首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The histone methyltransferase PR-Set7/Set8 is the sole enzyme that catalyzes monomethylation of histone H4 at K20 (H4K20me1). Previous reports document disparate evidence regarding PR-Set7 expression during the cell cycle, the biological relevance of PR-Set7 interaction with PCNA, and its role in the cell. We find that PR-Set7 is indeed undetectable during S phase and instead is detected during late G2, mitosis, and early G1. PR-Set7 is transiently recruited to laser-induced DNA damage sites through its interaction with PCNA, after which 53BP1 is recruited dependent on PR-Set7 catalytic activity. During the DNA damage response, PR-Set7 interaction with PCNA through a specialized "PIP degron" domain targets it for PCNA-coupled CRL4(Cdt2)-dependent proteolysis. PR-Set7 mutant in its "PIP degron" is now detectable during S phase, during which the mutant protein accumulates. Outside the chromatin context, Skp2 promotes PR-Set7 degradation as well. These findings demonstrate a stringent spatiotemporal control of PR-Set7 that is essential for preserving the genomic integrity of mammalian cells.  相似文献   

2.
The E3 ubiquitin ligase CRL4Cdt2 targets proteins for destruction in S phase and after DNA damage by coupling ubiquitylation to DNA-bound proliferating cell nuclear antigen (PCNA). Coupling to PCNA involves a PCNA-interacting peptide (PIP) degron motif in the substrate that recruits CRL4Cdt2 while binding to PCNA. In vertebrates, CRL4Cdt2 promotes degradation of proteins whose presence in S phase is deleterious, including Cdt1, Set8, and p21. Here, we show that CRL4Cdt2 targets thymine DNA glycosylase (TDG), a base excision repair enzyme that is involved in DNA demethylation. TDG contains a conserved and nearly perfect match to the PIP degron consensus. TDG is ubiquitylated and destroyed in a PCNA-, Cdt2-, and PIP degron-dependent manner during DNA repair in Xenopus egg extract. The protein can also be destroyed during DNA replication in this system. During Xenopus development, TDG first accumulates during gastrulation, and its expression is down-regulated by CRL4Cdt2. Our results expand the group of vertebrate CRL4Cdt2 substrates to include a bona fide DNA repair enzyme.  相似文献   

3.
The E3 ubiquitin ligase Cullin-ring ligase 4-Cdt2 (CRL4(Cdt2)) is emerging as an important cell cycle regulator that targets numerous proteins for destruction in S phase and after DNA damage, including Cdt1, p21, and Set8. CRL4(Cdt2) substrates contain a "PIP degron," which consists of a canonical proliferating cell nuclear antigen (PCNA) interaction motif (PIP box) and an adjacent basic amino acid. Substrates use their PIP box to form a binary complex with PCNA on chromatin and the basic residue to recruit CRL4(Cdt2) for substrate ubiquitylation. Using Xenopus egg extracts, we identify an acidic residue in PCNA that is essential to support destruction of all CRL4(Cdt2) substrates. This PCNA residue, which adjoins the basic amino acid of the bound PIP degron, is dispensable for substrate binding to PCNA but essential for CRL4(Cdt2) recruitment to chromatin. Our data show that the interaction of CRL4(Cdt2) with substrates requires molecular determinants not only in the substrate degron but also on PCNA. The results illustrate a potentially general mechanism by which E3 ligases can couple ubiquitylation to the formation of protein-protein interactions.  相似文献   

4.
Recent work identified the E3 ubiquitin ligase CRL4(Cdt2) as mediating the timely degradation of Cdt1 during DNA replication and following DNA damage. In both cases, proliferating cell nuclear antigen (PCNA) loaded on chromatin mediates the CRL4(Cdt2)-dependent proteolysis of Cdt1. Here, we demonstrate that while replication factor C subunit 1 (RFC1)-RFC is required for Cdt1 degradation after UV irradiation during the nucleotide excision repair process, another RFC complex, Ctf18-RFC, which is known to be involved in the establishment of cohesion, has a key role in Cdt1 degradation in S phase. Cdt1 segments having only the degron, a specific sequence element in target protein for ubiquitination, for CRL4(Cdt2) were stabilized during S phase in Ctf18-depleted cells. Additionally, endogenous Cdt1 was stabilized when both Skp2 and Ctf18 were depleted. Since a substantial amount of PCNA was detected on chromatin in Ctf18-depleted cells, Ctf18 is required in addition to loaded PCNA for Cdt1 degradation in S phase. Our data suggest that Ctf18 is involved in recruiting CRL4(Cdt2) to PCNA foci during S phase. Ctf18-mediated Cdt1 proteolysis occurs independent of cohesion establishment, and depletion of Ctf18 potentiates rereplication. Our findings indicate that individual RFC complexes differentially control CRL4(Cdt2)-dependent proteolysis of Cdt1 during DNA replication and repair.  相似文献   

5.
6.
CRL4(Cdt2) is a cullin-based E3 ubiquitin ligase that promotes the ubiquitin-dependent proteolysis of various substrates implicated in the control of cell cycle and various DNA metabolic processes such as DNA replication and repair. Substrates for CRL4(Cdt2) E3 ubiquitin ligase include the replication licensing factor Cdt1 and the cyclin-dependent kinase (Cdk) inhibitor p21. Inhibition of this E3 ligase leads to serious abnormalities of the cell cycle and cell death. The ubiquitin-conjugating enzyme (UBC) involved in this important pathway, however, remains unknown. By a proteomic analysis of Cdt2-associated proteins and an RNA interference-based screening approach, we show that CRL4(Cdt2) utilizes two different UBCs to target different substrates. UBCH8, a member of the UBE2E family of UBCs, ubiquitylates and promotes the degradation of p21, both during the normal cell cycle and in UV-irradiated cells. Importantly, depletion of UBCH8 by small interfering RNA (siRNA) increases p21 protein level, delays entry into S phase of the cell cycle, and suppresses the DNA damage response after UV irradiation. On the other hand, members of the UBE2G family of UBCs (UBE2G1 and UBE2G2) cooperate with CRL4(Cdt2) to polyubiquitylate and degrade Cdt1 postradiation, an activity that is critical for preventing origin licensing in DNA-damaged cells. Finally, we show that UBCH8, but not UBE2G1 or UBE2G2, is required for CRL4(Cdt2)-mediated ubiquitylation and degradation of the histone H4 lysine 20 monomethyltransferase Set8, a previously identified CRL4(Cdt2) substrate, as well as for CRL4(Cdt2)-dependent monoubiquitylation of PCNA in unstressed cells. These findings identify the UBCs required for the activity of CRL4(Cdt2) on multiple substrates and demonstrate that different UBCs are involved in the selective ubiquitylation of different substrates by the same E3 complex.  相似文献   

7.
The initiation of DNA synthesis is governed by the licensing of replication origins, which consists of assembling a pre-replication complex (pre-RC) on origins during late M- and G1-phases. In metazoans, functional replication origins do not show defined DNA consensus sequences, thus evoking the involvement of chromatin determinants in the selection of these origins. Here, we show that the onset of licensing in mammalian cells coincides with an increase in histone H4 Lys 20 monomethylation (H4K20me1) at replication origins by the methyltransferase PR-Set7 (also known as Set8 or KMT5A). Indeed, tethering PR-Set7 methylase activity to a specific genomic locus promotes the loading of pre-RC proteins on chromatin. In addition, we demonstrate that PR-Set7 undergoes a PCNA- and Cul4-Ddb1-driven degradation during S phase that contributes to the disappearance of H4K20me1 at origins and the inhibition of replication licensing. Strikingly, expression of a PR-Set7 mutant insensitive to this degradation causes the maintenance of H4K20me1 and repeated DNA replication at origins. These results elucidate a critical role for PR-Set7 and H4K20me1 in the chromatin events that regulate replication origins.  相似文献   

8.
Cdt2 is the substrate recognition adaptor of CRL4Cdt2 E3 ubiquitin ligase complex and plays a pivotal role in the cell cycle by mediating the proteasomal degradation of Cdt1 (DNA replication licensing factor), p21 (cyclin-dependent kinase [CDK] inhibitor), and Set8 (histone methyltransferase) in S phase. Cdt2 itself is attenuated by SCFFbxO11-mediated proteasomal degradation. Here, we report that 14-3-3 adaptor proteins interact with Cdt2 phosphorylated at threonine 464 (T464) and shield it from polyubiquitination and consequent proteasomal degradation. Depletion of 14-3-3 proteins promotes the interaction of FbxO11 with Cdt2. Overexpressing 14-3-3 proteins shields Cdt2 that has a phospho-mimicking mutation (T464D [change of T to D at position 464]) but not Cdt2(T464A) from ubiquitination. Furthermore, the delay of the cell cycle in the G2/M phase and decrease in cell proliferation seen upon depletion of 14-3-3γ is partly due to the accumulation of the CRL4Cdt2 substrate, Set8 methyltransferase. Therefore, the stabilization of Cdt2 is an important function of 14-3-3 proteins in cell cycle progression.  相似文献   

9.
The eukaryotic cell cycle is regulated by multiple ubiquitin-mediated events, such as the timely destruction of cyclins and replication licensing factors. The histone H4 methyltransferase SET8 (Pr-Set7) is required for chromosome compaction in mitosis and for maintenance of genome integrity. In this study, we show that SET8 is targeted for degradation during S phase by the CRL4(CDT2) ubiquitin ligase in a proliferating cell nuclear antigen (PCNA)-dependent manner. SET8 degradation requires a conserved degron responsible for its interaction with PCNA and recruitment to chromatin where ubiquitylation occurs. Efficient degradation of SET8 at the onset of S phase is required for the regulation of chromatin compaction status and cell cycle progression. Moreover, the turnover of SET8 is accelerated after ultraviolet irradiation dependent on the CRL4(CDT2) ubiquitin ligase and PCNA. Removal of SET8 supports the modulation of chromatin structure after DNA damage. These results demonstrate a novel regulatory mechanism, linking for the first time the ubiquitin-proteasome system with rapid degradation of a histone methyltransferase to control cell proliferation.  相似文献   

10.
11.
The transition between proliferation and quiescence is frequently associated with changes in gene expression, extent of chromatin compaction, and histone modifications, but whether changes in chromatin state actually regulate cell cycle exit with quiescence is unclear. We find that primary human fibroblasts induced into quiescence exhibit tighter chromatin compaction. Mass spectrometry analysis of histone modifications reveals that H4K20me2 and H4K20me3 increase in quiescence and other histone modifications are present at similar levels in proliferating and quiescent cells. Analysis of cells in S, G2/M, and G1 phases shows that H4K20me1 increases after S phase and is converted to H4K20me2 and H4K20me3 in quiescence. Knockdown of the enzyme that creates H4K20me3 results in an increased fraction of cells in S phase, a defect in exiting the cell cycle, and decreased chromatin compaction. Overexpression of Suv4-20h1, the enzyme that creates H4K20me2 from H4K20me1, results in G2 arrest, consistent with a role for H4K20me1 in mitosis. The results suggest that the same lysine on H4K20 may, in its different methylation states, facilitate mitotic functions in M phase and promote chromatin compaction and cell cycle exit in quiescent cells.  相似文献   

12.
DNA replication is tightly coordinated both with cell cycle cues and with responses to extracellular signals to maintain genome stability. We discovered that human Cdt1, an essential origin licensing protein whose activity must be restricted to G(1) phase, is a substrate of the stress-activated mitogen-activated protein (MAP) kinases p38 and c-Jun N-terminal kinase (JNK). These MAP kinases phosphorylate Cdt1 both during unperturbed G(2) phase and during an acute stress response. Phosphorylation renders Cdt1 resistant to ubiquitin-mediated degradation during S phase and after DNA damage by blocking Cdt1 binding to the Cul4 adaptor, Cdt2. Mutations that block normal cell cycle-regulated MAP kinase-mediated phosphorylation interfere with rapid Cdt1 reaccumulation at the end of S phase. Phosphomimetic mutations recapitulate the stabilizing effects of Cdt1 phosphorylation but also reduce the ability of Cdt1 to support origin licensing. Two other CRL4(Cdt2) targets, the cyclin-dependent kinase (CDK) inhibitor p21 and the methyltransferase PR-Set7/Set8, are similarly stabilized by MAP kinase activity. These findings support a model in which MAP kinase activity in G(2) promotes reaccumulation of a low-activity Cdt1 isoform after replication is complete.  相似文献   

13.
Deregulation of the cell cycle and genome instability are common features of cancer cells and various mechanisms exist to preserve the integrity of the genome and guard against cancer. The cullin 4-RING ubiquitin ligase (CRL4) with the substrate receptor Cdt2 (CRL4Cdt2) promotes cell cycle progression and prevents genome instability through ubiquitylation and degradation of Cdt1, p21, and Set8 during S phase of the cell cycle and following DNA damage. Two recently published studies report the ubiquitin-dependent degradation of Cdt2 via the cullin 1-RING ubiquitin ligase (CRL1) in association with the substrate specificity factor and tumor suppressor FBXO11 (CRL1FBXO11). The newly identified pathway restrains the activity of CRL4Cdt2 on p21 and Set8 and regulates cellular response to TGF-β, exit from the cell cycle and cellular migration. Here, we show that the CRL1FBXO11 also promotes the degradation of Cdt2 during an unperturbed cell cycle to promote efficient progression through S and G2/M phases of the cell cycle. We discuss how this new method of regulating the abundance of Cdt2 participates in various cellular activities.  相似文献   

14.
The licensing factor Cdt1 is degraded by CRL4(Cdt2) ubiquitin ligase dependent on proliferating cell nuclear antigen (PCNA) during S phase and when DNA damage is induced in G(1) phase. Association of both Cdt2 and PCNA with chromatin was observed in S phase and after UV irradiation. Here we used a micropore UV irradiation assay to examine Cdt2 accumulation at cyclobutane pyrimidine dimer-containing DNA-damaged sites in the process of Cdt1 degradation in HeLa cells. Cdt2, present in the nucleus throughout the cell cycle, accumulated rapidly at damaged DNA sites during G(1) phase. The recruitment of Cdt2 is dependent on prior PCNA chromatin binding because Cdt2 association was prevented when PCNA was silenced. Cdt1 was also recruited to damaged sites soon after UV irradiation through its PIP-box. As Cdt1 was degraded, the Cdt2 signal at damaged sites was reduced, but PCNA, cyclobutane pyrimidine dimer, and XPA (xeroderma pigmentosum, complementation group A) signals remained at the same levels. These findings suggest that Cdt1 degradation following UV irradiation occurs rapidly at damaged sites due to PCNA chromatin loading and the recruitment of Cdt1 and CRL4(Cdt2), before DNA damage repair is completed.  相似文献   

15.
The efficiency of metazoan origins of DNA replication is known to be enhanced by histone acetylation near origins. Although this correlates with increased MCM recruitment, the mechanism by which such acetylation regulates MCM loading is unknown. We show here that Cdt1 induces large-scale chromatin decondensation that is required for MCM recruitment. This process occurs in G1, is suppressed by Geminin and requires HBO1 HAT activity and histone H4 modifications. HDAC11, which binds Cdt1 and replication origins during S phase, potently inhibits Cdt1-induced chromatin unfolding and re-replication, suppresses MCM loading and binds Cdt1 more efficiently in the presence of Geminin. We also demonstrate that chromatin at endogenous origins is more accessible in G1 relative to S phase. These results provide evidence that histone acetylation promotes MCM loading via enhanced chromatin accessibility. This process is regulated positively by Cdt1 and HBO1 in G1 and repressed by Geminin-HDAC11 association with Cdt1 in S phase and represents a novel form of replication licensing control.Key words: Cdt1, HBO1, HDAC11, chromatin, DNA replication  相似文献   

16.
The ability of eukaryotes to alter chromatin structure and function is modulated, in part, by histone-modifying enzymes and the post-translational modifications they create. One of these enzymes, PR-Set7/Set8/KMT5a, is the sole histone methyltransferase responsible for the monomethylation of histone H4 lysine 20 (H4K20me1) in higher eukaryotes. Both PR-Set7 and H4K20me1 were previously found to be tightly cell cycle regulated suggesting that they play an important, although unknown, role in cell cycle progression. Several recent reports reveal that PR-Set7 abundance is dynamically regulated during different cell cycle phases by distinct enzymes including cdk1/cyclinB, Cdc14, SCFSkp2, CRL4cdt2 and APCcdh1. Importantly, these reports demonstrate that inappropriate levels of PR-Set7 result in profound cell cycle defects including the inability to initiate S phase, the re-replication of DNA and the improper timing of mitotic progression. Here, we summarize the significance of these new findings, raise some important questions that require further investigation and explore several possibilities of how PR-Set7 and methylated H4K20 may likely function as novel regulators of the cell cycle.Key words: PR-Set7, Set8, histone H4, methylation, ubiquitination, epigenetic, chromatin, SCFSkp2, CRL4cdt2, APCcdh1, cdk1/cyclinB, Cdc14  相似文献   

17.
18.
DNA replication depends on a preceding licensing event by Cdt1 and Cdc6. In animal cells, relicensing after S phase but before mitosis is prevented by the Cdt1 inhibitor geminin and mitotic cyclin activity. Here, we show that geminin, like cyclin B1 and securin, is a bona fide target of the spindle checkpoint and APC/CCdc20. Cyclin B1 and geminin are degraded simultaneously during metaphase, which directs Cdt1 accumulation on segregating sister chromatids. Subsequent activation of APC/CCdh1 leads to degradation of Cdc6 well before Cdt1 becomes unstable in a replication-coupled manner. In mitosis, the spindle checkpoint supports Cdt1 accumulation, which promotes S phase onset. We conclude that the spindle checkpoint, APC/CCdc20, and APC/CCdh1 act successively to ensure that the disappearance of licensing inhibitors coincides exactly with a peak of Cdt1 and Cdc6. Whereas cell cycle entry from quiescence requires Cdc6 resynthesis, our results indicate that proliferating cells use a window of time in mitosis, before Cdc6 is degraded, as an earlier opportunity to direct S phase.  相似文献   

19.
Replication-coupled destruction of a cohort of cell cycle proteins ensures efficient and precise genome duplication. Three proteins destroyed during replication via the CRL4CDT2 ubiquitin E3 ligase, CDT1, p21, and SET8 (PR-SET7), are also essential or important during mitosis, making their reaccumulation after S phase a critical cell cycle event. During early and mid-S phase and during DNA repair, proliferating cell nuclear antigen (PCNA) loading onto DNA (PCNADNA) triggers the interaction between CRL4CDT2 and its substrates, resulting in their degradation. We have discovered that, beginning in late S phase, PCNADNA is no longer sufficient to trigger CRL4CDT2-mediated degradation. A CDK1-dependent mechanism that blocks CRL4CDT2 activity by interfering with CDT2 recruitment to chromatin actively protects CRL4CDT2 substrates. We postulate that deliberate override of replication-coupled destruction allows anticipatory accumulation in late S phase. We further show that (as for CDT1) de novo SET8 reaccumulation is important for normal mitotic progression. In this manner, CDK1-dependent CRL4CDT2 inactivation contributes to efficient transition from S phase to mitosis.  相似文献   

20.
The ability of eukaryotes to alter chromatin structure and function is modulated, in part, by histone-modifying enzymes and the post-translational modifications they create. One of these enzymes, PR-Set7/Set8/KMT5a, is the sole histone methyltransferase responsible for the monomethylation of histone H4 lysine 20 (H4K20me1) in higher eukaryotes. Both PR-Set7 and H4K20me1 were previously found to be tightly cell cycle regulated suggesting that they play an important, although unknown, role in cell cycle progression. Several recent reports reveal that PR-Set7 abundance is dynamically regulated during different cell cycle phases by distinct enzymes including cdk1/cyclinB, Cdc14, SCFSkp2, CRL4cdt2 and APCcdh1. Importantly, these reports demonstrate that inappropriate levels of PR-Set7 result in profound cell cycle defects including the inability to initiate S phase, the re-replication of DNA and the improper timing of mitotic progression. Here, we summarize the significance of these new findings, raise some important questions that require further investigation and explore several possibilities of how PR-Set7 and methylated H4K20 may likely function as novel regulators of the cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号