes SSF an attractive alternative to SmF for MPA production.  相似文献   

20.
A method for determining two nerve gas hydrolysis products, alkyl (ethyl, isopropyl and pinacolyl) methylphosphonates (RMPAs) and methylphosphonate (MPA), separately, in human plasma and urine samples was developed, using two different deproteinization procedures. In the first method, the plasma sample was deproteinized by adding a fourfold volume of acetonitrile, followed by passing the supernatant through a Bond Elut strong anion-exchange (SAX) cartridge [fluoride (F(-)) form]. After washing the cartridge with water and methanol, the RMPAs were eluted with a 3% (v/v) solution of methanolic ammonia, and analyzed by gas chromatography-mass spectrometry (GC-MS) after tert.-butyldimethylsilyl (TBDMS) derivatization. The detection yields of TBDMS derivatives of RMPAs were in the range of 69 to 99%, in contrast to the poor yields obtained when only acetonitrile deproteinization pretreatment was used (yield: 13-26%). The yield of the TBDMS derivative of MPA was very low (8%), however. In a the second method, a plasma sample was deproteinized by adding a half volume of 10% (w/v) trichloroacetic acid (TCA), and the resulting supernatant was extracted with diethyl ether to remove TCA, the aqueous fraction was then passed through a Bond Elut SAX cartridge. After washing the cartridge with 0.5% (v/v) methanolic ammonia, MPA was eluted with 3% (v/v) methanolic ammonia. The detection yield of the TBDMS derivative of MPA was nearly quantitative. A pretreatment method using SAX solid-phase extraction was also developed for the cleanup of a urine sample, in which the sample was directly applied to a Bond Elut SAX cartridge, followed by elution of the RMPAs and MPA with 3% (v/v) methanolic ammonia, which were then derivatized and analyzed by GC-MS. The detection yields of TBDMS derivatives of RMPAs and MPA were in the range of 61 to 97%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号