首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The relationship between MHC class I (H-2) expression and tumorigenicity was investigated after intracerebral inoculation of the murine lymphoma YAC-1 and its H-2 negative variant, A.H-2-. YAC-1 was less tumorigenic than A.H-2- in normal as well as NK-depleted syngeneic A/Sn mice. However, in T-cell-depleted syngeneic mice YAC-1 was as tumorigenic as A.H-2-. Following intracerebral growth, the H-2 expression of YAC-1 was markedly enhanced in a similar fashion as after intraperitoneal passage. The A.H-2- variant remained H-2 negative after intracranial passage. The H-2 negative variant cells were not rejected from the brain even when intermixed with wild-type YAC-1 cells prior to intracerebral inoculation, excluding an "innocent bystander" effect. In vitro, the intracerebrally passaged YAC-1 line showed enhanced sensitivity to lysis by H-2 Kk Dd (H-2a) specific CTLs but decreased sensitivity to NK cells. The A.H-2- line was unchanged. Our data suggest that the lack of H-2 molecules may facilitate the growth of antigenic tumor cells in the brain due to escape from T-cell-mediated immunosurveillance. Our data also suggest, in line with other recent findings, that intracerebrally growing tumor cells are sheltered from NK cell-mediated rejection.  相似文献   

2.
Small cellular lung carcinoma (SCLC) cell lines are susceptible to lysis by NK cells. SCLC, normally negative for MHC class I Ag, were rendered positive for HLA-A and -B Ag by two methods: treatment with IFN-gamma or transfection with HLA class I genes. Exposure to IFN-gamma induced high levels of class I Ag and reduced susceptibility to NK-mediated lysis. However, transfection with either HLA-A2, HLA-B27, or HLA-B27 with beta 2m did not result in reduced susceptibility to NK cells. These transfectants expressed amounts of HLA class I Ag comparable to those in IFN-gamma-treated, untransfected cells. Transfection with the beta 2m gene or plasmid alone neither influenced levels of surface class I Ag nor resulted in reduced susceptibility to lysis by NK cells. Thus, the effects of IFN-gamma on NK susceptibility can be dissociated from the induction of class I Ag.  相似文献   

3.
Two H-2 negative variants of the YAC-1 lymphoma were selected by mutagenization and sequential in vitro selections and compared with wild-type cells for changes in NK sensitivity and H-2 expression after interferon treatment or in vivo passage. The H-2 negative variants and the low H-2 expressor YAC-1 wild-type cells had similar NK sensitivity. However, IFN-beta or recombinant IFN-gamma pretreatments increased the H-2 expression of YAC-1 and protected them from NK lysis, whereas the H-2 variants, which remained H-2 negative, were not protected and often more sensitive to NK lysis. The H-2 variants were similarly susceptible as wild-type cells to three other cellular effects of interferon: protection from virus infection, modulation of Con A capping, and inhibition of cell proliferation. Thus, the only interferon-mediated effect that distinguished the H-2 negative variants from wild-type cells was the inability of the former to increase their H-2 expression and decrease their NK sensitivity. The wild-type YAC-1 line showed increased H-2 expression and decreased NK sensitivity after in vivo passage. In contrast, in vivo passaged H-2 variants showed no reexpression of H-2, and remained NK sensitive. The altered responses to interferon and in vivo passage were specific for loss or down-regulation of H-2, because Thy-1 loss (H-2 positive) YAC-1 variants behaved as the wild-type cells in all respects. This study supports the hypothesis that NK cells may function in vivo to eliminate host cells that fail to express H-2 after interferon stimulation during an immune response; such cells are a potential threat because they may escape recognition by T lymphocytes despite the expression of viral or tumor-associated antigens.  相似文献   

4.
Recent evidence has demonstrated that the lytic function of natural killer cells might be regulated by potential target cells through the target cells' expression of cell surface components that are able to inhibit the lytic process. Specifically, it has been shown in many target cell systems that the expression of class I MHC proteins by target cells is inversely proportional to their susceptibility to lysis by NK cells. It has been suggested, therefore, that MHC proteins may act as important negative regulatory elements in the ongoing control of NK cell function. Herein, we examined two closely related murine lymphoma cells (ASL1 and ASL1w), both in terms of their susceptibility to lysis by NK cells as well as their expression of both H-2K and H-2D class I MHC proteins. The results of these studies showed that whereas ASL1 and ASL1w cells differed greatly in their susceptibility to NK cell lysis (ASL1 was much more NK resistant than ASL1w), both expressed high levels of H-2K and D proteins. In contrast to what might have been predicted base on reports from other target cell systems, the more NK susceptible ASL1w cells expressed somewhat higher levels of H-2K Ag than did ASL1 cells. These results indicate that expression of H-2 class I proteins by target cells, in and of itself, is not sufficient to inhibit the lytic activity of murine NK cells.  相似文献   

5.
Various investigators have examined the relationship between tumor cell susceptibility to natural killer (NK) cell lysis and the expression of HLA class I antigens on the tumor cell. There is controversy as to whether or not an inverse relationship exists, and if so, the basis of the relationship between these two phenomena remains undefined. To address these questions, the genomic clones for two HLA antigens were transfected into the erythroleukemia cell line K562, a cell line that is used as the standard to assess human NK and major histocompatibility complex (MHC) nonrestricted cytolysis. Susceptibility to NK lysis was not affected by the de novo expression of HLA antigens on the K562 after DNA mediated gene transfer. Interferon-gamma (IFN-gamma) treatment of K562 induced levels of MHC class I antigen surface expression comparable to those found on the transfected cells; however, the IFN-gamma-treated cells were resistant to NK lysis. When very high levels of surface HLA antigens were induced on the transfectants, a potential effect of class I MHC expression on K562 lysis could be discerned that was distinct from the resistance to NK lysis induced by IFN-gamma-treatment.  相似文献   

6.
MHC class I molecules strongly influence the phenotype and function of mouse NK cells. NK cell-mediated lysis is prevented through the interaction of Ly49 receptors on the effector cell with appropriate MHC class I ligands on the target cell. In addition, host MHC class I molecules have been shown to modulate the in vivo expression of Ly49 receptors. We have previously reported that H-2Dd and H-2Dp MHC class I molecules are able to protect (at the target cell level) from NK cell-mediated lysis and alter the NK cell specificity (at the host level) in a similar manner, although the mechanism behind this was not clear. In this study, we demonstrate that the expression of both H-2Dd and H-2Dp class I molecules in target cells leads to inhibition of B6 (H-2b)-derived Ly49A+ NK cells. This inhibition could in both cases be reversed by anti-Ly49A Abs. Cellular conjugate assays showed that Ly49A-expressing cells indeed bind to cells expressing H-2Dp. The expression of Ly49A and Ly49G2 receptors on NK cells was down-regulated in H-2Dp-transgenic (B6DP) mice compared with nontransgenic B6 mice. However, B6DP mice expressed significantly higher levels of Ly49A compared with H-2Dd-transgenic (D8) mice. We propose that both H-2Dd and H-2Dp MHC class I molecules can act as ligands for Ly49A.  相似文献   

7.
Activation of NK cells by target cells leads to cytotoxicity as well as production of various cytokines including IFN-gamma. MHC class I molecules on target cells regulate NK cytotoxicity. However, little is known about the regulation of IFN-gamma production by NK cells. We examined the production of IFN-gamma in individual murine NK cells stimulated with tumor cell lines by flow cytometric analysis of intracellular IFN-gamma. Among several tumor lines tested, the rat basophilic leukemia line RBL-1 induced particularly high level of IFN-gamma production in IL-2-activated NK cells, whereas other lines, including the prototypic NK target YAC-1, induced very low or no IFN-gamma production. Transfection of murine classical MHC class I molecules into RBL-1 cells substantially inhibited IFN-gamma production. This inhibition of IFN-gamma production by MHC class I was independent of Ly-49 or CD94/NKG2A expression on NK cells. These results indicate that some target cells directly stimulate IL-2-activated NK cells and induce IFN-gamma production, but the requirements for the induction of IFN-gamma production seem different from those for NK cytotoxicity. Furthermore, similar to NK cytotoxicity, induction of IFN-gamma production is inhibited by MHC class I on stimulating cells. However, the MHC class I-specific receptors inhibiting IFN-gamma production are different from those for NK cytotoxicity.  相似文献   

8.
Recent reports suggested a correlation between decreased expression of tumor cell MHC class I Ag and increased susceptibility to NK cells. These studies led to the hypothesis that tumor cells displaying reduced levels of MHC class I Ag have reduced tumorigenicity in vivo because they are eliminated from the host by endogenous NK cells. The present studies use the murine hepatoma BW7756 and a spontaneous H-2Kb loss variant, Hepa-1, to test this hypothesis. The parental BW7756 tumor is highly malignant in syngeneic C57L/J hosts while Hepa-1 cells do not give rise to tumors, suggesting that the loss of H-2Kb Ag expression correlates with decreased tumorigenicity and NK susceptibility. Hepa-1 cells were therefore transfected with an H-2Kb gene to generate H-2Kb Ag expressing clones. The resulting clones were tested for tumorigenicity. Syngeneic or NK-deficient C57BL/6-beige/beige mice challenged with Hepa-1 or the H-2Kb transfectants rejected the cells, suggesting that reexpression of H-2Kb Ag does not restore tumorigenicity and that NK cells are not involved in Hepa-1 rejection. In vitro H-2Kb Ag-negative and -positive Hepa-1 cells are equally susceptible to tilorone-boosted NK cells, indicating that MHC class I Ag expression also does not affect in vitro NK susceptibility. Tumor challenged athymic nude and sublethally irradiated syngeneic mice develop tumors demonstrating that T cells are probably responsible for rejection of the Hepa-1 tumor, and that H-2Kb Ag expression has no effect on rejection. Inasmuch as the expression of H-2Kb Ag on Hepa-1 cells does not effect tumorigenicity or in vitro NK susceptibility, the previously reported association between reduced MHC class I Ag levels and increased NK susceptibility is not universally applicable.  相似文献   

9.
The sensitivity of H-2b-high and H-2b-low variants of BL6 melanoma to the cytotoxic action of NK and lymphokine-activated killer cells was investigated. BL6 mouse melanoma cells lack detectable H-2Kb and had low levels of expression of H-2Db Ag. The BL6T2 variant cells, obtained after treatment of BL6 cells with mutagen N-methyl-N-nitro-N'-nitro-soguanidine, had relatively high levels of expression of class I H-2b Ag. Poly(I:C)-stimulated spleen cells of nude mice were highly cytotoxic for BL6T2, whereas H-2b-low BL6 cells were less sensitive to NK activity in an 18-h 51Cr-release assay. Similar results were obtained after 4-h incubation of radio-labeled tumor cells with IL-2-activated effector cells. In contrast, both lines were equally sensitive to lysis by purified granules derived from rat large granular lymphocytes (LGL) or by macrophages. By using various clones selected from BL6 or BL6T2 cells, it was found that BL6 or BL6T2 clones with low H-2b Ag expression were less sensitive to lysis by NK cells than H-2b-high clones. After IFN treatment of either BL6 or BL6T2, the target cells became more resistant to lysis by either NK cells or by purified LGL granules. IFN-treated BL6 cells had substantially increased expression of H-2b Ag and in this respect became similar to untreated BL6T2. However, IFN-treated BL6 cells were more resistant than BL6T2 cells to lysis by NK cells and LGL granules, suggesting that augmentation of H-2b Ag expression and NK resistance could be two independent IFN-induced effects. With a cold target inhibition assay, it was found that BL6T2 or its H-2 positive clones were highly competitive and inhibited the cytotoxic activity of NK and lymphokine-activated killer cells against radiolabeled YAC-1 and BL6T2, whereas BL6 cells or H-2-negative clones of BL6T2 and BL6 lines showed poor competitive ability. Thus, our data indicate that the NK resistance of H-2-low BL6 cells may be due to a paucity of NK recognizable determinants. N-Methyl-N-nitro-N'-nitroguanidine treatment of BL6 melanoma cells was associated with an increase in class I H-2b Ag expression and NK sensitivity, suggesting the involvement of class I MHC Ag in the sensitivity of tumor cells to NK cell-mediated cytotoxicity.  相似文献   

10.
It has recently been hypothesized that tumor cells with reduced levels of MHC class I antigens are more susceptible to NK-mediated lysis and are rejected by NK cells, whereas tumor cells with normal levels of class I are rejected by tumor-specific CTL. We have tested this hypothesis using a mouse hepatoma system. The Hepa-1 tumor is a spontaneous H-2Kb loss variant that arose from the BW7756 tumor, when BW7756 was adapted to growth in culture. Our studies have shown that despite the loss of H-2Kb antigen, Hepa-1 is not more susceptible to NK lysis than its H-2Kb-transfected variants. These studies also suggested that NK cells were not responsible for rejection of the Hepa-1 tumor. The Hepa-1 tumor, therefore, appears to contradict the hypothesized linkage of MHC levels and NK susceptibility. Because NK cells are not involved in immunity to this tumor, we have sought to identify the effector cell responsible for Hepa-1 rejection. Cytotoxic T lymphocyte assays demonstrate that in vitro, Hepa-1 cells are lysed by Hepa-1-specific H-2Db-restricted CD4-CD8+ T lymphocytes. Footpad assays demonstrate that in vivo, Hepa-1 rejection requires CD4+CD8- and CD4-CD8+ Hepa-1-primed splenocytes. These results indicate that immunity to Hepa-1 is T cell mediated. Hepa-1 is therefore an example of an unusual tumor in that down-regulation of MHC class I antigen expression is associated with increased CTL susceptibility.  相似文献   

11.
NK cell recognition of targets is strongly affected by MHC class I specific receptors. The recently published structure of the inhibitory receptor Ly49A in complex with H-2Dd revealed two distinct sites of interaction in the crystal. One of these involves the alpha1, alpha2, alpha3, and beta2-microglobulin (beta2m) domains of the MHC class I complex. The data from the structure, together with discrepancies in earlier studies using MHC class I tetramers, prompted us to study the role of the beta2m subunit in MHC class I-Ly49 interactions. Here we provide, to our knowledge, the first direct evidence that residues in the beta2m subunit affect binding of MHC class I molecules to Ly49 receptors. A change from murine beta2m to human beta2m in three different MHC class I molecules, H-2Db, H-2Kb, and H-2Dd, resulted in a loss of binding to the receptors Ly49A and Ly49C. Analysis of the amino acids involved in the binding of Ly49A to H-2Dd in the published crystal structure, and differing between the mouse and the human beta2m, suggests the cluster formed by residues Lys3, Thr4, Thr28, and Gln29, as a potentially important domain for the Ly49A-H-2Dd interaction. Another possibility is that the change of beta2m indirectly affects the conformation of distal parts of the MHC class I molecule, including the alpha1 and alpha2 domains of the heavy chain.  相似文献   

12.
Recently, it has been shown that human beta(2)-microglobulin (h-beta(2)m) blocks the association between the NK cell inhibitory receptor Ly49C and H-2K(b). Given this finding, we therefore sought to assess the immunobiology of NK cells derived from C57BL/6 (H-2(b)) mice expressing exclusively h-beta(2)m. Initial analysis revealed that the Ly49C expression profile of NK cells from h-beta(2)m(+) mice was modified, despite the fact that H-2K(b) expression was normal in these mice. Moreover, the NK cells were not anergic in that IL-2 treatment of h-beta(2)m(+) NK cells in vitro enabled efficient lysis of prototypic tumor cell lines as well as of syngeneic h-beta(2)m(+) lymphoblasts. This loss of self-tolerance appeared to correlate with the activation status of h-beta(2)m(+) NK cells because quiescent h-beta(2)m(+) transplant recipients maintained h-beta(2)m(+) grafts but polyinosine:polycytidylic acid-treated recipients acutely rejected h-beta(2)m(+) grafts. NK cell reactivity toward h-beta(2)m(+) targets was attributed to defective Ly49C interactions with h-beta(2)m:H-2K(b) molecules. With regard to NK cell regulatory mechanisms, we observed that h-beta(2)m:H-2K(b) complexes in the cis-configuration were inefficient at regulating Ly49C and, furthermore, that receptor-mediated uptake of h-beta(2)m:H-2K(b) by Ly49C was impaired compared with uptake of mouse beta(2)m:H-2K(b). Thus, we conclude that transgenic expression of h-beta(2)m alters self-MHC class I in such a way that it modulates the NK cell phenotype and interferes with regulatory mechanisms, which in turn causes in vitro-expanded and polyinosine:polycytidylic acid-activated NK cells to be partially self-reactive similar to what is seen with NK cells derived from MHC class I-deficient mice.  相似文献   

13.
It has been previously shown that unstimulated NK cells cannot preferentially lyse adenovirus serotypes 2 and 5-infected human cells. In this study, the ability of IFN to promote the selective NK cell-mediated lysis of adenovirus-infected human cells was determined. The relationship between target cell susceptibility to NK cell-mediated killing and class I Ag expression was also analyzed through the use of adenovirus serotype 2 and 5 mutants that do not make the adenovirus early region 3 19-kDa class I binding protein. IFN induced the selective lysis of adenovirus serotype 2 and 5-infected human cells by activating NK cells (IFN-alpha) and protecting uninfected, but not adenovirus-infected cells, from NK cell-mediated lysis (IFN-gamma). IFN-gamma increased the expression of class I Ag on the surface of cells infected with the adenovirus early region 3 deletion mutants, dl327 or dl801, to a level equal to or greater than that expressed on uninfected cells. Despite the increased expression of class I Ag, IFN-gamma could not protect these adenovirus-infected cells from NK cell-mediated lysis. Thus, dl327 or dl801 infection prevented IFN-gamma's induction of cytolytic resistance to NK cell-mediated killing but left IFN-gamma's induction of class I Ag intact. Surface class I Ag levels were substantially higher on IFN-gamma-treated, dl327-, and dl801-infected cells in comparison to cells infected with wild type adenovirus serotype 5. Again, higher target cell levels of class I Ag did not correlate with increased resistance to NK cell-mediated lysis because there was equivalent NK cell-mediated killing of IFN-gamma-treated adenovirus serotype 5-, dl327-, or dl801-infected cells. Thus, IFN-gamma only protects uninfected cells from NK cell-mediated killing, irrespective of target class I Ag levels, and thereby concentrates NK lytic activity on just adenovirus-infected cells. These data demonstrate that IFN-gamma's ability to protect target cells from NK cell-mediated cytolysis is unrelated to IFN-gamma's induction of surface class I MHC Ag.  相似文献   

14.
We have investigated the primary immunity generated in vivo by MHC class I-deficient and -competent tumor cell lines that expressed the NKG2D ligand retinoic acid early inducible-1 (Rae-1) beta. Rae-1beta expression on class I-deficient RMA-S lymphoma cells enhanced primary NK cell-mediated tumor rejection in vivo, whereas RMA-Rae-1beta tumor cells were rejected by a combination of NK cells and CD8(+) T cells. Rae-1beta expression stimulated NK cell cytotoxicity and IFN-gamma secretion in vitro, but not proliferation. Surprisingly, only NK cell perforin-mediated cytotoxicity, but not production of IFN-gamma, was critical for the rejection of Rae-1beta-expressing tumor cells in vivo. This distinct requirement for perforin activity contrasts with the NK cell-mediated rejection of MHC class I-deficient RMA-S tumor cells expressing other activating ligands such as CD70 and CD80. Thus, these results indicated that NKG2D acted as a natural cytotoxicity receptor to stimulate perforin-mediated elimination of ligand-expressing tumor cells.  相似文献   

15.
We demonstrated a tightly coordinated timing in the appearance of mRNA for the four class II (Ia) MHC chains, A alpha, A beta, E alpha, and E beta, and the Ia-associated invariant chain in a murine macrophage cell line after the addition of immune interferon (IFN-gamma) or of IFN-gamma-containing supernatants from Con A-stimulated spleen cells. The marked increase in mRNA levels for these molecules at approximately 8 hr after IFN-gamma addition contrasts sharply with the earlier, more gradual kinetics observed for class I (H-2) and beta 2-microglobulin mRNA. The difference in kinetics of IFN-gamma induction of class I and class II mRNA suggests differential regulation of the expression of Ia and H-2 antigens. The long lag period preceding detection of Ia mRNA raises the possibility that IFN-gamma may not directly mediate the increase in mRNA expression, but may act through an additional cellular intermediate.  相似文献   

16.
Supernatants of Con A-stimulated rat spleen cell cultures contain a factor that induces relative resistance to NK cell-mediated cytotoxicity in the YAC cell line, a line that is otherwise highly susceptible to murine NK cell-mediated lysis. This NK-lysis resistance-inducing factor (LRIF) has a Mr of 12,600 Da, as determined by gel filtration chromatography, and an isoelectric pH of 4.8. NK-LRIF is heat labile and is de-activated by treatment with proteolytic enzymes. Unlike immune-IFN (IFN-gamma), NK-LRIF is not inactivated by pH 2 treatment, and antibodies capable of neutralizing IFN-alpha and IFN-gamma do not abrogate the effect of NK-LRIF. Highly purified IL-2 preparations lack NK-LRIF activity. NK-LRIF does not induce a general resistance to lysis in YAC cells, because control and NK-LRIF-treated YAC cells were equally susceptible to alloimmune cytotoxic T cells. YAC cells treated with NK-LRIF showed a marked enhancement (5- to 10-fold) in the expression of class I MHC Ag. This observation supports the proposition that the NK susceptibility of target cells could be inversely related to the expression of class I MHC Ag.  相似文献   

17.
18.
Mouse NK cells express inhibitory NK receptors that recognize target cell MHC class I molecules and activation receptors that are less well defined. The Ly-49D activation receptor on C57BL/6 NK cells recognizes Chinese hamster ovary cells and triggers natural killing. In this study, we demonstrate that a Chinese hamster classical MHC class I molecule is the ligand for Ly-49D in a reporter gene assay system as well as in NK cell killing assays. Ly-49D recognizes the Chinese hamster class I molecule better when it is expressed with Chinese hamster beta(2)-microglobulin (beta(2)m) than murine beta(2)m. However, it is still controversial that Ly-49D recognizes H-2D(d), as we were unable to demonstrate the specificity previously reported. Using this one ligand-one receptor recognition system, function of an NK activation receptor was, for the first time, investigated in NK cells that are tolerized in beta(2)m-deficient mice. Surprisingly, Ly-49D-killing activity against ligand-expressing targets was observed with beta(2)m-deficient mouse NK cells, albeit reduced, even though "tolerized" function of Ly-49D was expected. These results indicate that Ly-49D specifically recognizes the Chinese hamster MHC class I molecule associated with Chinese hamster beta(2)m, and indicate that the Ly-49D NK cell activation receptor is not tolerized in beta(2)m deficiency.  相似文献   

19.
This study aims to determine how the interaction of Ly49 receptors with MHC class I molecules shapes the development of the Ly49 repertoire. We have examined the percentage of NK cells that expressed Ly49A, Ly49G2, and Ly49D in single and double Ly49A/C-transgenic mice on four different MHC backgrounds, H-2(b), H-2(d), H-2(b/d), and beta(2)-microglobulin(-/-). The results show that the total numbers of NK cells were not different among the strains. The prior expression of a Ly49 receptor capable of binding to self MHC class I altered the percentage of NK cells expressing endogenous Ly49A, Ly49G2, and Ly49D even in mice in which no MHC ligand was present for the latter receptors. The NK cells in the Ly49-transgenic mice expressed the same level of endogenous Ly49 receptors as wild-type mice of a similar MHC background. In contrast, the number of NK T cells was reduced in mice in which the Ly49 transgene could bind to a MHC class I molecule. The onset of Ly49 receptor expression on NK cells during ontogeny was not altered in the presence of transgenic Ly49 receptors. These data support a sequential model and argue against a selection model for Ly49 repertoire development on NK cells.  相似文献   

20.
Unlike CD1d-restricted NK1.1(+)TCRalphabeta(+) (NKT) cells, which have been extensively studied, little is known about CD1d-independent NKT cells. To characterize their functions, we analyzed NKT cells in beta(2)-microglobulin (beta(2)m)-deficient B6 mice. They are similar to NK cells and expressed NK cell receptors, including Ly49, CD94/NKG2, NKG2D, and 2B4. NKT cells were found in normal numbers in mice that are deficient in beta(2)m, MHC class II, or both. They were also found in the male HY Ag-specific TCR-transgenic mice independent of positive or negative selection in the thymus. For functional analysis of CD1d-independent NKT cells, we developed a culture system in which CD1d-independent NKT cells, but not NK, T, or most CD1d-restricted NKT cells, grew in the presence of an intermediate dose of IL-2. IL-2-activated CD1d-independent NKT cells were similar to IL-2-activated NK cells and efficiently killed the TAP-mutant murine T lymphoma line RMA-S, but not the parental RMA cells. They also killed beta(2)m-deficient Con A blasts, but not normal B6 Con A blasts, indicating that the cytotoxicity is inhibited by MHC class I on target cells. IL-2-activated NKT cells expressing transgenic TCR specific for the HY peptide presented by D(b) killed RMA-S, but not RMA, cells. They also killed RMA (H-2(b)) cells that were preincubated with the HY peptide. NKT cells from beta(2)m-deficient mice, upon CD3 cross-linking, secreted IFN-gamma and IL-2, but very little IL-4. Thus, CD1d-independent NKT cells are significantly different from CD1d-restricted NKT cells. They have hybrid phenotypes and functions of NK cells and T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号