首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isolation of protein complexes via affinity-tagged proteins provides a powerful tool for studying biological systems, but the technique is often compromised by co-enrichment of nonspecifically interacting proteins. We describe a new technique (I-DIRT) that distinguishes contaminants from bona fide interactors in immunopurifications, overcoming this most challenging problem in defining protein complexes. I-DIRT will be of broad value for studying protein complexes in biological systems that can be metabolically labeled.  相似文献   

2.
A variation of the quantitative affinity chromatography (QAC) method of Winzor, Chaiken, and co-workers for the analysis of protein-ligand interactions has been developed and used to characterize sequence-specific and nonspecific protein-heparin interactions relevant to blood coagulation. The method allows quantitation of the binding of two components, A and B, from the competitive effect of one component, B, on the partitioning of the other component, A, between an immobilized acceptor phase and solution phase at equilibrium. Under the conditions employed, the differences in total A concentrations yielding an equivalent degree of saturation of the immobilized acceptor in the absence and presence of B defines the concentration of A bound to B in solution, thereby enabling conventional Scatchard or nonlinear least-squares analysis of the A-B equilibrium interaction. Like the QAC method, quantitation of the competitor interaction does not depend on the nature of the affinity matrix interaction, which need only be described empirically. The additional advantage of the difference method is that only the total rather than the free competitor ligand concentration need be known. The method requires that the partitioning component A be univalent, but allows for multivalency in the competitor, B, and can in principle be used to study binding interactions involving nonidentical, interacting, or nonspecific overlapping sites. Both the binding constant and the stoichiometry for the specific antithrombin-heparin interaction as well as the apparent binding constant for the nonspecific thrombin-heparin interaction at low thrombin binding densities obtained using this technique were in excellent agreement with values determined using spectroscopic probes.  相似文献   

3.
Terbium (Tb3+) binding to skeletal muscle troponin C was studied by fluorescence spectroscopy and circular dichroism. Titrations indicate that Tb3+, like Ca2+, preferentially binds to the two high affinity Ca2+-Mg2+ sites (III and IV) inducing structural changes similar to those induced by Ca2+. Tb3+ readily displaces Ca2+ from these sites suggesting a K(Tb3+) ≥ 109 M?1 In 6 M urea, both Ca2+ and Tb3+ bind preferentially to a single site on troponin C. The spectral changes suggest this to be site III.  相似文献   

4.
The light green coloured complexes of general formula [ReVO(L)Cl(OH2)]Cl have been synthesised in good yields by reacting [ReVOCl3(AsPh3)2] with HL in dichloromethane in dinitrogen atmosphere. Here, L is the deprotonated form of N,N-bis(2-pyridylmethyl)amine (HL1); N-(2-pyridylmethyl)-N′,N′-dimethylethylenediamine (HL2) and N-(2-pyridylmethyl)-N′,N′-diethylethylenediamine (HL3). Single crystal X-ray structure determination of [ReVO(L1)Cl(OH2)]Cl confirms the amido binding of ReO3+ species. In the solid state of [ReVO(L1)Cl(OH2)]Cl, the coordinated and counter chloride ions are engaged in Re-Cl…H-C(ring), Cl…H-C(ring) and Re-(OH2)…Cl hydrogen bonding and forming of a supramolecular network in the solid state. The subunit of the supramolecular network consists of one eight-membered and two nine-membered hydrogen bonded rings. The average diameters of eight-membered and nine-membered rings are ∼3.70 and ∼5.26 Å, respectively.  相似文献   

5.
The structure has been determined at 3.0 A resolution of a complex of engineered monomeric Cro repressor with a seven-base pair DNA fragment. Although the sequence of the DNA corresponds to the consensus half-operator that is recognized by each subunit of the wild-type Cro dimer, the complex that is formed in the crystals by the isolated monomer appears to correspond to a sequence-independent mode of association. The overall orientation of the protein relative to the DNA is markedly different from that observed for Cro dimer bound to a consensus operator. The recognition helix is rotated 48 degrees further out of the major groove, while the turn region of the helix-turn-helix remains in contact with the DNA backbone. All of the direct base-specific interactions seen in the wild-type Cro-operator complex are lost. Virtually all of the ionic interactions with the DNA backbone, however, are maintained, as is the subset of contacts between the DNA backbone and a channel on the protein surface. Overall, 25% less surface area is buried at the protein DNA interface than for half of the wild-type Cro-operator complex, and the contacts are more ionic in character due to a reduction of hydrogen bonding and van der Waals interactions. Based on this crystal structure, model building was used to develop a possible model for the sequence-nonspecific interaction of the wild-type Cro dimer with DNA. In the sequence-specific complex, the DNA is bent, the protein dimer undergoes a large hinge-bending motion relative to the uncomplexed form, and the complex is twofold symmetric. In contrast, in the proposed nonspecific complex the DNA is straight, the protein retains a conformation similar to the apo form, and the complex lacks twofold symmetry. The model is consistent with thermodynamic, chemical, and mutagenic studies, and suggests that hinge bending of the Cro dimer may be critical in permitting the transition from the binding of protein at generic sites on the DNA to binding at high affinity operator sites.  相似文献   

6.
7.
8.
Retinol binding protein 4 (RBP4) is a serum protein that serves as the major transport protein for retinol (vitamin A). Recent reports suggest that elevated levels of RBP4 are associated with insulin resistance and that insulin sensitivity may be improved by reducing serum RBP4 levels. This can be accomplished by administration of small molecules, such as fenretinide, that compete with retinol for binding to RBP4 and disrupt the protein-protein interaction between RBP4 and transthyretin (TTR), another serum protein that protects RBP4 from renal clearance. We developed a fluorescence resonance energy transfer (FRET) assay that measures the interaction between RBP4 and TTR and can be used to determine the binding affinities of RBP4 ligands. We present an allosteric model that describes the pharmacology of interaction among RBP4, TTR, retinol, and fenretinide, and we show data that support the model. We show that retinol increases the affinity of RBP4 for TTR by a factor of 4 and determine the affinity constants of fenretinide and retinyl acetate. The assay may be useful for characterizing small molecule ligands that bind to RBP4 and disrupt its interaction with TTR. In addition, such a model could be used to describe other protein-protein interactions that are modulated by small molecules.  相似文献   

9.
Besides an essential role in optimizing water oxidation in photosystem II (PSII), it has been reported that the spinach PsbO protein binds GTP [C. Spetea, T. Hundal, B. Lundin, M. Heddad, I. Adamska, B. Andersson, Proc. Natl. Acad. Sci. U.S.A. 101 (2004) 1409-1414]. Here we predict four GTP-binding domains in the structure of spinach PsbO, all localized in the β-barrel domain of the protein, as judged from comparison with the 3D-structure of the cyanobacterial counterpart. These domains are not conserved in the sequences of the cyanobacterial or green algae PsbO proteins. MgGTP induces specific changes in the structure of the PsbO protein in solution, as detected by circular dichroism and intrinsic fluorescence spectroscopy. Spinach PsbO has a low intrinsic GTPase activity, which is enhanced fifteen-fold when the protein is associated with the PSII complex in its dimeric form. GTP stimulates the dissociation of PsbO from PSII under light conditions known to also release Mn2+ and Ca2+ ions from the oxygen-evolving complex and to induce degradation of the PSII reaction centre D1 protein. We propose the occurrence in higher plants of a PsbO-mediated GTPase activity associated with PSII, which has consequences for the function of the oxygen-evolving complex and D1 protein turnover.  相似文献   

10.
Besides an essential role in optimizing water oxidation in photosystem II (PSII), it has been reported that the spinach PsbO protein binds GTP [C. Spetea, T. Hundal, B. Lundin, M. Heddad, I. Adamska, B. Andersson, Proc. Natl. Acad. Sci. U.S.A. 101 (2004) 1409-1414]. Here we predict four GTP-binding domains in the structure of spinach PsbO, all localized in the beta-barrel domain of the protein, as judged from comparison with the 3D-structure of the cyanobacterial counterpart. These domains are not conserved in the sequences of the cyanobacterial or green algae PsbO proteins. MgGTP induces specific changes in the structure of the PsbO protein in solution, as detected by circular dichroism and intrinsic fluorescence spectroscopy. Spinach PsbO has a low intrinsic GTPase activity, which is enhanced fifteen-fold when the protein is associated with the PSII complex in its dimeric form. GTP stimulates the dissociation of PsbO from PSII under light conditions known to also release Mn(2+) and Ca(2+) ions from the oxygen-evolving complex and to induce degradation of the PSII reaction centre D1 protein. We propose the occurrence in higher plants of a PsbO-mediated GTPase activity associated with PSII, which has consequences for the function of the oxygen-evolving complex and D1 protein turnover.  相似文献   

11.
Kress W  Mutschler H  Weber-Ban E 《Biochemistry》2007,46(21):6183-6193
The ClpAP chaperone-protease complex is active as a cylindrically shaped oligomeric complex built of the proteolytic ClpP double ring as the core of the complex and two ClpA hexamers associating with the ends of the core cylinder. The ClpA chaperone belongs to the larger family of AAA+ ATPases and is responsible for preparing protein substrates for degradation by ClpP. Here, we study in real time using fluorescence and light scattering stopped-flow methods the complete assembly pathway of this bacterial chaperone-protease complex consisting of ATP-induced ClpA hexamer formation and the subsequent association of ClpA hexamers with the ClpP core cylinder. We provide evidence that ClpA assembles into hexamers via a tetrameric intermediate and that hexamerization coincides with the appearance of ATPase activity. While ATP-induced oligomerization of ClpA is a prerequisite for binding of ClpA to ClpP, the kinetics of ClpA hexamer formation are not influenced by the presence of ClpP. Models for ClpA hexamerization and ClpA-ClpP association are presented along with rate parameters obtained from numerical fitting procedures. The hexamerization kinetics show that the tetrameric intermediate transiently accumulates, forming rapidly at early time points and then decaying at a slower rate to generate the hexamer. The association of assembled ClpA hexamers with the ClpP core cylinder displays cooperativity, supporting the coexistence of interchanging ClpP conformations with different affinities for ClpA.  相似文献   

12.
13.
ESCRT-I, -II, and -III protein complexes are sequentially recruited to endosomal membranes, where they orchestrate protein sorting and MVB biogenesis. In addition, they play a critical role in retrovirus budding. Structural understanding of ESCRT interaction networks is largely lacking. The 3.6 A structure of the yeast ESCRT-II core presented here reveals a trilobal complex containing two copies of Vps25, one copy of Vps22, and the C-terminal region of Vps36. Unexpectedly, the entire ESCRT-II core consists of eight repeats of a common building block, a "winged helix" domain. Two PPXY-motifs from Vps25 are involved in contacts with Vps22 and Vps36, and their mutation leads to ESCRT-II disruption. We show that purified ESCRT-II binds directly to the Vps20 component of ESCRT-III. Surprisingly, this binding does not require the protruding N-terminal coiled-coil of Vps22. Vps25 is the chief subunit responsible for Vps20 recruitment. This interaction dramatically increases binding of both components to lipid vesicles in vitro.  相似文献   

14.
Attempts to access antibiotics by capturing biosynthetic genes and pathways directly from environmental DNA, which is overwhelmingly derived from uncultured bacteria, have revealed a large and previously unknown family of N-acyl amino acid synthases (NASs). The structure of the NAS FeeM reveals structural similarity to the GCN5-related N-acyl transferases and acylhomoserine lactone synthases. The overall structure has a central beta sheet with alpha helices on both sides. A bound product at a cleft in the beta sheet identifies the active site and the structural basis for catalysis, and sequence conservation in this region indicates a bias for recognition over speed. FeeM interacts with an acyl carrier protein (FeeL), and the structure, mutagenesis, and enzymatic measurements reveal that a small hydrophobic pocket in alpha helix 5 dominates binding of FeeM to FeeL. The structural and mechanistic analyses suggest that the products of FeeM could be bacterial signaling agents.  相似文献   

15.
Eristalis tenax L. and E. intricarius L. are two hoverflies which vary considerably in colour pattern. Whilst much of the phenotypic variation in both species is due to genetic variation at major gene loci, there are interactions with pupal temperature and with age of adult. Low pupal temperatures produce, on average, darker abdominal patterns in E. tenax , although the effect is hard to pick out in natural populations. Changes of pattern with age convert a bimodal autumn population to a unimodal post-hibernation population in the following spring. Hair colour is also made darker by cold treatment. Pupal treatments have a strong effect on hair colouration in E. intricarius. High temperatures inhibit the production of black hairs on the thorax, but not all the genotypes are equally sensitive to temperature. Seasonal fluctuations in colour pattern frequencies are detectable in E. intricarius. In three Eristalis species that have been studied so far, the interactions between genotype, age and temperature operate in quite different ways. The temperature responses may be relevant to theories of thermal melanism, although the colour pattern polymorphisms are, more obviously, examples of Batesian mimicry.  相似文献   

16.
Myosin binding protein C (MyBP-C) is a thick filament protein involved in the regulation of muscle contraction. Mutations in the gene for MyBP-C are the second most frequent cause of hypertrophic cardiomyopathy. MyBP-C binds to myosin with two binding sites, one at its C-terminus and another at its N-terminus. The N-terminal binding site, consisting of immunoglobulin domains C1 and C2 connected by a flexible linker, interacts with the S2 segment of myosin in a phosphorylation-regulated manner. It is assumed that the function of MyBP-C is to act as a tether that fixes the S1 heads in a resting position and that phosphorylation releases the S1 heads into an active state. Here, we report the structure and binding properties of domain C1. Using a combination of site-directed mutagenesis and NMR interaction experiments, we identified the binding site of domain C1 in the immediate vicinity of the S1-S2 hinge, very close to the light chains. In addition, we identified a zinc binding site on domain C1 in close proximity to the S2 binding site. Its zinc binding affinity (Kd of approximately 10-20 μM) might not be sufficient for a physiological effect. However, the familial hypertrophic cardiomyopathy-related mutation of one of the zinc ligands, glutamine 210 to histidine, will significantly increase the binding affinity, suggesting that this mutation may affect S2 binding. The close proximity of the C1 binding site to the hinge, the light chains and the S1 heads also provides an explanation for recent observations that (a) shorter fragments of MyBP-C unable to act as a tether still have an effect on the actomyosin ATPase and (b) as to why the myosin head positions in phosphorylated wild-type mice and MyBP-C knockout mice are so different: Domain C1 bound to the S1-S2 hinge is able to manipulate S1 head positions, thus influencing force generation without tether. The potentially extensive extra interactions of C1 are expected to keep it in place, while phosphorylation dislodges the C1-C2 linker and domain C2. As a result, the myosin heads would always be attached to a tether that has phosphorylation-dependent length regulation.  相似文献   

17.
Successful social groups must respond dynamically to environmental changes. However, a flexible group response requires the coordination of many individuals. Here we offer a static analytical model that integrates variation in environment-based cues for performance of a task with genetically and environmentally based variation in individual responses, and predicts the resultant colony behavior for that task. We also provide formulae for computing effective number of alleles in a haplo-diploid colony founded by any number of parents. Variable colony resources combined with variation among worker phenotypes generate known patterns of colony flexibility, allowing us to explicitly test how the number of loci, dominance/codominance, and the phenotype's environment influences group response. Our model indicates that the number of loci strongly influences colony behavior. For one or two loci, the proportion of workers foraging for pollen remain constant over vast increases in colony pollen stores, but then drops dramatically when the pollen stores increase past a specific threshold. As the number of loci controlling pollen foraging increases, graded increases in pollen stores result in a graded drop in the proportion of the worker population foraging for pollen. The effect of number of alleles is less strong, a result we discuss in light of the fact that a low number of effective alleles are expected in a colony. Comparisons of our model with empirical honey bee (Apis mellifera) data indicate that worker foraging response to pollen stores is driven by one or two loci, each with dominant allelic effects. The growing body of evidence that genotype has strong effects on task performance in social insect colonies, and the variation in within-colony genetic diversity across social insect taxa, make our model broadly applicable in explaining social group coordination.  相似文献   

18.
The global fold of maltose binding protein in complex with -cyclodextrin has been determined using a CNS-based torsion angle molecular dynamics protocol involving direct refinement against dipolar couplings and carbonyl chemical shift changes that occur upon alignment. The shift changes have been included as structural restraints using a new module, CANI, that has been incorporated into CNS. Force constants and timesteps have been determined that are particularly effective in structure refinement applications involving high molecular weight proteins with small to moderate numbers of NOE restraints. Solution structures of the N- and C-domains of MBP calculated with this new protocol are within 2 Å of the X-ray conformation.  相似文献   

19.
BACKGROUND: The Saccharomyces cerevisiae protein Cks1 (cyclin-dependent kinase subunit 1) is essential for cell-cycle progression. The biological function of Cks1 can be modulated by a switch between two distinct molecular assemblies: the single domain fold, which results from the closing of a beta-hinge motif, and the intersubunit beta-strand interchanged dimer, which arises from the opening of the beta-hinge motif. The crystal structure of a cyclin-dependent kinase (Cdk) in complex with the human Cks homolog CksHs1 single-domain fold revealed the importance of conserved hydrophobic residues and charged residues within the beta-hinge motif. RESULTS: The 3.0 A resolution Cks1 structure reveals the strict structural conservation of the Cks alpha/beta-core fold and the beta-hinge motif. The beta hinge identified in the Cks1 structure includes a novel pivot and exposes a cluster of conserved tyrosine residues that are involved in Cdk binding but are sequestered in the beta-interchanged Cks homolog suc1 dimer structure. This Cks1 structure confirms the conservation of the Cks anion-binding site, which interacts with sidechain residues from the C-terminal alpha helix of another subunit in the crystal. CONCLUSIONS: The Cks1 structure exemplifies the conservation of the beta-interchanged dimer and the anion-binding site in evolutionarily distant yeast and human Cks homologs. Mutational analyses including in vivo rescue of CKS1 disruption support the dual functional roles of the beta-hinge residue Glu94, which participates in Cdk binding, and of the anion-binding pocket that is located 22 A away and on an opposite face to Glu94. The Cks1 structure suggests a biological role for the beta-interchanged dimer and the anion-binding site in targeting Cdks to specific phosphoproteins during cell-cycle progression.  相似文献   

20.
Small neuropeptides of the adipokinetic/red pigment-concentrating hormone (AKH/RPCH) family regulate energy metabolism in insects. Within lepidopterans, the nonapeptide Manduca sexta AKH (Manse-AKH) represents a widely occurring AKH, whereas the decapeptide Helze-HrTH (at first isolated from Helicoverpa zea) seems to be restricted to moths. Here we report the identification of the Manse-AKH-like Spofr-AKH 1 and the Helze-HrTH-like Spofr-AKH 2 prohormone precursors from the fall armyworm, Spodoptera frugiperda. Moreover, by PCR screening of a random primer cDNA library and by RACE, three 668, 835 and 1008 bp cDNA sequences were obtained, which encode putative translation products of 67-74 amino acids, each containing one copy of a peptide sequence that in its processed form has the sequence of QLTFSSGW-amide (Spofr-AKH 3). Another cDNA sequence of 634 bp encodes a putative translation product of 40 amino acids, potentially leading to one copy of an elongated, non-amidated Helze-HrTH (pQLTFSSGWGNCTS-OH; Spofr-AKH 4). Q-RT-PCR analysis showed that the Spofr-AKH mRNAs are expressed in 2d-old female brain/corpora cardiaca complexes, but also in ovaries, midgut, fat body, accessory glands and muscle tissues. Expression was also found in the ovaries of 4d-old females. Whole-mount in situ RT-PCR analysis with ovaries from 2d-old females showed that the Spofr-AKH 2 and Spofr-AKH 4 were mainly localized in the germarium (phase 3), whereas the Spofr-AKH 1, and the three mRNA isoforms of Spofr-AKH 3 were localized at the end of the vitellarium and in the fully developed oocytes (phase 1 and 2). The results suggest that Spofr-AKH genes play a role in the regulation of oocyte maturation in S. frugiperda.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号