首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Whitehead LA  Stosz SK  Weiner RM 《Cytobios》2001,106(Z1):99-117
A marine bacterium strain 2-40 (2-40) degraded numerous complex carbohydrates, such as agar, chitin and alginate. It may play an important role in altering carbon fluxes in marine environments. End-product analyses revealed that 2-40 synthesized an agarase system that consisted of at least three enzymes, beta-agarase I, beta-agarase II and alpha-agarase, which acted in concert to degrade polymeric agar to D-galactose and 3,6-anhydro-L-galactose. The agarase system was shown to be both cell envelope-associated and extracellular, with the relative concentrations depending on the growth phase. The principal depolymerase, a beta-agarase I, hydrolysed agar to both neoagarotetrose and neoagarobiose, as identified by thin layer chromatography. This agarase had a mass of 98 kD and a Pi of 4.3. The agarase system was repressed by D-glucose and D-galactose and induced by agar, agarose, neoagarobiose, neoagarotetrose and neoagarohexose.  相似文献   

2.
A novel enzyme, alpha-neoagarooligosaccharide hydrolase (EC 3.2.1.-), which hydrolyzes the alpha-1,3 linkage of neoagarooligosaccharides to yield agaropentaose (O-beta-D-galactopyranosyl(1-->4)-O-3,6-anhydro-alpha-L-galactopyranosyl (1-->3)-D-galactose], agarotriose [O-beta-D-galactopyranosyl(1-->4)-O-3,6-anhydro- alpha-L-galactopyranosyl (1-->3)-D-galactose], agarobiose [O-beta-D-galactopyranosyl(1-->4)-3,6-anhydro-L-galactose], 3,6-anhydro-L-galactose, and D-galactose was isolated from the marine bacterium Vibrio sp. strain JT0107 and characterized. This enzyme was purified 383-fold from cultured cells by using a combination of ammonium sulfate precipitation, successive anion-exchange column chromatography, gel filtration, and hydroxyapatite chromatography, gel filtration, and hydroxyapatite chromatography. The purified protein gave a single band (M(r), 42,000) on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Estimation of the M(r) by the gel filtration method gave a value of 84,000, indicating that the enzyme is dimeric. Amino acid sequence analysis revealed it to have a single N-terminal sequence that has no sequence homology to any other known agarases. The optimum temperature and pH were 30 degrees C and 7.7, respectively. The Km and maximum rate of metabolism for neoagarobiose were 5.37 mM and 92 U/mg of protein, respectively.  相似文献   

3.
Agars are abundant polysaccharides from marine red algae, and their chemical structure consists of alternating D-galactose and 3,6-anhydro-L-galactose residues, the latter of which are presumed to make the polymer recalcitrant to degradation by most terrestrial bacteria. Here we study a family 117 glycoside hydrolase (BpGH117) encoded within a recently discovered locus from the human gut bacterium Bacteroides plebeius. Consistent with this locus being involved in agarocolloid degradation, we show that BpGH117 is an exo-acting 3,6-anhydro-α-(1,3)-L-galactosidase that removes the 3,6-anhydrogalactose from the non-reducing end of neoagaro-oligosaccharides. A Michaelis complex of BpGH117 with neoagarobiose reveals the distortion of the constrained 3,6-anhydro-L-galactose into a conformation that favors catalysis. Furthermore, this complex, supported by analysis of site-directed mutants, provides evidence for an organization of the active site and positioning of the catalytic residues that are consistent with an inverting mechanism of catalysis and suggests that a histidine residue acts as the general acid. This latter feature differs from the vast majority of glycoside hydrolases, which use a carboxylic acid, highlighting the alternative strategies that enzymes may utilize in catalyzing the cleavage of glycosidic bonds.  相似文献   

4.
The structure of the galactan sulphate of P. lanosa has been established by a combination of methylation, treatment with alkali, and partial methanolysis of the alkali-treated polysaccharide to give derivatives of agarobiose. The polysaccharide belongs to the agar class, in which 3-linked derivatives of beta-D-galactose alternate with 4-linked derivatives of alpha-L-galactose in a repeating sequence. In addition to D-galactose itself, the 3-linked units include 6-O-methyl-D-galactose, D-galactose 6-sulphate, and a hitherto unreported unit, 6-O-methyl-D-galactose 4-sulphate. The 4-linked units include L-galactose 6-sulphate, 2-O-methyl-L-galactose 6-sulphate, and 3,6-anhydro-L-galactose.  相似文献   

5.
Recently, agarose-containing macroalgae have gained attention as possible renewable sources for bioethanol-production because of their high polysaccharide content. Complete hydrolysis of agarose produces two monomers, D-galactose (D-Gal) and 3,6-anhydro-L-galactose (L-AnG). However, at present, bioethanol yield from agarophyte macroalgae is low due to the inability of bioethanolproducing microorganisms to convert non-fermentable sugars, such as L-AnG, to bioethanol. Therefore, to increase the bioethanol productivity of agarophytes, it is necessary to determine how agar-degrading microorganisms metabolize L-AnG, and accordingly, construct recombinant microorganisms that can utilize both D-Gal and L-AnG. Previously, we isolated a novel microorganism belonging to a new genus, Postechiella marina M091, which hydrolyzes and metabolizes agar as the carbon and energy source. Here, we report a comparative genomic analysis of P. marina M091, Pseudoalteromonas atlantica T6c, and Streptomyces coelicolor A3(2), of the classes Flavobacteria, Gammaproteobacteria, and Actinobacteria, respectively. In this bioinformatic analysis of these agarolytic bacteria, we found candidate common genes that were believed to be involved in L-AnG metabolism. We then experimentally confirmed the enzymatic function of each gene product in the L-AnG cluster. The formation of two key intermediates, 2-keto-3-deoxy-L-galactonate and 2-keto-3-deoxy-D-gluconate, was also verified using enzymes that utilize these molecules as substrates. Combining bioinformatic analysis and experimental data, we showed that L-AnG is metabolized to pyruvate and D-glyceraldehyde-3-phosphate via six enzymecatalyzed reactions in the following reaction sequence: 3,6-anhydro-L-galactose → 3,6-anhydro-L-galactonate → 2-keto-3-deoxy-L-galactonate → 2,5-diketo-3-deoxy-L-galactonate → 2-keto-3-deoxy-D-gluconate → 2-keto-3-deoxy-6-phospho-D-gluconate → pyruvate + D-glyceraldehyde-3- phosphate. To our knowledge, this is the first report on the metabolic pathway of L-AnG degradation.  相似文献   

6.
The agarose-degrading system of Pseudomonas atlantica has been re-examined. In addition to the previously reported extracellular endo-beta-agarase [Yaphe, W. (1966) in Proceedings 5th International Seaweed Symposium, pp. 333-335] a second, membrane-bound endo-enzyme activity, beta-agarase II has been discovered. These two enzymes act in concert to degrade agarose to neoagarobiose [3,6-anhydro-alpha-L-galactopyranosyl-(1 leads to 3)-D-galactose] and also to degrade partially 6-O-methylated agarose to neoagarobiose and 6(1)-O-methyl-neoagarbiose. Novel assays were devised for beta-agarase II and the associated disaccharidase, neoagarobiose hydrolase. These allowed the critical purification of beta-agarase I and II. beta-Agarase I was purified 670-fold from the bacterial medium by a new method using ammonium sulphate precipitation and gel filtration on Sephadex G-100. The enzyme was resolved from the small amount of extracellular beta-agarase II. Dodecylsulphate/polyacrylamide gel electrophoresis indicated a homogeneous protein and a molecular weight of 32000. Activity was observed against agar over the pH range 3.0-9.0 and optimally at pH 7.0. The enzyme could be used indefinitely at 30 degrees C but only for up to 2 h at 40 degrees C. beta-Agarase II was partially purified (5-fold) from the soluble fraction of disrupted cells by chromatography on Sephadex G-100, hydroxyapatite and DEAE-Sepharose CL-6B. This preparation was free of beta-agarase I and disaccharidase. beta-Agarase II was stimulated by NaCl, optimally in the range 0.10-0.20 mol dm-3 (2.4-fold the activity at 0.010 mol dm-3 NaCl). Alkali earth metal (0.002 mol dm-3 CaCl2 or 0.005 mol dm-3 MgCl2) gave 1.2-fold the normal activity. Optimum activity was over pH 6.5-7.5.  相似文献   

7.
Agarose is degraded by a beta-agarase from Pseudomonas atlantica to neoagarooligosaccharides of degree of polymerization (DP), 4, 6, 8, and 10. A beta-neoagarotetraose hydrolase cleaves the central beta-linkage in neoagarotetraose and the beta-linkage near the nonreducing end in neoagarohexaose and -octaose to yield neoagarobiose. The beta-neoagarotetraose hydrolase was localized on or outside the cytoplasmic membrane, in the cell wall region. The enzyme was activated by NaCl, KCl, CaCl2, MnCl2, and MgSO4, has a Km of 3.4 X 10(-3) M for neoagarotetraose, was free from beta-agarase and alpha-neoagarobiose hydrolase activity, and showed no transglycosidic activity.  相似文献   

8.
Y Sugano  T Matsumoto  H Kodama    M Noma 《Applied microbiology》1993,59(11):3750-3756
An agarase gene (agaA) was cloned from genomic DNA of Vibrio sp. strain JT0107. An open reading frame of 2,985 nucleotides gave a primary translation product composed of the mature protein, agarase 0107 (975 amino acid residues, with a molecular weight of 105,271) and a signal peptide of 20 amino acid residues at the N terminus. Comparison of the deduced amino acid sequence of agarase 0107 with those of Streptomyces coelicolor and Pseudomonas atlantica suggests that these enzymes share two regions in common. The AgaA protein which was expressed in Escherichia coli had the agarase activity. Agarase 0107 hydrolyzes not only agarose but also neoagarotetraose [O-3,6-anhydro-alpha-L-galactopyranosyl (1-->3)-O-beta-D-galactopyranosyl(1-->4)-O-3,6-anhydro-alpha-L-galact opy ranosyl (1-->3)-D-galactose] to yield neoagarobiose [O-3,6-anhydro-alpha-L-galactopyranosyl(1-->3)-D-galactose]. This is a quite unique characteristic for a beta-agarase.  相似文献   

9.
A p-nitrophenyl alpha-galactoside hydrolase is partially released when whole cells of Pseudomonas atlantica are converted to spheroplasts. The p-nitrophenyl alpha-glactoside hydrolase is completely inactivated by treatment of whole cells with diazonaphthalene -- disulfonic acid (NDS), a reagent which does not penetrate the cytoplasmic membrane. Under the conditions used no inactivation of lactic acid dehydrogenase was observed. A specific staining procedure for this enzyme for use in electron microscopy was developed. The results with this technique in conjunction with the results of spheroplasting and NDS localization suggest that p-nitrophenyl alpha-galactoside hydrolase is located in or on the double-track membranes, primarily on the outer double track.  相似文献   

10.
Acyl hydrolase activities have been purified from the leaves of Phaseolus multiflorus. The purification procedure involved heat treatment, DEAE-cellulose chromatography, Sephadex G-100 filtration and hexyl agarose chromatography. The elution pattern from hexyl agarose columns together with substrate competition experiments indicated the presence of two hydrolase enzymes. The first could hydrolyse oleoylglycerol and phosphatidylcholine while the second would deacylate glycosylglycerides and oleoylglycerol. Overall purification of both enzymes was ca 70-fold and the MW of the glycosylglyceride-hydrolysing enzyme was in the range 70–78000.  相似文献   

11.
Aqueous extraction of the red alga C. rubrum gave a galactan sulphate and, possibly, a separate glucan and xylan. The galactan sulphate has an alternating structure of the agar-type with D-galactose or 6-O-methyl-D-galactose as one alternating unit, and L-galactose, 3,6-anhydro-L-galactose; and their respective 2-methyl ethers as the other unit. Sulphate hemi-ester groups are present on position 6 of both D- and L-galactose residues, with smaller amounts on positions 2 and 4 of, probably, D-galactose residues. The polysaccharide differs from others previously examined in that most of the L-galactose residues are non-sulphated.  相似文献   

12.

In enzymatic saccharification of agar, endo- and exo-agarases together with neoagarobiose hydrolase (NABH) are important key enzymes for the sequential hydrolysis reactions. In this study, a bifunctional endo/exo-agarase was fused with NABH for production of mono-sugars (d-galactose and 3,6-anhydro-l-galactose) from agar using only one fusion enzyme. Two fusion enzymes with either bifunctional agarase (Sco3476) or NABH (Zg4663) at the N-terminus, Sco3476–Zg4663 (SZ) and Zg4663–Sco3476 (ZS), were constructed. Both fusion enzymes exhibited their optimal agarase and NABH activities at 40 and 35 °C, respectively. Fusions SZ and ZS enhanced the thermostability of the NABH activity, while only fusion SZ showed a slight enhancement in the NABH catalytic efficiency (K cat/K M) from 14.8 (mg/mL)−1 s−1 to 15.8 (mg/mL)−1 s−1. Saccharification of agar using fusion SZ resulted in 2-fold higher mono-sugar production and 3-fold lower neoagarobiose accumulation when compared to the physical mixture of Sco3476 and Zg4663. Therefore, this fusion has the potential to reduce enzyme production cost, decrease intermediate accumulation, and increase mono-sugar yield in agar saccharification.

  相似文献   

13.
F M Menn  G J Zylstra  D T Gibson 《Gene》1991,104(1):91-94
The gene (todF) encoding 2-hydroxy-6-oxohepta-2,4-dienoate hydrolase in Pseudomonas putida F1 was shown to be located upstream of the todC1C2BADE genes. The latter form part of the tod operon and encode the enzymes responsible for the initial reactions in toluene degradation. The nucleotide (nt) sequence of todF was determined and the deduced amino acid (aa) sequence revealed that the hydrolase contains 276 aa with a Mr of 30,753. The deduced aa sequence was 63.5% homologous to that reported for 2-hydroxymuconic semialdehyde hydrolase which is involved in phenol degradation by Pseudomonas CF600.  相似文献   

14.
Growth on phenol of two strains of Pseudomonas putida biotype A, NCIB 10015 and NCIB 9865, elicits the synthesis of an enzyme that hydrolyzes 2-hydroxy-6-oxo-2,4-heptadienoate to 2-oxopent-4-enoate. The purified enzyme from Pseudomonas NCIB 10015 has a molecular weight of 118,000 and dissociates in sodium dodecyl sulfate to a species of molecular weight 27,700; the enzyme from Pseudomonas NCIB 9865 has a molecular weight of 100,000 and dissociates to a species of 25,000 molecular weight. The hydrolases from both strains have similar Km values, pH optima, and thermal labilities and attack the same range of substrates. Neither hydrolase was stimulated by Mg2+ or Mn2+, and both were inhibited by p-chloromercuribenzoate and iodoacetamide. Immunodiffusion studies with the purified enzymes and antibodies formed against them show some cross-reaction of Pseudomonas NCIB 9865 enzymes with antibodies to Pseudomonas NCIB 10015, but not vice versa.  相似文献   

15.
Palmitoyl-CoA hydrolase (EC 3.1.2.2) and palmitoyl-L-carnitine hydrolase (EC 3.1.1.28) activities from rat liver were investigated. 1. Microsomal and mitochondrial-matrix palmitoyl-CoA hydrolase activities had similar pH and temperature optima, although the activities showed different temperature stability. They were inhibited by Pb2+ and Zn2+. The palmitoyl-CoA hydrolase activities in microsomal fraction and mitochondrial matrix were differently affected by the addition of Mg2+, Ca2+, Co2+, K+ and Na+ to the reaction mixture. ATP, ADP and NAD+ stimulated the microsomal activity and inhibited the mitochondrial-matrix enzyme. The activity of both the microsomal and mitochondrial-matrix hydrolase enzymes was specific for long-chain fatty acyl-CoA esters (C12-C18), with the highest activity for palmitoyl-CoA. The apparent Km for palmitoyl-CoA was 47 microM for the microsomal enzyme and 17 microM for the mitochondrial-matrix enzyme. 2. The palmitoyl-CoA hydrolase and palmitoyl-L-carnitine hydrolase activities of microsomal fraction had similar pH optima and were stimulated by dithiothreitol, but were affected differently by the addition of Pb2+, Mg2+, Ca2+, Mn2+ and cysteine. The two enzymes had different temperature-sensitivities. 3. The data strongly suggest that palmitoyl-CoA hydrolase and palmitoyl-L-carnitine hydrolase are separate microsomal enzymes, and that the hydrolysis of palmitoyl-CoA in the microsomal fraction and mitochondria matrix was catalysed by two different enzymes.  相似文献   

16.
Bacterial indole-3-acetyl-l-aspartic acid (IAA-Asp) hydrolase has shown very high substrate specificity compared with similar IAA-amino acid hydrolase enzymes found in Arabidopsis thaliana. The IAA-Asp hydrolase also exhibits, relative to the Arabidopsis thaliana-derived enzymes, a very high Vmax (fast reaction rate) and a higher Km (lower substrate affinity). These two characteristics indicate that there are fundamental differences in the catalytic activity between this bacterial enzyme and the Arabidopsis enzymes. By employing a computer simulation approach, a catalytic residue, His-385, from a non-sequence-related zinc-dependent exopeptidase of Pseudomonas was found to structurally match His-405 of IAA-Asp hydrolase. The His-405 residue is conserved in all related sequences of bacteria and Arabidopsis. Point mutation experiments of this His-405 to seven different amino acids resulted in complete elimination of enzyme activity. However, point mutation on the neighboring His-404 to eight other residues resulted in reduction, to various degrees, of enzyme activity. Amino acid substitutions for His-404 also showed that this residue influenced the minor activity of the IAA-Asp hydrolase for the substrates IAA-Gly, IAA-Ala, IAA-Ser, IAA-Glu and IAA-Asn. These results show the value and potential of structural modeling for predicting target residues for further study and for directing bioengineering of enzyme structure and function.  相似文献   

17.
Porphyran, a highly substituted agarose from Porphyra umbilicalis was degraded by highly purified beta-agarase I from Pseudomonas atlantica. This enzyme cleaved at the reducing side of units of beta-neoagarobiose (3,6-anhydro-alpha-L-galactopyranosyl-(1 leads to 3)-beta-D-galactopyranose). The oligosaccharides were divided into fractions of low and high molecular weight by dialysis. The permeate (23% of total starting carbohydrate) was separated by ion-exchange into neutral and anionic fractions. Gel filtration of the neutral fraction (19%) resolved two major oligosaccharides. These were shown by 13C-NMR spectroscopy to be 6(3)-O-methyl-neoagarotetraose and 6(3),6(5)-di-O-methyl-neoagarohexaose. Gel filtration of the anionic oligosaccharides (3.3%) revealed two novel monosulphated tetrasaccharides, 6-O-sulphato-alpha-L-galacto-pyranosyl-(1 leads to 3)-beta-D-galactopyranosyl-(1 leads to 4)-3,6-anhydro-alpha-L-galactopyranosyl-(1 leads to 3)-D-galactopyranose and its 6(3)-O-methylated derivative. The 13C-NMR data from the sulphated tetrasaccharides provided a novel reference which was used to characterise higher, partially sulphated fragments in the dialysis permeate. The fraction retained on dialysis (77%) had an average degree of polymerisation of 40 and was homologous with the high-molecular-weight anionic permeate. From 13C-NMR spectroscopy porphyran was found to comprise 49% sulphated disaccharide units and these were calculated to occur in stretches averaging 2.0-2.5 contiguous units.  相似文献   

18.
Pseudomonas reinekei MT1 is capable of growing on 4- and 5-chlorosalicylate, involving a pathway with trans-dienelactone hydrolase (trans-DLH) as a key enzyme. It acts on 4-chloromuconolactone formed during cycloisomerization of 3-chloromuconate by hydrolyzing it to maleylacetate. The gene encoding this activity was localized, sequenced and expressed in Escherichia coli. Inductively coupled plasma mass spectrometry showed that both the wild-type as well as recombinant enzymes contained 2 moles of zinc but variable amounts of manganese/mol of protein subunit. The inactive metal-free apoenzyme could be reactivated by Zn2+ or Mn2+. Thus, trans-DLH is a Zn2+-dependent hydrolase using halosubstituted muconolactones and trans-dienelactone as substrates, where Mn2+ can substitute for Zn2+. It is the first member of COG1878 and PF04199 for which a direct physiological function has been reported.  相似文献   

19.
Streptomyces coelicolor can degrade agar, the main cell wall component of red macroalgae, for growth. To constitute a crucial carbon source for bacterial growth, the alternating α-(1,3) and β-(1,4) linkages between the 3,6-anhydro-L-galactoses and D-galactoses of agar must be hydrolyzed by α/β-agarases. In S. coelicolor, DagA was confirmed to be an endo-type β-agarase that degrades agar into neoagarotetraose and neoagarohexaose. Genomic sequencing data of S. coelicolor revealed that Sco3487, annotated as a putative hydrolase, has high similarity to the glycoside hydrolase (GH) GH50 β-agarases. Sco3487 encodes a primary translation product (88.5 kDa) of 798 amino acids, including a 45-amino-acid signal peptide. The sco3487 gene was cloned and expressed under the control of the ermE promoter in Streptomyces lividans TK24. β-Agarase activity was detected in transformant culture broth using the artificial chromogenic substrate p-nitrophenyl-β-D-galactopyranoside. Mature Sco3487 (83.9 kDa) was purified 52-fold with a yield of 66% from the culture broth. The optimum pH and temperature for Sco3487 activity were 7.0 and 40°C, respectively. The K(m) and V(max) for agarose were 4.87 mg/ml (4 × 10(-5) M) and 10.75 U/mg, respectively. Sco3487 did not require metal ions for its activity, but severe inhibition by Mn(2+) and Cu(2+) was observed. Thin-layer chromatography analysis, matrix-assisted laser desorption ionization-time of flight mass spectrometry, and Fourier transform-nuclear magnetic resonance spectrometry of the Sco3487 hydrolysis products revealed that Sco3487 is both an exo- and endo-type β-agarase that degrades agarose, neoagarotetraose, and neoagarohexaose into neoagarobiose.  相似文献   

20.
A surface anchor system derived from the ice-nucleation protein (INP) from Pseudomonas syringe was used to localize organophosphorus hydrolase (OPH) onto the surface of Pseudomonas putida KT2440. Cells harboring the shuttle vector pPNCO33 coding for the INP-OPH fusion were capable of targeting OPH onto the cell surface as demonstrated by whole cell ELISA. The whole cell activity of P. putida KT2440 was shown to be 10 times higher than those of previous efforts expressing the same fusion protein in Escherichia coli. The capability of expressing enzymes on the surface of a robust and environmentally benign P. putida KT2440 should open up new avenues for a wide range of applications such as in situ bioremediation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号