首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Staphylococcus aureus -toxin forms ionic channels of large size in lipid bilayer membranes. We have developed two methods for studying the mechanism of pore formation. One is based on measurement of the ionic current flowing through a planar lipid membrane after exposure to the toxin; the other is based on measuring the release of the fluorescent complex Tb-Dipicolinic acid from large unilamellar vesicles under similar conditions.Both methods indicate that the pore formation process is complex, showing an initial delay followed by non-linear kinetics. The power dependence of the pore formation rate on the toxin concentration in planar bilayers indicates that an aggregation mechanism underlies the channel assembly. Arrhenius plots, obtained with both techniques, show no deviation from linearity up to 50°C and the derived activation energies are found to be comparable to those for the binding and the lysis of rabbit erythrocytes by the same toxin.The temperature dependence of the conductance induced in planar bilayers by a large number of toxin channels indicates that the pores are filled with aqueous solution. The analysis of single conductance events shows that a heterogeneous population of pores exist and that smaller channels are preferred at low temperature. We attribute this heterogeneity to the existence of pores resulting from the aggregation of different numbers of monomers.  相似文献   

2.
We have used a polymer-exclusion method to estimate the sizes of the high and low-conductance states of Staphylococcus aureus -toxin channels across planar lipid bilayers. Despite a >10-fold difference in conductance between high and low-conductance states, the size differs by <2-fold. We conclude that factors other than the dimensions have a strong influence on the conductance of -toxin channels. We also show that the high conductance state is destabilized by the presence of high molecular weight polymers outside the channel, compatible with the removal of channel water as the high conductance state shrinks to the low conductance state.We are grateful to Drs. D.T. Edmonds, A.A. Lev and V.A. Parsegian for fruitful discussion and to the Cell Surface Research Fund, the Science and Engineering Research Council, The Wellcome Trust, UNESCO (Molecular and Cellular Biology Network) and the National Academy of Sciences/National Research Council for financial support.  相似文献   

3.
Summary Previous studies in our laboratory have shown that CryIC, a lepidopteran-specific toxin from Bacillus thuringiensis, triggers calcium and chloride channel activity in SF-9 cells (Spodoptera frugiperda, fall armyworm). Chloride currents were also observed in SF-9 membrane patches upon addition of CryIC toxin to the cytoplasmic side of the membrane. In the present study the ability of activated CryIC toxin to form channels was investigated in a receptor-free, artificial phospholipid membrane system. We demonstrate that this toxin can partition in planar lipid bilayers and form ion-selective channels with a large range of conductances. These channels display complex activity patterns, often possess subconducting states and are selective to either anions or cations. These properties appeared to be pH dependent. At pH 9.5, cation-selective channels of 100 to 200 pS were most frequently observed. Among the channels recorded at pH 6.0, a 25–35 pS anion-selective channel was often seen at pH 6.0, with permeation and kinetic properties similar to those of the channels previously observed in cultured lepidopteran cells under comparable pH environment and for the same CryIC toxin doses. We conclude that insertion of CryIC toxin in SF-9 cell native membranes and in artificial planar phospholipid bilayers may result from an identical lipid-protein interaction mechanism.The assistance of A. Mazza and G.A.R. Mealing is gratefully acknowledged. The trypsin-activated, HPLC-purified CryIC toxin isolated from B. thuringiensis var. entomocidus crystal was a kind gift from M. Pusztai, Institute for Biological Sciences, NRC, Ottawa.  相似文献   

4.
Staphylococcus aureus, a Gram-positive bacterium is pathogenic in nature. It is known that secreted toxins remain active after antibiotic treatment. The alpha hemolysin or alpha toxin damages cell membrane and induces apoptosis and degradation of DNA. The titer of alphahemolysin increases and causes hemostasis disturbances, thrombocytopenia, and pulmonary lesions during staphylococcal infection. Therefore, it is of interest to inhibit alpha hemolysin using novel compounds. We used the structure of alpha hemolysin(PDB: 7AHL) to screen structures for 100,000 compounds from the ZINC database using molecular docking with AutoDock VINA. Nine (9) successive hits were then subjected for pharmacokinetic and toxicity properties by PROTOX (a webserver for the prediction of oral toxicities of small molecules) and FAFDrugs (a tool for prediction of ADME and Toxicity). This exercise further identified hit #1 ({[3a-(Dihydroxymethyl)-6-hydroxy-2,2-dimethyl-1,3,4-trioxatetrahydro-2H-pentalen-5- yl]methyl}amino(9H-fluoren-9-yl)acetate with binding affinity: -10.3 kcal/mol) and hit #2 (6-(Dihydroxymethyl)-2-{2-[3- (methylamino)propyl]-2-azatricyclo[9.4.0.03,8]pentadeca-1(11),3,5,7,12,14-hexaen-6-yloxy}tetrahydro-2H-pyran-3,4,5-triol with binding affinity: -9.6 kcal/mol) with acceptable toxicity and ADME properties for potential predicted hemolysin inhibition. These compounds should then be evaluated in vitro using inhibitory studies.  相似文献   

5.
6.
Summary A convenient and rapid isolation procedure for root cell protoplasts suitable for patch clamp experiments, was developed for root cells of tomato (Lycopersicon esculentum) andPlantago species, grown on hydroculture. The procedure is based on a minimal exposure of cells to cell wall degrading enzyme mixtures. After an incubation period of 30 min in a cell wall degrading enzyme mixture all free floating cells were discarded. Subsequently the root material was rinsed and a second group of cells, still present inside the tissue, was freed by application of mechanical pressure. The newly released protoplasts were filtered and collected on the glass bottom of a patch clamp dish. The bathing medium was rinsed extensively removing cellulose fibrils and protoplasts not attached to the glass. Removal of these cellulose fibrils significantly improved the seal success ratio. The isolated protoplasts were suitable for patch clamp experiments in the cell-attached patch, the whole cell and the isolated patch configuration.Abbreviations BSA bovine serum albumin - BTP bis-tris propane - CAP cell-attached patch - OOP outside out patch - PEG polyethylene glycol - WC whole cell  相似文献   

7.
Pathogenic Gram-positive bacteria encounter many obstacles in route to successful invasion and subversion of a mammalian host. As such, bacterial species have evolved clever ways to prevent the host from clearing an infection, including the production of specialized virulence systems aimed at counteracting host defenses or providing protection from host immune mechanisms. Positioned at the interface of bacteria/host interactions is the bacterial cell wall, a dynamic surface organelle that serves a multitude of functions, ranging from physiologic processes such as structural scaffold and barrier to osmotic lysis to pathogenic properties, for example the deposition of surface molecules and the secretion of cytotoxins. In order to succeed in a battle with host defenses, invading bacteria need to acquire the nutrient iron, which is sequestered within host tissues. A cell-wall based iron acquisition and import pathway was uncovered in Staphylococcus aureus. This pathway, termed the isd or iron-responsive surface determinant locus, consists of a membrane transporter, cell wall anchored heme-binding proteins, heme/haptoglobin receptors, two heme oxygenases, and sortase B, a transpeptidase that anchors substrate proteins to the cell wall. Identification of the isd pathway provides an additional function to the already bountiful roles the cell wall plays in bacterial pathogenesis and provides new avenues for therapeutics to combat the rise of antimicrobial resistance in S. aureus. This review focuses on the molecular attributes of this locus, with emphasis placed on the mechanism of iron transport and the role of such a system during infection.  相似文献   

8.
Plasma membrane was purified from roots of rye (Secale cereale L. cv. Rheidol) by aqueous-polymer two-phase partitioning and incorporated into planar bilayers of 1-palmitoyl-2-oleoyl phosphatidylethanolamine by stirring with an osmotic gradient. Since plasmamembrane vesicles were predominantly oriented with their cytoplasmic face internal, when fused to the bilayer the cytoplasmic side of channels faced the trans chamber. In asymmetrical (cis:trans) 280100 mM KCl, five distinct K+-selective channels were detected with mean chord-conductances (between +30 and -30 mV; volyages cis with respect to trans) of 500 pS, 194 pS, 49 pS, 21 pS and 10 pS. The frequencies of incorporation of these K+ channels into the bilayer were 48, 21, 50, 10 and 9%, in the order given (data from 159 bilayers). Only the 49 pS channel was characterized further in this paper, but the remarkable diversity of K+ channels found in this preparation is noteworthy and is the subject of further study. In symmetrical KCl solutions, the 49 pS channel exhibited non-ohmic unitary-current/voltage relationships. The chord-conductance (between +30 and-30 mV) of the channel in symmetrical 100 mM KCl was 39 pS. The unitary current was greater at positive voltages than at corresponding negative voltages and showed considerable rectification with increasing positive and negative voltages. This would represent inward rectification in vivo. Gating of the channel was not voltage-dependent and the channel was open for approx. 80% of the time. Presumably this is not the case in vivo, but we are at present uncertain of the in vivo controls of channel gating. The distribution of channel-open times could be approximated by the sum of two negative exponential functions, yielding two open-state time constants (o, the apparent mean lifetime of the channel-open state) of 1.0 ms and 5.7 s. The distribution of channel-closed times was best approximated by the sum of three negative exponential functions, yielding time constants (c, the apparent mean lifetime of the channel-closed state) of 1.1 ms, 51 ms and 11 s. This indicates at least a five-state kinetic model for the activity of the channel. The selectivity of the 49 pS channel, determined from both reversal potentials under biionic conditions (100 mM KCl100 mM cation chloride) and from conductance measurements in symmetrical 100 mM cation chloride, was Rb+ K+ > Cs+ > Na+ > Li+ > tetraethylammonium (TEA+). The 49 pS channel was reversibly inhibited by quinine (1 mM) but TEA+ (10 mM), Ba2+ (3 mM), Ca2+ (1 mM), 4-aminopyridine (1 mM) and charybdotoxin (3 M) were without effect when applied to the extracellular (cis) surface.Abbreviations and Symbols GHK Goldman-Hodgkin-Katz - I/V current/voltage - PEG polyethyleneglycol - Po probability o f the channel being open - TEA+ tetraethylammonium - c apparent mean lifetime of the channel-closed state - o apparent mean lifetime of the channel-open state P.J.W. was supported by a grant from the Science and Engineering Research Council Membrane Initiative (GR/F 33971) to Professor E.A.C. MacRobbie and M.T. by the Glaxo Junior Research Fellowship at Churchill College, Cambridge. We thank Dr. D.T. Cooke (AFRC, Long Ashton Research Station, University of Bristol, UK) and Ms. J. Marshall (University of York, UK) for their advice and assistance with the aqueous-polymer two-phase partitioning of plasma membrane from rye roots, Mr. J. Banfield and Miss P. Parmar (University of Cambridge, UK) for technical assistance and Professor E.A.C. MacRobbie, Dr. G. Thiel (University of Cambridge, UK), Dr. M.R. Blatt (Wye College, University of London, UK), Dr. D. Sanders and Dr. E. Johannes (University of York, UK) for helpful discussions.  相似文献   

9.
Philip J. White 《Planta》1994,193(2):186-193
Plasma-membrane vesicles were purified by aqueous-polymer two-phase partitioning of a microsomal membrane fraction from rye (Secale cereale L.) roots and incorporated into planar 1-palmitoyl-2-oleoyl phosphatidylethanolamine bilayers. A voltage-dependent cation-channel became incorporated into the bilayer with its cytoplasmic surface facing the trans compartment (which was grounded) and was characterized from single-channel recordings. The channel had a unitary conductance of 174 pS in symmetrical 100 mM KCl. The selectivity towards monovalent cations, determined from both conductance measurements in symmetrical 100 mM cation chloride and from permeability ratios in the presence of (cis: trans) 100 mM cation chloride: 100 mM KCl, was CsKRb>Na. The channel was also permeable to both Ba2+ and Ca2+. Although the unitary conductances in symmetrical 100 mM BaCl2 and CaCl2 were only 46 pS and 40 pS, respectively, the apparent permeabilities of the divalent cations relative to K+ were greater than expected (PKPBaPCa, 1.001.662.60). This anomaly might result from competition between divalent and monovalent cations for an intrapore binding site. The channel exhibited complex gating kinetics, which were modulated in response to changes in the zero-current (reversal) potential of the channel (Erev). In symmetrical 100 mM KCl the channel inactivated at positive voltages greater than 100 mV and the activated channel exhibited a high probability of being in an open-state (P0>0.90) at all voltages between ±100 mV. Channel P0 approximated unity at voltages in the range -60 to +20 mV. As more-negative voltages were applied, P0 decreased gradually. In contrast, as more positive voltages were applied, P0 decreased initially to a local minimum (approaching P0=0.90), then increased as the voltage was further increased before declining at extreme positive voltages. Under physiologically relevant ionic conditions, with 100 mM KCl plus contaminant Ca2+ on the trans (cytoplasmic) side and 1 mM KCl plus 2 mM CaCl2 on the cis (extracellular) side of the channel, Erev was 25.2 mV and the relative permeability PCa/PK was 7.45. Thus, the channel would be activated by plasma-membrane depolarization in vivo and facilitate Ca2+ influx and net K+ efflux. A role in intracellular signalling is proposed for this channel. It could open in response to stimuli which depolarize the plasma membrane, allowing Ca2+ into the cytoplasm and, thereby, initiating a cellular response. The outward K+ current would act to stabilize the trans-plasma membrane voltage, preventing excessive depolarization during Ca2+ influx.Abbreviations and Symbols EK Nernst (equilibrium) potential for potassium ions - Erev zero-current (reversal) potential of the channel - c apparent mean lifetime of the activated-channel closed-state - o apparent mean lifetime of the activated-channel open-state - PE dephosphatidylethanolamine - PO probability of finding the activated channel in an open-state This work was supported by the Agriculture and Food Research Council and by a grant from the Science and Engineering Research Council Membrane Initiative (GR/F 33971) to Prof. E.A.C. MacRobbie (University of Cambridge).  相似文献   

10.
The possibility of using PCR for rapid identification of food-borne Staphylococcus aureus isolates was evaluated as an alternative to the API-Staph system. A total of 158 strains, 15 S. aureus, 12 other staphylococcal species, and 131 isolates recovered from 164 food samples were studied. They were phenotypically characterized by API-Staph profiles and tested for PCR amplification with specific primers directed to thermonuclease (nuc) and enterotoxin (sea to see) genes. Disagreement between the PCR results and API-Staph identification was further assessed by the analysis of randomly amplified polymorphic DNA (RAPD) profiles obtained with three universal primers (M13, T3, and T7) and 16S rDNA sequencing. Forty out of 131 isolates (31%) tested positive for PCR enterotoxin. Of these, 14 (11%) were positive for sea, 22 (17%) for sec, one (0.8%) for sed, and three (2.2%) for sea and sec. No amplification corresponding to seb nor see was obtained. Cluster analysis based on RAPD profiles revealed that most of the sec positive food isolates grouped together in three clusters. Cluster analysis combining the three RAPD fingerprints (M 13, T3, and T7), PCR-enterotoxin genotype and API-Staph profiles, grouped the nuc PCR positive isolates together with S. aureus reference strains and the nuc PCR negative isolates with reference strains of other staphylococcal species. The only nuc PCR positive food isolate that remained unclustered was a sed positive strain identified by 16S rDNA sequence as S. simulans. The high concordance between S. aureus and nuc PCR positive strains (99%) corroborates the specificity of the primers used and the suitability of nuc PCR for rapid identification of S. aureus in routine food analysis.  相似文献   

11.
Staphylococcus aureus is one of the most important pathogens in humans and animals. In this study eighty strains were analyzed by RAPD-PCR to assess the genetic relationship between S. aureus isolates from bovine and human hosts. Results were compared with those obtained by biotyping. Fifty-two percent of the S. aureus isolates belonged to a host specific biotype (human, bovine and poultry). Bovine and human ecovars were the most prevalent. Dendrogram obtained by RAPD results showed that all the isolates clustered into eleven groups (A-K) at a relative genetic similarity of less than 30% when analyzed with the three primers. Group A clustered 95% of the human host isolates and the remaining groups (B-K) clustered the bovine host isolates. Principal coordinate analysis also showed that the isolates could be arbitrarily divided into two groups, bovine and human, by the second coordinate. Only 9 isolates (11%) were not clustered into these groups. The genetic diversity among the S. aureus isolates from bovine hosts is relatively low compared to that of isolates from human hosts. There were no statistically significant differences among isolated from bovine and human hosts. This study shows that RAPD-PCR assayed with three primers can be successfully applied to assess the genetic relationship of S. aureus isolates from different hosts.  相似文献   

12.
The sequence relations between small bacteriocinogenic plasmids (pRJ6, pRJ9, pRJ10 and pRJ11) of Staphylococcus aureus were investigated by comparing restriction maps and by hybridization. Plasmids pRJ10 and pRJ11 showed identical restriction maps, similar to that of pRJ9. The restriction map of pRJ6 differed from those of pRJ9 and pRJ10/pRJ11. Both groups of plasmids were shown to share a region of homology of at least 2.6 kb. The incompatibility relationships between them were also investigated by using plasmid derivatives tagged with transposon Tn551. Plasmids pRJ6 and pRJ9 proved to belong to different incompatibility groups.  相似文献   

13.
The bacterium Staphylococcus aureus is a common cause of human infection, and it is becoming increasingly virulent and resistant to antibiotics. Our understanding of the evolution of this species has been greatly enhanced by the recent sequencing of the genomes of seven strains of S. aureus. Comparative genomic analysis allows us to identify variation in the chromosomes and understand the mechanisms by which this versatile bacterium has accumulated diversity within its genome structure.  相似文献   

14.
Ciprofloxacin induced an increment of reactive oxygen species in sensitive strains of Staphylococcus aureus leading to oxidative stress detected by chemiluminescence while resistant strains did not suffer such stress. Oxidation of lipids was performed by employing thiobarbituric acid reaction to detect the formation of the amplified intermediate between reactive species oxygen and cytoplasmic macromolecules, namely malondialdehyde (MDA). The sensitive strain presented higher peroxidation of lipids than the resistant strain. The oxidative consequence for DNA was investigated by means of bacteria incubation with ciprofloxacin and posterior extraction of DNA, which was studied by high performance liquid chromatography (HPLC). Sensitive S. aureus ATCC 29213 showed an increase of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) respect controls without antibiotic; there was evident increase of the ratio between 8-oxodG and deoxyguanosine (dG) as a consequence of oxidation of dG to 8-oxodG considered the major DNA marker of oxidative stress. The resistant strain showed low oxidation of DNA and the analysis of 8-oxodG/dG ratio indicated lesser formation of 8-oxodG than S. aureus ATCC 29213.  相似文献   

15.
In washed cells of cadmium-sensitive Staphylococcus aureus 17810S oxidizing glutamate, initial Cd2+++ influx via the Mn2+ porter down membrane potential () was fast due to involvement of energy generated by two proton pumps—the respiratory chain and the ATP synthetase complex working in the hydrolytic direction. Such an unusual energy drain for rapid initial Cd2+ influx is suggested to be due to a series of toxic events elicited by Cd2+ accumulation down generated via the redox proton pump: (i) strong inhibition of glutamate oxidation accompanied by a decrease of electrochemical proton gradient ( H +) formation via the respiratory chain, (ii) automatic reversal of ATP synthetase from biosynthetic to hydrolytic mode, which was monitored by a decrease of H +-dependent ATP synthesis, (iii) acceleration of the initial Cd2+ influx down generated the reversed ATP synthetase, the alternative proton pump hydrolyzing endogenous ATP. The primary, cadmium-sensitive targets in strain 17810S seem to be dithiols located in the cytoplasmic glutamate oxidizing system, prior to the membrane-embedded NADH oxidation system. Inhibition by Cd2+ of H +-dependent ATP synthesis and of pH gradient (pH)-linked [14C]glutamate transport is a secondary effect due to cadmium-mediated inhibition of H + generation at the cytoplasmic level. In washed cells of cadmium-resistant S. aureus 17810R oxidizing glutamate, Cd2+ accumulation was prevented due to activity of the plasmid-coded Cd2+ efflux system. Consequently, H +-producing and -requiring processes were not affected by Cd2+.  相似文献   

16.
Bukharin  O. V.  Sgibnev  A. V.  Cherkasov  S. V.  Ivanov  Yu. B. 《Microbiology》2002,71(2):154-157
The cell extracts (i.e., intracellular metabolites) and culture liquids (i.e., extracellular metabolites) of microorganisms isolated from various ecotopes were found to inhibit the catalase activity of Staphylococcus aureus ATCC 6538 P, which resulted in a considerable inhibition of the growth of metabolite-treated S. aureus cells by hydrogen peroxide. The inhibitory effect of microbial metabolites on S. aureus catalase can be considered as a mechanism of intercellular interactions responsible for the formation of microbiocenoses.  相似文献   

17.
Staphylococcus aureus is a pathogen that often causes severe nosocomial infections including pneumonia. The present study was designed to examine innate phagocyte mediated immune mechanisms using a previously described murine S. aureus Newman pneumonia model. We found that BALB/c mice represent a more susceptible mouse strain compared to C57BL/6 mice after intranasal S. aureus Newman challenge. Depletion experiments revealed that neutrophils are a crucial determinant for resistance whereas depletion of alveolar macrophages protected mice to some degree from acute pulmonary S. aureus challenge. C57BL/6 mice lacking the subunit gp91phox of the NADPH-oxidase (gp91phox/− mice) proved to be highly susceptible against the pathogen. In contrast, C57BL/6 inducible nitric oxidase synthase deficient (iNOS−/−) mice did not differ in their clinical outcome after infection. Neither bone marrow macrophages from iNOS−/− nor from gp91phox−/− mice were impaired in controlling intracellular persistence of S. aureus. Our data suggest that neutrophil and NADPH-oxidase mediated mechanisms are essential components in protecting the host against pulmonary S. aureus Newman challenge. On contrary, macrophages as well as NO mediated mechanisms do not seem to play a critical role for resistance in this model.  相似文献   

18.
Staphylococcus aureus is an opportunistic pathogen whose infectious capacity depends on surface proteins, which enable bacteria to colonize and invade host tissues and cells. We analyzed “trypsin-shaved” surface proteins of S. aureus cultures by high resolution LC-MS/MS at different growth stages and culture conditions. Some modified peptides were identified, with a mass shift corresponding to the addition of a CH2O group (+ 30.0106 u). We present evidence that this shift corresponds to a hyxdroxymethylation of asparagine and glutamine residues. This known but poorly documented post-translational modification was only found in a few proteins of S. aureus grown under specific conditions. This specificity seemed to exclude the hypothesis of an artifact due to sample preparation. Altogether hydroxymethylation was observed in 35 peptides from 15 proteins in our dataset, which corresponded to 41 modified sites, 35 of them being univocally localized. While no function can currently be assigned to this post-translational modification, we hypothesize that it could be linked to modulation of virulence factors, since it was mostly found on some surface proteins of S. aureus.  相似文献   

19.
Given the rapid rise in antibiotic resistance, including methicillin resistance in Staphylococcus aureus (MRSA), there is an urgent need to characterize novel drug targets. Enzymes of the lysine biosynthesis pathway in bacteria are examples of such targets, including dihydrodipicolinate reductase (DHDPR, E.C. 1.3.1.26), which is the product of an essential bacterial gene. DHDPR catalyzes the NAD(P)H-dependent reduction of dihydrodipicolinate (DHDP) to tetrahydrodipicolinate (THDP) in the lysine biosynthesis pathway. We show that MRSA–DHDPR exhibits a unique nucleotide specificity utilizing NADPH (Km = 12 μM) as a cofactor more effectively than NADH (Km = 26 μM). However, the enzyme is inhibited by high concentrations of DHDP when using NADPH as a cofactor, but not with NADH. Isothermal titration calorimetry (ITC) studies reveal that MRSA–DHDPR has ∼20-fold greater binding affinity for NADPH (Kd = 1.5 μM) relative to NADH (Kd = 29 μM). Kinetic investigations in tandem with ITC studies show that the enzyme follows a compulsory-order ternary complex mechanism; with inhibition by DHDP through the formation of a nonproductive ternary complex with NADP+. This work describes, for the first time, the catalytic mechanism and cofactor preference of MRSA–DHDPR, and provides insight into rational approaches to inhibiting this valid antimicrobial target.  相似文献   

20.
Philip J. White 《Planta》1993,191(4):541-551
Plasma-membrane vesicles were purified by aqueous-polymer two-phase partitioning of a microsomal membrane fraction from rye (Secale cereale L.) roots and incorporated into planar 1-palmitoyl-2-oleoyl phosphatidylethanolamine bilayers. A high-conductance cation channel (a maxi cation channel) was characterized from single-channel electrical recordings. The channel was incorporated into the bilayer with its cytoplasmic surface facing the trans compartment and voltages were referenced cis with respect to trans. The channel was permeable to both monovalent and divalent cations. The unitary conductance was 451 pS in symmetrical 100 mM KCl and 213 pS in symmetrical 100 mM BaCl2. The permeability ratio PKPBa was 1.002.56. Unitary conductances declined in the order K+Rb+>Cs+>Na+> Li+ (monovalent cations) and Ba2+>Sr2+>Ca2+> Mg2+>Co2+>Mn2+ (divalent cations). The relative permeabilities of monovalent cations mirrored their conductivity sequence, whereas the permeabilities of all divalent cations were similar. The maxi cation channel showed complex kinetics, exhibiting both voltage- and time-dependent inactivation and voltage-dependent gating. The voltage dependence of the kinetics shifted in parallel with changes in the reversal potential of the channel. In symmetrical 100 mM KCl, following a voltage step from zero to the test voltage, the channel inactivated and the active-channel lifetime ( i) shortened exponentially as the test voltage was increased. The channel always opened immediately upon depolarization to zero volts, indicating that inactivation of the channel did not result from the loss of any intrinsic factor. The probability of finding an active channel in the open state (P0) exhibited a bell-shaped relationship with membrane potential. At voltages between -40 and 80 mV, P0 exceeded 0.99, but p0 declined abruptly at more extreme voltages. Under ionic conditions which approximated physiological conditions, in the presence of 100 mM KCl on the trans (cytoplasmic) side and 1 mM KCl plus 2 mM CaCl2 on the cis (extracellular) side, the reversal potential was 15.6 mV and the kinetics approximated those observed in symmetrical 100 mM KCl. Thus, the channel would open upon depolarization of the plasma membrane in vivo. If the channel functioned physiologically as a Ca2+ channel it might be involved in intracellular signalling: the channel could open in response to a variety of environmental, developmental and pathological stimuli which depolarize the plasma membrane, allowing Ca2+ into the cytoplasm and thereby initiating a physiological response.Abbreviations EK Nernst (equilibrium) potential for potassium - Erev zero-current (reversal) potential - I/V current/voltage - c apparent mean lifetime of the activated-channel closed state - i apparent mean lifetime of the activated channel following a voltage step from zero volts - 0 apparent mean lifetime of the activated-channel open state - PE 1-palmitoyl-2-oleoyl phosphatidylethonlamine - P0 probability of finding the activated channel in an open state - TEA+ tetraethylammonium This work was supported by the Agriculture and Food Research Council and by a grant from the Science and Engineering Research Council Membrane Initiative (GR/F 33971) to Prof. E.A.C. MacRobbie (University of Cambridge, UK).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号