首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J M Gennity  H Kim    M Inouye 《Journal of bacteriology》1992,174(7):2095-2101
The lipid-modified nine-residue amino-terminal sequence of the mature form of the major outer membrane lipoprotein of Escherichia coli contains information that is responsible for sorting to either the inner or outer membrane. Fusion of this sorting sequence to beta-lactamase is sufficient for localization of the resultant lipo-beta-lactamase to the outer membrane (J. Ghrayeb and M. Inouye, J. Biol. Chem. 259:463-467, 1984). Substitution of the serine adjacent to the amino-terminal lipid-modified cysteine residue of the sorting sequence with the negatively charged residue aspartate causes inner membrane localization (K. Yamaguchi, F. Yu, and M. Inouye, Cell 53:423-432, 1988). Fusion of the aspartate-containing nine-residue inner membrane localization signal to the normally outer membrane lipoprotein bacteriocin release protein does cause partial localization to the inner membrane. However, a single replacement of the glutamine adjacent to the amino-terminal lipid-modified cysteine residue of bacteriocin release protein with aspartate causes no inner membrane localization. Therefore, an aspartate residue itself lacks the information necessary for inner membrane sorting when removed from the structural context provided by the additional eight residues of the sorting sequence. Although the aspartate-containing inner membrane sorting sequence causes an almost quantitative localization to the inner membrane when fused to the otherwise soluble protein beta-lactamase, this sequence cannot prevent significant outer membrane localization when fused to proteins (bacteriocin release protein and OmpA) normally found in the outer membrane. Therefore, structural determinants in addition to the amino-terminal sorting sequence influence the membrane localization of lipoproteins.  相似文献   

2.
Bhat S  Zhu X  Patel RP  Orlando R  Shimkets LJ 《PloS one》2011,6(11):e27475
Myxococcus xanthus DK1622 contains inner (IM) and outer membranes (OM) separated by a peptidoglycan layer. Integral membrane, β-barrel proteins are found exclusively in the OM where they form pores allowing the passage of nutrients, waste products and signals. One porin, Oar, is required for intercellular communication of the C-signal. An oar mutant produces CsgA but is unable to ripple or stimulate csgA mutants to develop suggesting that it is the channel for C-signaling. Six prediction programs were evaluated for their ability to identify β-barrel proteins. No program was reliable unless the predicted proteins were first parsed using Signal P, Lipo P and TMHMM, after which TMBETA-SVM and TMBETADISC-RBF identified β-barrel proteins most accurately. 228 β-barrel proteins were predicted from among 7331 protein coding regions, representing 3.1% of total genes. Sucrose density gradients were used to separate vegetative cell IM and OM fractions, and LC-MS/MS of OM proteins identified 54 β-barrel proteins. Another class of membrane proteins, the lipoproteins, are anchored in the membrane via a lipid moiety at the N-terminus. 44 OM proteins identified by LC-MS/MS were predicted lipoproteins. Lipoproteins are distributed between the IM, OM and ECM according to an N-terminal sorting sequence that varies among species. Sequence analysis revealed conservation of alanine at the +7 position of mature ECM lipoproteins, lysine at the +2 position of IM lipoproteins, and no noticable conservation within the OM lipoproteins. Site directed mutagenesis and immuno transmission electron microscopy showed that alanine at the +7 position is essential for sorting of the lipoprotein FibA into the ECM. FibA appears at normal levels in the ECM even when a +2 lysine is added to the signal sequence. These results suggest that ECM proteins have a unique method of secretion. It is now possible to target lipoproteins to specific IM, OM and ECM locations by manipulating the amino acid sequence near the +1 cysteine processing site.  相似文献   

3.
Three arginine residues of the binding site of the Escherichia coli aspartate receptor contribute to its high affinity for aspartate (K(d) approximately 3 microm). Site-directed mutations at residue 64 had the greatest effect on aspartate binding. No residue could substitute for the native arginine; all changes resulted in an apparent K(d) of approximately 35 mm. These mutations had little impact on maltose responses. At residue Arg-69, a lysine substitution was least disruptive, conferring an apparent K(d) of 0.3 mm for aspartate. Results obtained for an alanine mutant were similar to those with cysteine and histidine mutants (K(d) approximately 5 mm) indicating that side chain size was not an important factor here. Proline and aspartate caused more severe defects, presumably for reasons related to conformation and charge. The impact of residue 69 mutations on the maltose response was small. Mutations at Arg-73 had similar effects on aspartate binding (K(d) 0.3-7 mm) but more severe consequences for maltose responses. Larger side chains resulted in the best aspartate binding, implying steric considerations are important here. Signaling in the mutant proteins was surprisingly robust. Given aspartate binding, signaling occurred with essentially wild-type efficiency. These results were evaluated in the context of available structural data.  相似文献   

4.
To study lipoprotein sorting in Escherichia coli, we devised a novel screen in which sensitivity or resistance to bacteriophage T5 and colicin M reflects the membrane localization of the bacteriophage T5-encoded lipoprotein Llp, which inactivates the outer membrane (OM) T5 receptor (FhuA). When processed by lipoprotein signal peptidase, Llp has a serine at position +2, immediately after the fatty acylated N-terminal cysteine. As predicted by the '+2 lipoprotein sorting rule' that determines the localization of lipoproteins in the cell envelope, Llp is located in the OM. However, contrary to expectations, when serine +2 was replaced by aspartate, the canonical plasma membrane lipoprotein retention signal, Llp was still > or =40% targeted to the OM and protected cells against colicin M and phage T5. OM association of this Llp derivative was abolished when a peptide spacer was inserted between the aspartate and the rest of Llp or when the formation of an intramolecular disulphide bond in Llp was prevented by substituting one or other of the cysteines involved. Furthermore, analysis of a MalE-Llp hybrid protein with or without a lipid moiety demonstrated that fatty acylation of Llp is essential for its OM association and for protection against colicin M and bacteriophage T5. These data suggest (i) that phage-encoded Llp uses the endogenous E. coli Lol pathway for lipoprotein sorting to the OM and (ii) that the conformation of a lipoprotein can affect its sorting within the cell envelope.  相似文献   

5.
Bacterial lipoproteins are lipid-anchored proteins that contain acyl groups covalently attached to the N-terminal cysteine residue of the mature protein. Lipoproteins are synthesized in precursor form with an N-terminal signal sequence (SS) that targets translocation across the cytoplasmic or inner membrane (IM). Lipid modification and SS processing take place at the periplasmic face of the IM. Outer membrane (OM) lipoproteins take the localization of lipoproteins (Lol) export pathway, which ends with the insertion of the N-terminal lipid moiety into the inner leaflet of the OM. For many lipoproteins, the biogenesis pathway ends here. We provide examples of lipoproteins that adopt complex topologies in the OM that include transmembrane and surface-exposed domains. Biogenesis of such lipoproteins requires additional steps beyond the Lol pathway. In at least one case, lipoprotein sequences reach the cell surface by being threaded through the lumen of a beta-barrel protein in an assembly reaction that requires the heteropentomeric Bam complex. The inability to predict surface exposure reinforces the importance of experimental verification of lipoprotein topology and we will discuss some of the methods used to study OM protein topology.  相似文献   

6.
Site-specific mutants of yeast phosphoglycerate kinase have been produced in order to investigate the roles of the 'basic-patch' residues, arginine 168 and histidine 170. The fully-conserved residue, arginine 168, has been replaced with a lysine (R168K) and a methionine (R168M) residue, while the non-conserved histidine 170 has been replaced with an aspartate (H170D). Comparison of the 500-MHz 1H-NMR spectra of the mutant proteins with that of wild-type phosphoglycerate kinase shows that the overall fold of the mutants remains essentially unaltered from that of the native enzyme. Results of NOE experiments indicate that there are only very minor changes in structure in the vicinity of the mutations. These mutations have also led to firm sequence-specific resonance assignments to histidines 62, 167 and 170. NMR studies of 3-phosphoglycerate binding show that decreasing the positive charge in the sequence 168-170 reduces the binding of this substrate (by about 15-fold and 4-fold for mutants R168M and H170D respectively). Mutant R168K binds 3-phosphoglycerate with an affinity about twofold less than that of the native enzyme. Significantly, the activity of mutant H170D, measured at saturating substrate concentrations, is unchanged from that of the wild-type enzyme. This indicates that this residue is not of major importance in the binding or reaction of 3-phosphoglycerate. The observation is in agreement with results obtained for the wild-type enzyme, which indicate that 3-phosphoglycerate interacts most strongly with histidine 62 and least strongly with histidine 170, as would be predicted from the X-ray crystal structure. Substitution of positively charged arginine 168 with neutral methionine (or positively charged lysine) does not cause a detectable change in the pKa values of the neighbouring histidine groups, in as much as they remain below 3. The results reported here indicate that the observed reduction in catalytic efficiency relates less to direct electrostatic effects than to the mutants' inability to undergo 3-phosphoglycerate-induced conformational changes.  相似文献   

7.
Escherichia coli lipoproteins are anchored to either the inner or outer membrane through fatty acyl chains covalently attached to an N-terminal cysteine. Aspartate at position 2 functions to retain lipoproteins in the inner membrane, although the retention is perturbed depending on the residue at position 3. We previously revealed that LolCDE and LolA play critical roles in this lipoprotein sorting. To clarify the sorting signals, the LolA-dependent release of lipoprotein derivatives having various residues at positions 2 and 3 was examined in spheroplasts. When the residue at position 3 was serine, only aspartate at position 2 caused the retention of lipoproteins in spheroplasts. We then examined the release of derivatives having aspartate at position 2 and various residues at position 3. Strong inner membrane retention occurred with a limited number of species of residues at position 3. These residues were present at position 3 of native lipoproteins having aspartate at position 2, whereas residues that inhibited the retention were not. It was also found that a strong inner membrane retention signal having residues other than aspartate at position 2 could be formed through the combination of the residues at positions 2 and 3. These results indicate that the inner membrane localization of native lipoproteins is ensured by the use of a limited number of strong inner membrane retention signals.  相似文献   

8.
The signal peptide of secretory proteins requires a basic amino terminus followed by a stretch of hydrophobic residues to effect efficient translocation of precursor proteins. Replacement of the positively charged amino-terminal residues of prolipoprotein by acidic amino acids decreased the rate of precursor translocation (Inouye, S., Soberon, X., Franceschini, T., Nakamura, K., Itakura, K., and Inouye, M. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 3438-3441; Vlasuk, G. P., Inouye, S., Ito, H., Itakura, K., and Inouye, M. (1983) J. Biol. Chem. 258, 7141-7148). We demonstrate here that an arginine residue, but not an aspartate, when localized at position 9 of the hydrophobic region of the lipoprotein signal peptide, is able to suppress intramolecularly the processing defect caused by an acidic amino terminus. Furthermore, when present at position 14 of the signal peptide, this positive residue, but not aspartate, was able to support efficient translocation of unmodified prolipoprotein. This demonstrates that a positive residue can restore the function of a severely defective signal peptide and need not be localized at the amino terminus to do so. Both aspartate and arginine substitution at position 14 of the lipoprotein signal peptide stimulated prolipoprotein synthesis. This effect was position-specific, did not require precursor translocation, and was dominant to the inhibition of synthesis caused by an acidic amino terminus.  相似文献   

9.
The major outer membrane lipoprotein (Lpp) of Escherichia coli possesses serine at position 2, which is thought to function as the outer membrane sorting signal, and lysine at the C terminus, through which Lpp covalently associates with peptidoglycan. Arginine (R) is present before the C-terminal lysine in the wild-type Lpp (LppSK). By replacing serine (S) at position 2 with aspartate (D), the putative inner membrane sorting signal, and by deleting lysine (K) at the C terminus, Lpp mutants with a different residue at either position 2 (LppDK) or the C terminus (LppSR) or both (LppDR) were constructed. Expression of LppSR and LppDR little affected the growth of E. coli. In contrast, the number of viable cells immediately decreased when LppDK was expressed. Prolonged expression of LppDK inhibited separation of the inner and outer membranes by sucrose density gradient centrifugation, whereas short-term expression did not. Pulse-labeled LppDK and LppDR were localized in the inner membrane, indicating that the amino acid residue at position 2 functions as a sorting signal for the membrane localization of Lpp. LppDK accumulated in the inner membrane covalently associated with the peptidoglycan and thus prevented the separation of the two membranes. Globomycin, an inhibitor of lipoprotein-specific signal peptidase II, was lethal for E. coli only when Lpp possessed the C-terminal lysine. Taken together, these results indicate that the inner membrane accumulation of Lpp per se is not lethal for E. coli. Instead, a covalent linkage between the inner membrane Lpp having the C-terminal lysine and the peptidoglycan is lethal for E. coli, presumably due to the disruption of the cell surface integrity.  相似文献   

10.
When grown under anaerobic conditions, Shewanella putrefaciens MR-1 synthesizes multiple outer membrane (OM) cytochromes, some of which have a role in the use of insoluble electron acceptors (e.g., MnO2) for anaerobic respiration. The cytochromes OmcA and OmcB are localized to the OM and the OM-like intermediate-density membrane (IM) in MR-1. The components necessary for proper localization of these cytochromes to the OM have not been identified. A gene replacement mutant (strain MTRB1) lacking the putative OM protein MtrB was isolated and characterized. The specific cytochrome content of the OM of MTRB1 was only 36% that of MR-1. This was not the result of a general decline in cytochrome content, however, because the cytoplasmic membrane (CM) and soluble fractions were not cytochrome deficient. While OmcA and OmcB were detected in the OM and IM fractions of MTRB1, significant amounts were mislocalized to the CM. OmcA was also detected in the soluble fraction of MTRB1. While OmcA and OmcB in MR-1 fractions were resistant to solubilization with Triton X-100 in the presence of Mg2+, Triton X-100 readily solubilized these proteins from all subcellular fractions of MTRB1. Together, these data suggest that MtrB is required for the proper localization and insertion of OmcA and OmcB into the OM of MR-1. The inability of MTRB1 to properly insert these, and possibly other, proteins into its OM likely contributes to its marked deficiency in manganese(IV) and iron(III) reduction. While the localization of another putative OM cytochrome (MtrF) could not be directly determined, an mtrF gene replacement mutant exhibited wild-types rates of Mn(IV) and Fe(III) reduction. Therefore, even if MtrF were mislocalized in MTRB1, it would not contribute to the loss of metal reduction activity in this strain.  相似文献   

11.
Several mutant forms of rat liver Cd5,Zn2-metallothionein 2 (Cd5,Zn2-MT 2) [1] have been computationally modelled and analysed. All terminal cysteines (5, 13, 19, 21, 26, 29, 33, 36, 41, 48, 57 and 59, Figure 1) have been independently substituted by three other co-ordinating amino-acids (aspartate, glutamate and histidine), and the side-chains of the mutated residues have been modelled to co-ordinate the seven metal ions while minimizing the conformational variations with respect to the wild type protein. We have compared the ability of the putative mutant forms to maintain the MT binding properties. Substitution by aspartate residue best preserves the 3D MT structure. In addition, the mutations C5H plus C21H/E/D show neighbouring impairments that prevent their simultaneous substitution. Although replacement of cysteine by aspartate is feasible in all cases, to our knowledge there is no example of aspartate and cysteine residues co-ordinating to the same zinc atom. Accordingly, the use of histidine or glutamate instead of aspartate cannot be ruled out. The mutant forms in the -domain of Cd5,Zn2-MT 2 have yielded more neighbouring contacts than those in the -domain, which is corroborated by the accessible surface areas [2] of the sulfur atoms [3] in the native form.Abbreviations MT metallothionein - CD5,Zn2-MT Cadmium, Zinc-metallothionein - RMSD Root Mean Square Deviation - PDB Protein Data Bank - FEP Free Energy Perturbation - CnX mutant form of cysteine n (n = residue number) substituted by X (X = H, E or D, with H = histidine, E = glutamate, D = aspartate) - CnX/Y mutant forms CnX and CnY  相似文献   

12.
When grown under anaerobic conditions, Shewanella putrefaciens MR-1 synthesizes multiple outer membrane (OM) cytochromes, some of which have a role in the use of insoluble electron acceptors (e.g., MnO2) for anaerobic respiration. The cytochromes OmcA and OmcB are localized to the OM and the OM-like intermediate-density membrane (IM) in MR-1. The components necessary for proper localization of these cytochromes to the OM have not been identified. A gene replacement mutant (strain MTRB1) lacking the putative OM protein MtrB was isolated and characterized. The specific cytochrome content of the OM of MTRB1 was only 36% that of MR-1. This was not the result of a general decline in cytochrome content, however, because the cytoplasmic membrane (CM) and soluble fractions were not cytochrome deficient. While OmcA and OmcB were detected in the OM and IM fractions of MTRB1, significant amounts were mislocalized to the CM. OmcA was also detected in the soluble fraction of MTRB1. While OmcA and OmcB in MR-1 fractions were resistant to solubilization with Triton X-100 in the presence of Mg2+, Triton X-100 readily solubilized these proteins from all subcellular fractions of MTRB1. Together, these data suggest that MtrB is required for the proper localization and insertion of OmcA and OmcB into the OM of MR-1. The inability of MTRB1 to properly insert these, and possibly other, proteins into its OM likely contributes to its marked deficiency in manganese(IV) and iron(III) reduction. While the localization of another putative OM cytochrome (MtrF) could not be directly determined, an mtrF gene replacement mutant exhibited wild-types rates of Mn(IV) and Fe(III) reduction. Therefore, even if MtrF were mislocalized in MTRB1, it would not contribute to the loss of metal reduction activity in this strain.  相似文献   

13.
In developmentally regulated D1:S3 splicing of Nav1.5, there are 31 nucleotide differences between the 5'-exon ('neonatal') and the 3'-exon ('adult') forms, resulting in 7 amino acid differences in D1:S3-S3/S4 linker. In particular, splicing replaces a conserved negative aspartate residue in the 'adult' with a positive lysine. Here, 'neonatal' and 'adult' Nav1.5 alpha-subunit splice variants were stably transfected into EBNA-293 cells and their electrophysiological properties investigated by whole-cell patch-clamp recording. Compared with the 'adult' isoform, the 'neonatal' channel exhibited (1) a depolarized threshold of activation and voltage at which the current peaked; (2) much slower kinetics of activation and inactivation; (3) 50% greater transient charge (Na(+)) influx; (4) a stronger voltage dependence of time to peak; and (5) a slower recovery from inactivation. Tetrodotoxin sensitivity and VGSCbeta1-4 mRNA expression levels did not change. The significance of the charge-reversing aspartate to lysine substitution was investigated by mutating the lysine in the 'neonatal' channel back to aspartate. In this 'neonatal K211D' mutant, the electrophysiological parameters studied strongly shifted back towards the 'adult', that is the lysine residue was primarily responsible for the electrophysiological effects of Nav1.5 D1:S3 splicing. Taken together, these data suggest that the charge reversal in 'neonatal' Nav1.5 would (1) modify the channel kinetics and (2) prolong the resultant current, allowing greater intracellular Na(+) influx. Developmental and pathophysiological consequences of such differences are discussed.  相似文献   

14.
The nucleoside diphosphate kinase (NDP kinase) from Myxococcus xanthus has been purified to homogeneity and crystallized (J. Munoz-Dorado, M. Inouye, and S. Inouye, J. Biol. Chem. 265:2702-2706, 1990). In the presence of ATP, the NDP kinase was autophosphorylated. Phosphoamino acid analysis was carried out after acid and base hydrolyses of phosphorylated NDP kinase. It was found that the protein was phosphorylated not only at a histidine residue but also at a serine residue. Replacement of histidine 117 with a glutamine residue completely abolished the autophosphorylation and nucleotide-binding activity of the NDP kinase. Since histidine 117 is the only histidine residue that is conserved in all known NDP kinases so far characterized, the results suggest that the phosphohistidine intermediate is formed at this residue during the transphosphorylation reaction from nucleoside triphosphates to nucleoside diphosphates. Preliminary mutational analysis of putative ATP-binding sites is also presented.  相似文献   

15.
A recent molecular dynamics study questioned the protonation state and physiological role of aspartate 127 (D127) of E. coli porin OmpF. To address that question we isolated two OmpF mutants with D127 either neutralized (D127N) or replaced by a positively charged lysine (D127K). The charge state of the residue at position 127 has clear effects on both conductance and selectivity. The D127K but not the D127N mutant expresses resilient conductance and selectivity fluctuations. These fluctuations reflect, we think, either changes in the ionization state of K127 and/or transitions between unstable subconformations as induced by the electrostatic repulsion between two positively charged residues, K127 and the nearby R167. Our results slightly favor the view that in WT OmpF residue D127 is deprotonated. As for the role of D127 in OmpF functionality, the gating of both mutants shows very similar sensitivity toward voltage as WT OmpF. Moreover, the current fluctuations of the D127K mutant were observed also in the absence of an applied electric field. We therefore dismiss D127 as a key residue in the control mechanism of the voltage-dependent gating of OmpF.  相似文献   

16.
Succinyl-CoA synthetase catalyzes the reversible reaction succinyl-CoA + NDP + P(i) <--> succinate + CoA + NTP (N denoting adenosine or guanosine). The enzyme consists of two different subunits, designated alpha and beta. During the reaction, a histidine residue of the alpha-subunit is transiently phosphorylated. This histidine residue interacts with Glu 208 alpha at site I in the structures of phosphorylated and dephosphorylated Escherichia coli SCS. We postulated that Glu 197 beta, a residue in the nucleotide-binding domain, would provide similar stabilization of the histidine residue during the actual phosphorylation/dephosphorylation by nucleotide at site II. In this work, these two glutamate residues have been mutated individually to aspartate or glutamine. Glu 197 beta has been additionally mutated to alanine. The mutant proteins were tested for their ability to be phosphorylated in the forward or reverse direction. The aspartate mutant proteins can be phosphorylated in either direction, while the E208 alpha Q mutant protein can only be phosphorylated by NTP, and the E197 beta Q mutant protein can only be phosphorylated by succinyl-CoA and P(i). These results demonstrate that the length of the side chain at these positions is not critical, but that the charge is. Most significantly, the E197 beta A mutant protein could not be phosphorylated in either direction. Its crystal structure shows large differences from the wild-type enzyme in the conformation of two residues of the alpha-subunit, Cys 123 alpha-Pro 124 alpha. We postulate that in this conformation, the protein cannot productively bind succinyl-CoA for phosphorylation via succinyl-CoA and P(i).  相似文献   

17.
The pK(a) values have been determined for eight of the nine histidine residues and the amino terminus of the N-lobe of human apo-transferrin (hTF/2N), and for seven of the nine histidine residues and the amino terminus of the protein Asp63Ser hTF/2N containing a mutation of the Fe(3+)-ligand Asp63 to Ser63. Calculations suggested that substitution of aspartate by serine would result in decreases of the pK(a) values of most of the histidine residues in the protein. This was found to be the case experimentally, and allowed assignment of the varepsilonCH resonance of His249. For the wild-type protein, the His residue with a pK(a) of 7.40 was assigned as His249, whereas for the mutant, no observable His residue had a pK(a) value higher than 6.9. The protonated form of His249 appears to be stabilised by interactions with Asp63, and the high pK(a) value may be critical for ensuring the release of iron at endosomal pH (5.5). The mutation lowered the apparent binding constant of hTF/2N for the synergistic anion oxalate from log K 4.0 to log K 3.3. (1)H NMR spectral changes induced by Ga(3+) binding to the mutant are compared to those observed for the wild-type protein.  相似文献   

18.
Pilling C  Landgraf KE  Falke JJ 《Biochemistry》2011,50(45):9845-9856
During the appearance of the signaling lipid PI(3,4,5)P(3), an important subset of pleckstrin homology (PH) domains target signaling proteins to the plasma membrane. To ensure proper pathway regulation, such PI(3,4,5)P(3)-specific PH domains must exclude the more prevalant, constitutive plasma membrane lipid PI(4,5)P(2) and bind the rare PI(3,4,5)P(3) target lipid with sufficiently high affinity. Our previous study of the E17K mutant of the protein kinase B (AKT1) PH domain, together with evidence from Carpten et al. [Carpten, J. D., et al. (2007) Nature 448, 439-444], revealed that the native AKT1 E17 residue serves as a sentry glutamate that excludes PI(4,5)P(2), thereby playing an essential role in specific PI(3,4,5)P(3) targeting [Landgraf, K. E., et al. (2008) Biochemistry 47, 12260-12269]. The sentry glutamate hypothesis proposes that an analogous sentry glutamate residue is a widespread feature of PI(3,4,5)P(3)-specific PH domains, and that charge reversal mutation at the sentry glutamate position will yield both increased PI(4,5)P(2) affinity and constitutive plasma membrane targeting. To test this hypothesis, we investigated the E345 residue, a putative sentry glutamate, of the general receptor for phosphoinositides 1 (GRP1) PH domain. The results show that incorporation of the E345K charge reversal mutation into the GRP1 PH domain enhances PI(4,5)P(2) affinity 8-fold and yields constitutive plasma membrane targeting in cells, reminiscent of the effects of the E17K mutation in the AKT1 PH domain. Hydrolysis of plasma membrane PI(4,5)P(2) releases the E345K GRP1 PH domain into the cytoplasm, and the efficiency of this release increases when Arf6 binding is disrupted. Overall, the findings provide strong support for the sentry glutamate hypothesis and suggest that the GRP1 E345K mutation will be linked to changes in cell physiology and human pathologies, as demonstrated for AKT1 E17K [Carpten, J. D., et al. (2007) Nature 448, 439-444; Lindhurst, M. J., et al. (2011) N. Engl. J. Med. 365, 611-619]. Analysis of available PH domain structures suggests that a lone glutamate residue (or, in some cases, an aspartate) is a common, perhaps ubiquitous, feature of PI(3,4,5)P(3)-specific binding pockets that functions to lower PI(4,5)P(2) affinity.  相似文献   

19.
How complement kills E. coli. I. Location of the lethal lesion   总被引:16,自引:0,他引:16  
We have studied the action of human complement (C) on E. coli membranes. We find, as have others, that C disrupts the outer membrane (OM), allowing the release of periplasmic proteins. In addition, we have found 1) that in the complete absence of lysozyme, C damages the inner membrane (IM), 2) IM damage is different from OM damage in that only small molecules traverse a damaged IM whereas macromolecules traverse damaged OM, 3) IM damage and OM damage occur with identical kinetics and dose response, suggesting that IM and OM damage are closely coupled events, and 4) upon the addition of purified C8 and C9 to the washed cellular intermediate, E. coli C 1-7, both IM and OM are damaged coordinately. These results, taken together, suggest that C damages E. coli membranes by acting at a site contiguous with both membranes. We speculate that C may simultaneously gain access to both membranes by acting at the junctions between IM and OM.  相似文献   

20.
Growth hormone (GH) elicits a variety of biological activities mainly mediated by the GH receptor (GHR), a transmembrane protein that, based on in vitro studies, seemed to function as a homodimer. To test this hypothesis directly, we investigated patients displaying the classic features of Laron syndrome (familial GH resistance characterized by severe dwarfism and metabolic dysfunction), except for the presence of normal binding activity of the plasma GH-binding protein, a molecule that derives from the exoplasmic-coding domain of the GHR gene. In two unrelated families, the same GHR mutation was identified, resulting in the substitution of a highly conserved aspartate residue by histidine at position 152 (D152H) of the exoplasmic domain, within the postulated interface sequence involved in homodimerization. The recombinant mutated receptor protein was correctly expressed at the plasma membrane. It displayed subnormal GH-binding activity, a finding in agreement with the X-ray crystal structure data inferring this aspartate residue outside the GH-binding domain. However, mAb-based studies suggested the critical role of aspartate 152 in the proper folding of the interface area. We show that a recombinant soluble form of the mutant receptor is unable to dimerize, the D152H substitution also preventing the formation of heterodimers of wild-type and mutant molecules. These results provide in vivo evidence that monomeric receptors are inactive and that receptor dimerization is involved in the primary signalling of the GH-associated growth-promoting and metabolic actions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号