首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The equivalent radius for any solution property is the radius of a spherical particle having the same value of solution property as that of the macromolecule under consideration. Equivalent radii for different properties present a dependence on size and shape that are more similar than the values of the properties themselves. Furthermore, the ratios of equivalent radii of two properties depend on the conformation (shape or flexibility), but not on the absolute sizes. We define equivalent radii and their ratios, and describe their evaluation for some common models of rigid and flexible macromolecules. Using radii and ratios, we have devised procedures to fit macromolecular models to experimental properties, allowing the determination of the model parameters. Using these quantities, we can construct target functions for an equilibrated, unbiased optimization. The procedures, which have been implemented in public-domain computer programs, are illustrated for rigid, globular proteins, and the rodlike tobacco mosaic virus, and for semiflexible, wormlike heparin molecules.  相似文献   

2.
We present a scheme, based on existing and newly developed computational tools, for the determination of the overall conformation of biological macromolecules composed by domains or subunits, using from such structural determination easily available solution properties. In a multi-scale approach, atomic-level structures are used to provide simple shapes for the subunits, which are put together in a coarse grained model, with a few parameters that determine the overall shape of the macromolecule. Computer programs, like those in the HYDRO suite that evaluate the properties of either atomic or coarse-grained models. In this paper we present a new scheme for a global fit of multiple properties, implemented in a new computer program, HYDROFIT, which interfaces with the programs of the HYDRO suite to find an optimum, best-fitting structure in a robust but simple way. The determination of the overall structure of the native antibody IgG3, bearing a long hinge, and that of the hingeless mutant m15 is presented to test and confirm the validity of this simple, systematic and efficient scheme.  相似文献   

3.
Flohil JA  Vriend G  Berendsen HJ 《Proteins》2002,48(4):593-604
A method is presented to refine models built by homology by the use of restricted molecular dynamics (MD) techniques. The basic idea behind this method is the use of structure validation software to determine for each residue the likelihood that it is modeled correctly. This information is used to determine constraints and restraints in an MD simulation including explicit solvent molecules, which is used for model refinement. The procedure is based on the idea that residues that the validation software identifies as correctly positioned should be strongly constrained or restrained in the MD simulations, whereas residues that are likely to be positioned wrongly should move freely. Two different protocols are compared: one (applied to CASP3 target T58) using full structural constraints with separate optimization of each short fragment and the other (applied to T47) allowing some freedom using harmonic restraining potentials, with automatic optimization of the whole molecule. Structures along the MD trajectory that scored best in structural checks were selected for the construction of models that appeared to be successful in the CASP3 competition. Model refinement with MD in general leads to a model that is less like the experimental structure (Levitt et al. Nature Struct Biol 1999;6:108-111). Actually, refined T47 was slightly improved compared to the starting model; changes in model T58 led not to further enhancement. After the X-ray structure of the modeled proteins became known, the procedure was evaluated for two targets (T47 and the CASP4 target T111) by comparing a long simulation in water with the experimental target structures. It was found that structural improvements could be obtained on a nanosecond time scale by allowing appropriate freedom in the simulation. Structural checks applied to fast fluctuations do not appear to be informative for the correctness of the structure. However, both a simple hydrogen bond count and a simple compactness measure, if averaged over times of typically 300 ps, correlate well with structural correctness and we suggest that criteria based on these properties may be used in computational folding strategies.  相似文献   

4.
Liu ZP  Wu LY  Wang Y  Zhang XS  Chen L 《Amino acids》2008,35(3):627-650
One of the major goals of molecular and evolutionary biology is to understand the functions of proteins by extracting functional information from protein sequences, structures and interactions. In this review, we summarize the repertoire of methods currently being applied and report recent progress in the field of in silico annotation of protein function based on the accumulation of vast amounts of sequence and structure data. In particular, we emphasize the newly developed structure-based methods, which are able to identify locally structural motifs and reveal their relationship with protein functions. These methods include computational tools to identify the structural motifs and reveal the strong relationship between these pre-computed local structures and protein functions. We also discuss remaining problems and possible directions for this exciting and challenging area.  相似文献   

5.
6.
The computational method of constrained constructive optimization was used to generate complex arterial model trees by optimization with respect to a target function. Changing the target function also changes the tree structure obtained. For a parameterized family of target functions a series of trees was created, showing visually striking differences in structure that can also be quantified by appropriately chosen numerical indexes. Blood transport path length, pressure profile, and an index for relative segment orientation show clear dependencies on the optimization target, and the nature of changes can be explained on theoretical grounds. The main goal was to display, quantify, and explain the structural changes induced by different optimization target functions.  相似文献   

7.
In the last decade, directed evolution has become a routine approach for engineering proteins with novel or altered properties. Concurrently, a trend away from purely 'blind' randomization strategies and towards more 'semi-rational' approaches has also become apparent. In this review, we discuss ways in which structural information and predictive computational tools are playing an increasingly important role in guiding the design of randomized libraries: web servers such as ConSurf-HSSP and SCHEMA allow the prediction of sites to target for producing functional variants, while algorithms such as GLUE, PEDEL and DRIVeR are useful for estimating library completeness and diversity. In addition, we review recent methodological developments that facilitate the construction of unbiased libraries, which are inherently more diverse than biased libraries and therefore more likely to yield improved variants.  相似文献   

8.
The genomes of many organisms have been sequenced in the last 5 years. Typically about 30% of predicted genes from a newly sequenced genome cannot be given functional assignments using sequence comparison methods. In these situations three-dimensional structural predictions combined with a suite of computational tools can suggest possible functions for these hypothetical proteins. Suggesting functions may allow better interpretation of experimental data (e.g., microarray data and mass spectroscopy data) and help experimentalists design new experiments. In this paper, we focus on three hypothetical proteins of Shewanella oneidensis MR-1 that are potentially related to iron transport/metabolism based on microarray experiments. The threading program PROSPECT was used for protein structural predictions and functional annotation, in conjunction with literature search and other computational tools. Computational tools were used to perform transmembrane domain predictions, coiled coil predictions, signal peptide predictions, sub-cellular localization predictions, motif prediction, and operon structure evaluations. Combined computational results from all tools were used to predict roles for the hypothetical proteins. This method, which uses a suite of computational tools that are freely available to academic users, can be used to annotate hypothetical proteins in general.  相似文献   

9.
Structural genomics is on a quest for the structure and function of a significant fraction of gene products. Current efforts are focusing on structure determination of single-domain proteins, which can readily be targeted by X-ray crystallography, NMR spectroscopy and computational homology modeling. However, comprehensive association of gene products with functions also requires systematic determination of more complex protein structures and other biomolecules participating in cellular processes such as nucleic acids, and characterization of biomolecular interactions and dynamics relevant to function. Such NMR investigations are becoming more feasible, not only due to recent advances in NMR methodology, but also because structural genomics is providing valuable structural information and new experimental and computational tools. The measurement of residual dipolar couplings in partially oriented systems and other new NMR methods will play an important role in this synergistic relationship between NMR and structural genomics. Both an expansion in the domain of NMR application, and important contributions to future structural genomics efforts can be anticipated.  相似文献   

10.
We present Illuminator, a user-friendly web front end to computational models such as docking and 3D shape similarity calculations. Illuminator was specifically created to allow non-experts to design and submit molecules to computational chemistry programs. As such it provides a simple user interface allowing users to submit jobs starting from a 2D structure. The models provided are pre-optimized by computational chemists for each specific target. We provide an example of how Illuminator was used to prioritize the design of molecular substituents in the Anadys HCV Polymerase (NS5B) project. With 7500 submitted jobs in 1.5 years, Illuminator has allowed project teams at Anadys to accelerate the optimization of novel leads. It has also improved communication between project members and increased demand for computational drug discovery tools.  相似文献   

11.
Intrinsically disordered proteins (IDPs), which lack folded structure and are disordered under nondenaturing conditions, have been shown to perform important functions in a large number of cellular processes. These proteins have interesting structural properties that deviate from the random-coil-like behavior exhibited by chemically denatured proteins. In particular, IDPs are often observed to exhibit significant compaction. In this study, we have analyzed the hydrodynamic radii of a number of IDPs to investigate the sequence determinants of this compaction. Net charge and proline content are observed to be strongly correlated with increased hydrodynamic radii, suggesting that these are the dominant contributors to compaction. Hydrophobicity and secondary structure, on the other hand, appear to have negligible effects on compaction, which implies that the determinants of structure in folded and intrinsically disordered proteins are profoundly different. Finally, we observe that polyhistidine tags seem to increase IDP compaction, which suggests that these tags have significant perturbing effects and thus should be removed before any structural characterizations of IDPs. Using the relationships observed in this analysis, we have developed a sequence-based predictor of hydrodynamic radius for IDPs that shows substantial improvement over a simple model based upon chain length alone.  相似文献   

12.
In order to bridge the gap between proteins with three-dimensional (3-D) structural information and those without 3-D structures, extensive experimental and computational efforts for structure recognition are being invested. One of the rapid and simple computational approaches for structure recognition makes use of sequence profiles with sensitive profile matching procedures to identify remotely related homologous families. While adopting this approach we used profiles that are generated from structure-based sequence alignment of homologous protein domains of known structures integrated with sequence homologues. We present an assessment of this fast and simple approach. About one year ago, using this approach, we had identified structural homologues for 315 sequence families, which were not known to have any 3-D structural information. The subsequent experimental structure determination for at least one of the members in 110 of 315 sequence families allowed a retrospective assessment of the correctness of structure recognition. We demonstrate that correct folds are detected with an accuracy of 96.4% (106/110). Most (81/106) of the associations are made correctly to the specific structural family. For 23/106, the structure associations are valid at the superfamily level. Thus, profiles of protein families of known structure when used with sensitive profile-based search procedure result in structure association of high confidence. Further assignment at the level of superfamily or family would provide clues to probable functions of new proteins. Importantly, the public availability of these profiles from us could enable one to perform genome wide structure assignment in a local machine in a fast and accurate manner.  相似文献   

13.
Cui J  Liu J  Li Y  Shi T 《PloS one》2011,6(1):e16022
Mitochondria are major players on the production of energy, and host several key reactions involved in basic metabolism and biosynthesis of essential molecules. Currently, the majority of nucleus-encoded mitochondrial proteins are unknown even for model plant Arabidopsis. We reported a computational framework for predicting Arabidopsis mitochondrial proteins based on a probabilistic model, called Naive Bayesian Network, which integrates disparate genomic data generated from eight bioinformatics tools, multiple orthologous mappings, protein domain properties and co-expression patterns using 1,027 microarray profiles. Through this approach, we predicted 2,311 candidate mitochondrial proteins with 84.67% accuracy and 2.53% FPR performances. Together with those experimental confirmed proteins, 2,585 mitochondria proteins (named CoreMitoP) were identified, we explored those proteins with unknown functions based on protein-protein interaction network (PIN) and annotated novel functions for 26.65% CoreMitoP proteins. Moreover, we found newly predicted mitochondrial proteins embedded in particular subnetworks of the PIN, mainly functioning in response to diverse environmental stresses, like salt, draught, cold, and wound etc. Candidate mitochondrial proteins involved in those physiological acitivites provide useful targets for further investigation. Assigned functions also provide comprehensive information for Arabidopsis mitochondrial proteome.  相似文献   

14.
Structural genomics projects are producing many three-dimensional structures of proteins that have been identified only from their gene sequences. It is therefore important to develop computational methods that will predict sites involved in productive intermolecular interactions that might give clues about functions. Techniques based on evolutionary conservation of amino acids have the advantage over physiochemical methods in that they are more general. However, the majority of techniques neither use all available structural and sequence information, nor are able to distinguish between evolutionary restraints that arise from the need to maintain structure and those that arise from function. Three methods to identify evolutionary restraints on protein sequence and structure are described here. The first identifies those residues that have a higher degree of conservation than expected: this is achieved by comparing for each amino acid position the sequence conservation observed in the homologous family of proteins with the degree of conservation predicted on the basis of amino acid type and local environment. The second uses information theory to identify those positions where environment-specific substitution tables make poor predictions of the overall amino acid substitution pattern. The third method identifies those residues that have highly conserved positions when three-dimensional structures of proteins in a homologous family are superposed. The scores derived from these methods are mapped onto the protein three-dimensional structures and contoured, allowing identification clusters of residues with strong evolutionary restraints that are sites of interaction in proteins involved in a variety of functions. Our method differs from other published techniques by making use of structural information to identify restraints that arise from the structure of the protein and differentiating these restraints from others that derive from intermolecular interactions that mediate functions in the whole organism.  相似文献   

15.
Protein function is a dynamic property closely related to the conformational mechanisms of protein structure in its physiological environment. To understand and control the function of target proteins, it becomes increasingly important to develop methods and tools for predicting collective motions at the molecular level. In this article, we review computational methods for predicting conformational dynamics and discuss software tools for data analysis. In particular, we discuss a high-throughput, web-based system called iGNM for protein structural dynamics. iGNM contains a database of protein motions for more than 20 000 PDB structures and supports online calculations for newly deposited PDB structures or user-modified structures. iGNM allows dynamics analysis of protein structures ranging from enzymes to large complexes and assemblies, and enables the exploration of protein sequence-structure-dynamics-function relations.  相似文献   

16.
Modeling of signaling networks   总被引:8,自引:0,他引:8  
Biochemical networks, including those containing signaling pathways, display a wide range of regulatory properties. These include the ability to propagate information across different time scales and to function as switches and oscillators. The mechanisms underlying these complex behaviors involve many interacting components and cannot be understood by experiments alone. The development of computational models and the integration of these models with experiments provide valuable insight into these complex systems-level behaviors. Here we review current approaches to the development of computational models of biochemical networks and describe the insights gained from models that integrate experimental data, using three examples that deal with ultrasensitivity, flexible bistability and oscillatory behavior. These types of complex behavior from relatively simple networks highlight the necessity of using theoretical approaches in understanding higher order biological functions.  相似文献   

17.
Crotalase is a serine protease from eastern diamondback rattlesnake (Crotalus adamanteus) venom. Crotalase has high amino-acid sequence similarity to three other members of the serine protease family, -thrombin, β-trypsin and kallikrein A. Their structural information was used to predict the folding of crotalase. The computational structural data were used to explain biochemical properties of this important enzyme.

The first computational model for the structure of crotalase is reported herein. The implications of the details of the structure for the biological activity are discussed.  相似文献   


18.
Metabolic engineering is a critical biotechnological approach in addressing global energy and environment challenges. Most engineering efforts, however, consist of laborious and inefficient trial-and-error of target pathways, due in part to the lack of methodologies that can comprehensively assess pathway properties in thermodynamics and kinetics. Metabolic engineering can benefit from computational tools that evaluate feasibility, expense and stability of non-natural metabolic pathways. Such tools can also help us understand natural pathways and their regulation at systems level. Here we introduce a computational toolbox, PathParser, which, for the first time, integrates multiple important functions for pathway analysis including thermodynamics analysis, kinetics-based protein cost optimization and robustness analysis. Specifically, PathParser enables optimization of the driving force of a pathway by minimizing the Gibbs free energy of least thermodynamically favorable reaction. In addition, based on reaction thermodynamics and enzyme kinetics, it can compute the minimal enzyme protein cost that supports metabolic flux, and evaluate pathway stability and flux in response to enzyme concentration perturbations. In a demo analysis of the Calvin–Benson–Bassham cycle and photorespiration pathway in the model cyanobacterium Synechocystis PCC 6803, the computation results are corroborated by experimental proteomics data as well as metabolic engineering outcomes. This toolbox may have broad application in metabolic engineering and systems biology in other microbial systems.  相似文献   

19.
Advances in computational analysis of riboswitches in the last decade have contributed greatly to our understanding of riboswitch regulatory roles and mechanisms. Riboswitches were originally discovered as part of the sequence analysis of the 5′-untranslated region of mRNAs in the hope of finding novel gene regulatory sites, and the existence of structural RNAs appeared to be a spurious phenomenon. As more riboswitches were discovered, they illustrated the diversity and adaptability of these RNA regulatory sequences. The fact that a chemically monotonous molecule like RNA can discern a wide range of substrates and exert a variety of regulatory mechanisms was subsequently demonstrated in diverse genomes and has hastened the development of sophisticated algorithms for their analysis and prediction. In this review, we focus on some of the computational tools for riboswitch detection and secondary structure prediction. The study of this simple yet efficient form of gene regulation promises to provide a more complete picture of a world that RNA once dominated and allows rational design of artificial riboswitches. This article is part of a Special Issue entitled: Riboswitches.  相似文献   

20.
Brunger AT 《Nature protocols》2007,2(11):2728-2733
Version 1.2 of the software system, termed Crystallography and NMR system (CNS), for crystallographic and NMR structure determination has been released. Since its first release, the goals of CNS have been (i) to create a flexible computational framework for exploration of new approaches to structure determination, (ii) to provide tools for structure solution of difficult or large structures, (iii) to develop models for analyzing structural and dynamical properties of macromolecules and (iv) to integrate all sources of information into all stages of the structure determination process. Version 1.2 includes an improved model for the treatment of disordered solvent for crystallographic refinement that employs a combined grid search and least-squares optimization of the bulk solvent model parameters. The method is more robust than previous implementations, especially at lower resolution, generally resulting in lower R values. Other advances include the ability to apply thermal factor sharpening to electron density maps. Consistent with the modular design of CNS, these additions and changes were implemented in the high-level computing language of CNS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号