首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
A DNA fragment containing both the Escherichia coli d-xylose isomerase (d-xylose ketol-isomerase, EC 5.3.1.5) gene and the d-xylulokinase (ATP: d-xylulose 5-phosphotransferase, EC 2.7.1.17) gene has been cloned on an E. coli plasmid. The d-xylose isomerase gene was separated from the d-xylulokinase gene by the construction of a new deletion plasmid, pLX7. The d-xylose isomerase gene cloned on pLX7 was found still to be an intact gene. The precise location of the d-xylose isomerase gene on the plasmid pLX7 was further determined by the construction of two more plasmids, pLX8 and pLX9. This is believed to be the first d-xylose isomerase gene that has been isolated and extensively purified from any organism. d-Xylose isomerase, the enzyme product of the d-xylose isomerase gene, is responsible for the conversion of d-xylose to d-xylulose, as well as d-glucose to d-fructose. It is widely believed that yeast cannot ferment d-xylose to ethanol primarily because of the lack of d-xylose isomerase in yeast. d-Xylose isomerase (also known as d-glucose isomerase) is also used for the commercial production of high-fructose syrups. The purification of the d-xylose isomerase gene may lead to the following industrial applications: (1) cloning and expression of the gene in yeast to make the latter organism capable of directly fermenting d-xylose to ethanol, and (2) cloning of the gene on a high-copy-number plasmid in a proper host to overproduce the enzyme, which should have a profound impact on the high-fructose syrup technology.  相似文献   

2.
Utilization of -xylose as carbon source for production of bacterial cellulose was studied. Seventeen strains of acetic acid bacteria were screened for their cellulose productivity in -glucose, -xylose, and -xylose/ -xylulose mixed media, respectively. -Xylose was not well metabolized by any bacterial strains that exhibited high cellulose production in -glucose medium. Consequently, bacterial cellulose production in -xylose medium was unsuccessful. -Xylose, however, became utilizable substrate for bacterial strains if xylose-isomerase was added to the medium. Acetobacter xylinus IFO 15606 was the best cellulose producer in -xylose/ -xylulose mixed medium, so cultural conditions were studied for enhanced cellulose production. With pH controlled, the strain could produce cellulose at a yield exceeding 0.3 g per 100 ml of -xylose/ -xylulose mixed medium, which was comparable to the yields in -glucose medium by excellent producers in the literature.  相似文献   

3.
Summary The xyclose isomerase gene inEscherichia coli was cloned complementarily into a Leu2-negativeSchizosaccharomyces pombe mutant (ATCC 38399). The subsequent integration of the plasmid into the chromosomal DNA of the host yeast was verified by using the dot blot and southern blot techniques. The expressed xylose isomerase showed activity on a nondenaturing polyacrylamide gel. The expression of xylose isomerase gene was influenced by the concentration of nutrients in the fermentation broth. The yeast possessed a xylose isomerase activity of 20 nmol/min/mg by growing in an enriched medium containing yeast extract-malt extract-peptone (YMP) andd-xylose. The conversion ofd-xylose tod-xylulose catalyzed by xylose isomerase in the transformed yeast cells makes it possible to fermentd-xylose with ethanol as a major product. When the fermentation broth contained YMP and 5% (w/v)d-xylose, the maximal ethanol yield and productivity reached 0.42 g/g and 0.19 g/l/h, respectively.  相似文献   

4.
The xylA gene from a marine bacterium, Vibrio sp. strain XY-214, encoding d-xylose isomerase (XylA) was cloned and expressed in Escherichia coli. The xylA gene consisted of 1,320-bp nucleotides encoding a protein of 439 amino acids with a predicted molecular weight of 49,264. XylA was classified into group II xylose isomerases. The native XylA was estimated to be a homotetramer with a molecular mass of 190 kDa. The purified recombinant XylA exhibited maximal activity at 60°C and pH 7.5. Its apparent K m values for d-xylose and d-glucose were 7.93 and 187 mM, respectively. Furthermore, we carried out d-xylulose production from β-1,3-xylan, a major cell wall polysaccharide component of the killer alga Caulerpa taxifolia. The synergistic action of β-1,3-xylanase (TxyA) and β-1,3-xylosidase (XloA) from Vibrio sp. strain XY-214 enabled efficient saccharification of β-1,3-xylan to d-xylose. d-Xylose was then converted to d-xylulose by using XylA from the strain XY-214. The conversion rate of d-xylose to d-xylulose by XylA was found to be approximately 40% in the presence of 4 mM sodium tetraborate after 2 h of incubation. These results demonstrated that TxyA, XloA, and XylA from Vibrio sp. strain XY-214 are useful tools for d-xylulose production from β-1,3-xylan. Because d-xylulose can be used as a source for ethanol fermentation by yeast Saccharomyces cerevisiae, the present study will provide a basis for ethanol production from β-1,3-xylan.  相似文献   

5.
The complexing parameters of -glucose and -fructose with germanate, derived from various forms of germanium dioxide, have been studied under the conditions pertaining to the -glucose isomerase ( -xylose isomerase, -xylose ketol-isomerase, EC 5.3.1.5) reaction. The interaction of germanate with -glucose and -fructose at various pH values has been investigated by means of optical rotation methods. The effects of temperature and concentration on the extent of complex formation are reported. The results are used to predict suitable conditions for the enhancement of -fructose yield in the reaction of -glucose with this enzyme.  相似文献   

6.
Summary A cluster of three genes involved in d-xylose catabolism (viz. xylose genes) in Lactobacillus pentosus has been cloned in Escherichia coli and characterized by nucleotide sequence analysis. The deduced gene products show considerable sequence similarity to a repressor protein involved in the regulation of expression of xylose genes in Bacillus subtilis (58%), to E. coli and B. subtilis d-xylose isomerase (68% and 77%, respectively), and to E. coli d-xylulose kinase (58%). The cloned genes represent functional xylose genes since they are able to complement the inability of a L. casei strain to ferment d-xylose. NMR analysis confirmed that 13C-xylose was converted into 13C-acetate in L. casei cells transformed with L. pentosus xylose genes but not in untransformed L. casei cells. Comparison with the aligned amino acid sequences of d-xylose isomerases of different bacteria suggests that L. pentosus d-xylose isomerase belongs to the same similarity group as B. subtilis and E. coli d-xylose isomerase and not to a second similarity group comprising d-xylose isomerases of Streptomyces violaceoniger, Ampullariella sp. and Actinoplanes. The organization of the L. pentosus xylose genes, 5-xylR (1167 bp, repressor) — xylA (1350 bp, D-xylose isomerase) — xylB (1506 bp, d-xylulose kinase) — 3 is similar to that in B. subtilis. In contrast to B. subtilis xylR, L. pentosus xylR is transcribed in the same direction as xylA and xylB.  相似文献   

7.
Summary The Escherichia coli xylose isomerase gene was transformed into Schizosaccharomyces pombe for direct d-xylose utilization. In order to understand d-xylose metabolism and determine the limiting factors on d-xylose utilization by the transformed yeast, d-xylose transport, xylose isomerization, and xylulose phosphorylation were investigated. The results indicated that low activity of xylose isomerization in the cloned yeast was the limiting step for d-xylose fermentation. An in vitro study showed that yeast proteases decreased xylose isomerase activity. Xylitol, a by-product of d-xylose fermentation, had no effect on the activity of xylose isomerase.  相似文献   

8.
The Escherichia coli d-xylose isomerase (d-xylose ketol-isomerase, EC 5.3.1.5) gene, xylA, has been cloned on various E. coli plasmids. However, it has been found that high levels of overproduction of the d-xylose isomerase, the protein product of the xylA gene, cannot be accomplished by cloning the intact gene on high copy-number plasmids alone. This is believed to be due to the fact that the expression of the gene through its natural promoter is highly regulated in E. coli. In order to overcome this, the xylA structural gene has been fused with other strong promoters such as tac and lac, resulting in the construction of a number of fused genes. Analysis of the E. coli transformants containing the fused genes, cloned on high copy-number plasmids, indicated that a 20-fold overproduction of the enzyme can now be obtained. It is expected that overproduction of the enzyme in E. coli can still be substantially improved through additional manipulation with recombinant DNA techniques.  相似文献   

9.
The zygomycetous fungus Rhizomucor pusillus NBRC 4578 is able to ferment not only d-glucose but also d-xylose into ethanol. Xylitol dehydrogenase from R. pusillus NBRC 4578 (RpXDH), which catalyzes the second step of d-xylose metabolism, was purified, and its enzymatic properties were characterized. The purified RpXDH preferred NAD+ as its coenzyme and showed substrate specificity for xylitol, d-sorbitol, and ribitol. cDNA cloning of xyl2 gene encoding RpXDH revealed that the gene included a coding sequence of 1,092?bp with a molecular mass of 39,185?kDa. Expression of the xyl2 in R. pusillus NBRC 4578 was induced by d-xylose, and the expression levels were increased with accumulation of xylitol. The xyl2 gene was expressed in Escherichia coli, and coenzyme preference of the recombinant RpXDH was reversed from NAD+ to NADP+ in the double mutant D205A/I206R by site-directed mutagenesis.  相似文献   

10.
11.
An Escherichia coli mutant (MX-5) deficient in d-xylose utilization was isolated. The d-xylose uptake and d-xylose isomerase activities of the mutant were much lower than those of the parental strain (C600). The genes responsible for the d-xylose uptake by E. coli were cloned onto vector plasmid pBR322, and the resultant hybrid plasmid was designated as pXP5. Hybrid plasmid pXP5 improved the growth rate of the mutant (MX-5) on d-xylose, and also both the d-xylose uptake and d-xylose isomerase activities of the mutant were recovered when pXP5 was introduced into the mutant cells. Based on these results, it was suggested that one (xyl T) of the d-xylose transport genes could be closely linked to the d-xylose isomerase gene (xylA) known to be present at 80 min on E. coli chromosomal DNA.  相似文献   

12.
A modification of the resorcinol method of Kulka1 for the determination of ketoses is described. Though being a stopped enzyme test, it is much more sensitive than the carbazol method and by applying microtiter plates and measuring with an ELISA reader, a large number of tests can be performed within a short time, thereby facilitating initial velocity studies.

The test is linear up to a concentration of 2.5 m -xylulose even in the presence of 10 m -xylose and 2 m -fructose in the presence of 10 m -glucose. The sensitivity is 25 μ for xylulose and 38 μ for fructose. The test method is insensitive to perturbations of substances frequently used in isolation procedures such as ammonium sulfate, Triton X-100, PEG 6000, sodium dodecyl sulfate, and ethanol in moderate concentrations.  相似文献   


13.
Summary The uptake of d-{1-13C} xylose, the accumulation of intermediates and the distribution of the label in ethanol in Pichia stipitis under aerobic and anaerobic conditions were investigated by nuclear magnetic resonance spectroscopy. The rate-limiting step of d-xylose metabolism under aerobic conditions appeared to be uptake, whereas under anaerobic conditions it was the conversion of xylitol to xylulose. The yeast showed no preference to either the alpha-or beta-forms of d-xylose. Under anaerobic conditions only {2-13C{ ethanol was detected and this suggests that NADH but not NADPH was used as cofactor in the conversion of xylose to xylitol. d-Xylose is most likely metabolised by the pentose phosphate pathway in this yeast.  相似文献   

14.
Ethanol production using hemicelluloses has recently become a focus of many researchers. In order to promote D: -xylose fermentation, we cloned the bacterial xylA gene encoding for xylose isomerase with 434 amino acid residues from Agrobacterium tumefaciens, and successfully expressed it in Saccharomyces cerevisiae, a non-xylose assimilating yeast. The recombinant strain S. cerevisiae W303-1A/pAGROXI successfully colonized a minimal medium containing D: -xylose as a sole carbon source and was capable of growth in minimal medium containing 2% xylose via aerobic shake cultivation. Although the recombinant strain assimilates D: -xylose, its ethanol productivity is quite low during fermentation with D: -xylose alone. In order to ascertain the key enzyme in ethanol production from D: -xylose, we checked the expression levels of the gene clusters involved in the xylose assimilating pathway. Among the genes classified into four groups by their expression patterns, the mRNA level of pyruvate decarboxylase (PDC1) was reduced dramatically in xylose media. This reduced expression of PDC1, an enzyme which converts pyruvate to acetaldehyde, may cause low ethanol productivity in xylose medium. Thus, the enhancement of PDC1 gene expression may provide us with a useful tool for the fermentation of ethanol from hemicellulose.  相似文献   

15.
The newly isolatedStreptomyces sp. CCM 4102 strain produced a high level of intracellular glucose isomerase in the media containingd-xylose as inducer of the enzyme, corn-steep liquor, yeast extract and magnesium sulfate. The enzyme synthesis was repressed byd-glucose andd-fructose. The strain did not require cobalt ions for enzyme production.  相似文献   

16.
目的:构建以木糖异构酶基因xylA为筛选标记的无抗生素标记Gateway系统植物表达载体。方法:克隆大肠杆菌木糖异构酶基因xylA并用其替换植物表达载体pCAMBIA1301中的hpt基因,利用载体中的多克隆位点将Gateway Binary Vector(pH7WG2D)中酶切位点XbaⅠ和HindⅢ之间包括P35S、T35S、attR1、attR2和CmR-ccdB的片段重组入表达载体pCAMBIA1301中,构建表达载体pCAMBIA1301-xylA-GW,利用含有津田芜菁HY5基因片段的BP反应产物与载体进行LR反应,获得含有目的基因的植物表达载体pCAMBIA1301-xylA-HY5,并导入根癌农杆菌LBA4404中。结果:抗生素筛选及酶切和PCR鉴定表明成功构建了以xylA为筛选标记的无抗生素标记植物表达载体pCAMBIA1301-xylA-HY5。结论:利用木糖异构酶基因xylA结合Gateway克隆技术构建无抗生素标记植物表达载体,可简化、方便植物转基因表达载体构建。  相似文献   

17.
Zusammenfassung Die Protoplasten der obligat aeroben Hefe Rhodotorula gracilis wurden hinsichtlich ihrer charakteristischen physiologischen und Transporteigenschaften mit intakten Zellen verglichen. Folgende Ergebnisse wurden gewonnen: 1. Endogene und durch d-Glucose stimulierte Atmung entsprach den Werten von intakten Hefezellen. 2. d-Glucose wurde von Protoplasten aus dem Medium aufgenommen und abgebaut. 3. Die Aufnahme von d-Xylose führte zu vielfacher Akkumulation der Pentose im Zellinnern. Nach 50 min wurde ein für den Xyloseabbau induziertes System wirksam. 4. Bei Zugabe im Gemisch wurde die Aufnahme von d-Xylose durch d-Glucose unterbunden. 5. Akkumulierte d-Xylose wurde bei Zugabe von d-Glucose im Austauschtransport durch den mobilen Träger aus der Zelle heraus befördert. 6. Der Zuckertransport, gemessen an der d-Xyloseaufnahme, war streng stoffwechselenergieabhängig und wurde durch Entkoppler vollständig gehemmt.Diese Ergebnisse zeigen, daß die Stoffwechsel- und Transportfunktionen der intakten Hefezellen in ihren Protoplasten vollstädig erhalten bleiben. Die Anwendung von R. gracilis-Protoplasten zur Klärung spezieller Fragestellungen ergab: 1. Der Transport von d-Trehalose erfolgte nach extracellulärer Spaltung des Disaccharides durch Aufnahme der entstandenen Glucose. 2. Densitometrische Messungen an Protoplastensuspensionen zeigten sich geeignet zur kontinuierlichen Aufzeichnung von Zuckeraufnahmevorgängen.
Protoplasts from the yeast Rhodotorula gracilis II. Physiological and transport properties
The protoplasts of the obligatory aerobic yeast Rhodotorula gracilis (5/Fres/Harrison) were compared with the intact yeast cells with respect to the identity of their physiological and transport properties. It was found: 1. The rates of endogenous and glucose-stimulated respiration of protoplasts were similar to those of the whole cells. 2. d-glucose was taken up from the medium with constant velocity; no free glucose could be detected inside the protoplasts. 3. The uptake of d-xylose led to manifold accumulation of the pentose intracellularly. Within 50 min incubation an enzyme system for the degradation of d-xylose became effective. 4. In a mixture of d-xylose and d-glucose the latter blocked the uptake of the pentose. 5. d-xylose once accumulated was exchanged by the mobile membrane carrier for d-glucose after its addition to the protoplast suspension. 6. Addition of NaN3 or CCCP resulted in an inhibition of d-xylose uptake. The transport process is tightly coupled to cell metabolism.It is concluded that the metabolic and transport functions of R. gracilis protoplasts equal those of the intact yeast cells. The application of the protoplasts to study some special transport problems revealed: 1. In the course of d-trehalose uptake the disaccharide was cleaved to glucose, which was actually transported across the cell membrane. 2. Densitometry of protoplasts suspensions was found suitable for the continuous recording of sugar uptake processes. This observation is of special importance for further investigations of the oscillations in sugar transport observed earlier (Heller and Höfer, 1973).


Herrn Professor Dr. Maximilian Steiner zum 70. Geburtstag gewidmet.  相似文献   

18.
The physico-chemical properties of the purified glucose isomerases [d-xylose ketol isomerase, EC 5.3.1.5] of Streptomyces olivochromogenes and Bacillus stearothennophilus were examined. The molecular size and shape of both enzymes were similar. The molecular weights, sedimentation coefficients, partial specific volumes, diffusion constants and Stokes’ radii of the Streptomyces and Bacillus enzymes were determined to be 120,000 and 130,000, 7.55 S and 9.35 S, 0.725 and 0.736 ml/g, 5.87 × 10-7 and 6.82 × 10-7 cm2/sec, and 51 and 53 Å, respectively. The Streptomyces glucose isomerase was found to consist of two subunits, each having a molecular weight of 56,000. Large differences were found in the amino acid compositions of these two enzymes, especially in their serine, proline, tyrosine, lysine and arginine contents. The enzymatic properties of both these purified glucose isomerases were also examined, and it was seen that they both displayed activity on d-xylose, d-xylulose, d-glucose, d-fructose, d-arabinose and d-ribose. The smaller Km values and the larger molecular activities for d-xylose and d-xyluIose indicated that both enzymes are essentially d-xylose isomerases. The optimum temperature was 80°C for both enzymes. The optimum pH was 8 to 10 for the Streptomyces enzymes and 7.5 to 8.0 for the Bacillus enzyme. The Bacillus enzyme was more thermostable than the Streptomyces enzyme, but required cobalt ions in addition to magnesium ions for the full expression of its activity.  相似文献   

19.
The fermentation of d-glucose and d-xylose mixtures by the yeast Candida tropicalis NBRC 0618 has been studied under the most favourable operation conditions for the culture, determining the most adequate initial proportion in these sugars for xylitol production. In all the experiments a synthetic culture medium was used, with an initial total substrate concentration of 25 g L−1, a constant pH of 5.0 and a temperature of 30 °C. From the experimental results, it was deduced that the highest values of specific rates of production and of overall yield in xylitol were achieved for the mixtures with the highest percentage of d-xylose, specifically in the culture with the initial d-glucose and d-xylose concentrations of 1 and 24 g L−1, respectively, with an overall xylitol yield of 0.28 g g−1. In addition, the specific rates of xylitol production declined over the time course of the culture and the formation of this bioproduct was favoured by the presence of small quantities of d-glucose. The sum of the overall yield values in xylitol and ethanol for all the experiments ranged from 0.26 to 0.56 g bioproduct/g total substrate.  相似文献   

20.
Summary Fed-batch cultivations of Pichia stipitis and strains of Candida shehatae with d-xylose or d-glucose were conducted at controlled low dissolved oxygen tension (DOT) levels. There were some marked differences between the strains. In general growth was inhibited at lower ethanol concentrations than fermentation, and ethanol levels of up to 47 g·l-1 were produced at 30°C. Ethanol production was mainly growth associated. The yeast strains formed small amounts of monocarboxylic acids and higher alcohols, which apparently did not enhance the ethanol toxicity. The maximum ethanol concentration obtained on d-xylose could not be increased by using a high cell density culture, nor by using d-glucose as substrate. The latter observation suggested that the low ethanol tolerance of these xylose-fermenting yeast strains was not a consequence of the metabolic pathway used during pentose fermentation. In contrast with the C. shehatae strains, it was apparent with P. stipitis CSIR-Y633 that when the ethanol concentration reached about 28 g·l-1, ethanol assimilation exceeded ethanol production, despite cultivation at a low DOT of 0.2% of air saturation. Discontinuing the aeration enabled ethanol accumulation to proceed, but with concomitant xylitol production and cessation of growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号