首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Pig thyroid slices were incubated with Na131I and the 17--19S 131I-labeled thyroglobulin isolated was subjected to dissociation with 0.3 mM sodium dodecyl sulphate SDS) on sucrose density gradient centrifugation and to iodoamino acid analysis. During the incubation, initially dissociable thyroglobulin was gradually altered to 0.3 mM SDS-resistant species with increasing incorporation of iodine. Microsome-bound, poorly iodinated thyroglobulin and preformed thyroglobulin were chemically iodinated and then subjected to analysis of dissociability and iodoamino acid contents with newly incorporated iodine. The results indicated that the behavior of the former thyroglobulin resembled that of 131I-thyroglobulin obtained from the slices. Then, thyroid slices were incubated for 3 min with Na131I and 3H-leucine with or without 10-min chase incubation. The sucrose density gradient centrifugation patterns of 131I and 3H-radioactivity of cytoplasmic extracts indicated that 131I-thyroglobulin is contained in particulates, especially in vesicles with low density(d=1.12) and that some of them are released into the soluble fraction within 10 min. The vesicles contained peroxidase and NADH-cytochrome c reductase, and are probably exocytotic vesicles in the apical area of cytoplasm of follicular cells. No positive evidence was obtained that plasma membranes participate in the iodination of thyroglobulin under the present experimental conditions. These results suggest that, in the incubation of thyroid slices, iodine atoms are preferentially incorporated into newly synthesized, less iodinated thyroglobulin, rather than preformed thyroglobulin, and that the iodination occurs, at least to a certain degree, in apical vesicles before the thyroglobulin is secreted into the colloid lumen.  相似文献   

2.
Evidence that thyroglobulin contains nonidentical half molecule subunits   总被引:1,自引:0,他引:1  
Bovine thyroglobulin was extracted from unfrozen glands, purified by sucrose gradient centrifugation, and fractionated into a narrow range in iodine content by RbCl isopycnic centrifugation. The subunit composition of these preparations was studied by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. The extent of dissociation of 19 S into 12 S half-molecules followed the known relationship with iodine, i.e. decreased dissociability of 19 S with increased iodine content. The undissociated 19 S band always consisted of three closely spaced, equidistant bands. Reduction of the disulfide bonds of thyroglobulin by mercaptoethanol in SDS solution resulted in the formation of two major and one minor components (S, F, and A). The concentration of A was always less than 10% of the total. The ratio of S to F was, however, about equal in thyroglobulin preparations which ranged in iodine content from 0.2 to 1%. The final ratios were obtained before all the disulfides were reduced. The relative mobilitis of S, F, and A, decreased with increasing extent of reduction. Fully reduced S and F, but not A, migrated slower than unreduced 12 S. The three reduced alkylated polypeptides were purified by preparative SDS-polyacrylamide gel electrophoresis and their molecular weights were determined by sedimentation equilibrium in 8 M urea. Their Mw and Mz values agreed closely with that of the unreduced 12 S half-molecule subunit, thus indicating that reduction of the disulfide bonds changes the shape but not the molecular weights of the subunits.  相似文献   

3.
Iodoaminoacid content (iodothyronines, T3 and T4, and iodotyrosines, MIT and DIT) has been determined in enzymatic hydrolysates of thyroglobulin Tg 19S of different iodine content (0.3-0.9%) isolated from equilibrium labeled rats. Preparative equilibrium centrifugation in RbCl density gradients of pure thyroglobulin was used to obtain protein fractions of largely different iodine content (0.2-1.2% I). Thin layer chromatography of total hydrolysates demonstrated that the distribution of iodoaminoacids depends on the total iodine content of each fraction. It is concluded, in agreement with previous results, that the native structure of Tg is an important factor in the regulation of hormone biosynthesis and that even at low iodination levels of Tg. T3 and T4 are synthesized.  相似文献   

4.
Normally iodinated thyroglobulin (Tg) contains low molecular weight hormone-rich peptides associated to the bulk of the molecule by disulfide bridges. It is shown, with the assistance of in vitro iodination experiments using different iodine concentrations and various incubation times, that the proteolytic cleavage giving rise to the 26 K hormonopeptide in human Tg is part of a coupling reaction rather than iodination. This cleavage may be a preliminary event related to a facilitation in the release of thyroid hormones.  相似文献   

5.
The distribution of iodine among the polypeptides of human goiter thyroglobulin (Tg) was examined. Tg was iodinated in vitro with 131I to levels of 2 to 84 gram atoms (g.a.)/mol using thyroid peroxidase (TPO) or a chemical iodination system. The samples were reduced, alkylated, and subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Two low-molecular-weight peptides appeared preferentially in radioautograms of the sodium dodecyl sulfate (SDS) gels of TPO-iodinated samples. Iodination of these peptides increased sharply in the TPO-treated Tg as the level of total iodine/ molecule rose. Radioiodine was incorporated into these same gel regions in the chemically treated Tg, but only after much higher levels of total iodination were reached. Differences in iodoamino acid distribution were also noted between the chemically and enzymatically iodinated thyroglobulins. In the chemically iodinated samples, little thyroxine (T4) was synthesized, even at high iodine levels. In the TPO-treated samples only small amounts of T4 were seen below 14 g.a. total I/mol, while at or above that level of iodination T4 formation increased sharply. To examine the coupling process, Tg was chemically iodinated, excess I? removed, and the samples treated with TPO and a H2O2-generating system in the absence of iodide. Radioautograms obtained from SDS-polyacrylamide gels of reduced and alkylated protein from such coupling assays showed an increase in the level of iodine in the low-molecular-weight peptides after TPO treatment. Thyroxine production also increased with TPO treatment. The addition of free DIT (a known coupling enhancer) to the [131I]Tg/TPO incubation increased both the production of T4 and the amount of iodine in the smaller polypeptides. Two-dimensional maps prepared from CNBr-digested TG showed differences between the coupled and uncoupled samples. Our observations confirm the importance of the lowmolecular-weight peptides derived from Tg in thyroid hormone synthesis. At total iodine levels above 14 g.a./mol Tg in enzymatically treated samples there is selective incorporation of iodine into both the low-molecular-weight polypeptides and into thyroid hormone.  相似文献   

6.
Experiments were performed both in vivo and in vitro to test a previous proposal that part of the antithyroid action of the thioureylene drugs, propylthiouracil (PTU) and methylmercaptoimidazole, can be attributed to inhibition of thyroglobulin (Tg) biosynthesis. Rat thyroid lobes were incubated in leucine-free Eagle's medium containing bovine thyroid-stimulating hormone and 0, 0.1-0.2, or 1 mM drug. After a 30-min preincubation, 5 mu Ci of [14C]leucine were added and the incubation was continued for 4 hr. The soluble fraction was analyzed by sucrose density gradient centrifugation, and the fractions corresponding to the 19S Tg peak were pooled and assayed for 14C. No inhibition of 14C incorporation into 19S Tg was observed, even in thyroid lobes incubated in the presence of 1 mM methylmercaptoimidazole or 2 mM PTU. At the same time, 14C incorporation into 19S Tg was completely inhibited when lobes were incubated in the presence of 0.1 mM puromycin. In vivo, rats received an injection of PTU (1 mumol/100 g body wt), followed 60 min later by an injection of 25 mu Ci of [14C]leucine. Blood samples and thyroids were taken 5 hr after the [14C]leucine injection. Serum thyroid-stimulating hormone was not significantly affected by the PTU injection. The thyroid-soluble fraction was analyzed by sucrose density gradient centrifugation. No significant differences between saline and PTU-injected groups were observed in [14C]leucine incorporation into 19S Tg. We conclude from both our in vitro and our in vivo studies that PTU and methylmercaptoimidazole have no inhibitory effect on thyroglobulin synthesis in rat thyroids and that such inhibition does not play a significant role in the antithyroid action of these drugs.  相似文献   

7.
The kinetics of iodination and oxidation of hog thyroglobulin were studied with purified hog thyroid peroxidase and the results were compared with the reactions of free tyrosine. From Lineweaver-Burk plots and on the basis of a value of 0.83 for delta epsilon mM at 289 nm/iodine atom incorporated, the rate constant for transfer of an assumed enzyme-bound iodinium cation to thyroglobulin was estimated to be 6.7 X 10(7) and 2.3 X 10(7) M-1 s-1 in native (iodine content = 1.0%) and more iodinated (iodine content = 1.2%) thyroglobulins, respectively. This iodine-transferring reaction was stimulated by iodothyronines, similarly as observed in the reaction with free tyrosine. The iodination of thyroglobulin was inhibited by GSH, the inhibition being competitive with thyroglobulin. Thyroglobulin was oxidized in the presence of a thyroid peroxidase system without giving any appreciable change in absorbance around 300 nm. From stopped flow data, the oxidation was concluded to occur by way of two-electron transfer and the rate constant for the reaction of thyroid peroxidase Compound I with thyroglobulin was estimated to be 1.0 X 10(7) M-1 s-1. The stopped flow kinetic pattern was similar to that observed on the reaction with free tyrosine and monoiodotyrosine. About 6 mol of hydrogen peroxide were consumed per mol of thyroglobulin. Thyroid peroxidase catalyzed thyroglobulin-mediated oxidation of GSH, but lactoperoxidase did not.  相似文献   

8.
The dissociation of thyroid 27 S iodoprotein by sodium dodecyl sulfate (SDS) and by succinic anhydride was investigated by means of ultracentrifugation and polyacrylamide gel electrophoresis. The iodoprotein obtained from either a human or hog was dissociated into three kinds of subunits (S-19, S-17 and S-12) by SDS treatment. At increased concentrations of SDS, the S-12 subunit was predominant among the dissociation products. The succinylation of 27 S iodoprotein showed essentially the same dissociation pattern as in the case of SDS treatment. This dissociation products of the protein preparations of different animals were qualitatively the same as those of thyroglobulin of the respective animals, confirming the hypothesis that 27 S iodoprotein was composed of two molecules of thyroglobulin. However, the extent of dissociation of 27 S iodoprotein measured by S-12 formation showed higher resistancy of the protein to the dissociating agents than that of thyroglobulin. The contents of sialic acid and hexose as well as iodoamino acids of 27 S iodoprotein were found to be the same as, or not far from, those of thyroglobulin; The dissociability and chemical composition of 27 S iodoprotein was discussed with reference to the subunit structure of the protein.  相似文献   

9.
Thyroglobulin was isolated from thyroid glands of normal guinea pigs and from animals treated with thiouracil. These preparations were fractionated by isopyknic centrifugation in RbCl into proteins of varying iodine content. When the disulfide bonds of these protein fractions were reduced and analyzed by polyacrylamide gel electrophoresis in Na dodecyl-SO4, t hree species were observed with molecular weights of 295,000 (A), 210,000 (B), and 110,000 (C). Species A comprised 80% of the protein in thyroglobulin of 0.04% iodine and 13% in thyroglobulin of 0.68% iodine content. Species C showed the opposite relationship, comprising 10% of the low and 70% of the high iodine thyroglobulin. Species B was relatively independent of the iodine content and represented approximately 20% of the protein. Iodine analysis of these proteins showed species A to be lowest and species C highest. It appears that the subunit composition of thyroglobulin depends on the degree of iodination and that species A should be the only one present in the absence of iodination.  相似文献   

10.
Iodotyrosine and iodothyronine residues are formed in the protein molecule during bovine thyroglobulin iodination in vitro. Dissociation and reassociation of the thyroglobulin molecule have no significant influence on its iodoaminoacid composition. Thyroglobulin iodination in the presence of 8 M urea does not result in thyroxine synthesis despite the increased formation of iodotyrosine residues. Similarly, during iodination of reassociated thyroglobulin the new molecules of thyroxine are not formed either. It is presumed that during reassociation of thyroglobulin subunits the native conformation of the protein is not completely reconstituted. The results obtained suggest that the structure of thyroglobulin controls the distribution of the iodine atoms incorporated by the iodoaminoacid residues.  相似文献   

11.
In each of three separate experiments, female guinea pigs in groups of 20 were given 4 units of thyroid-stimulating hormone (TSH) each day for 3 days, while controls were given saline. Na125I was injected on the 3rd day, and the animals were killed 22 hours later. The pooled throids of each group were homogenized, and thyroglobulin was purified by one of the following methods: gel filtration on Sephadex G-200 followed by density gradient ultracentrifugation, two sequential filtrations on 4 percent agarose, or filtration on 4 percent agarose followed by Sephadex G-200. TSH administration was associated with the folling changes in thyroglobulin: (1) an increase in the ratio of tri-iodothyronine to thyroxine; (2) a decrease in dissociation of the 19 S to the 12 S form; (3) an alteration in its pattern on gel electrophoresis in sodium dodecyl sulfate-urea; and (4) changes in its amino acid composition, with significant increases in the content of lysine (by 15 percent), isoleucine (by 15 percent), and methionine (by 7 percent) relative to leucine. Over-all, there were no significant changes in the content of iodine, fucose, hexosamine, or sialic acid. These data show that TSH can alter the composition of thyroglobulin independently of its effects on iodine content. We suggest that these changes may stem from alterations in the subunit composition of thyroglobulin. There were also small but significant variations in amino acid composition among the three preparations of thyroglobulin from saline-treated animals and among the three from the TSH-treated. This finding shows that thyroglobulin can be heterogeneous in its protein portion as well as in its iodine content.  相似文献   

12.
Slices of dog thyroid gland were incubated with liposomes consisting of (125)I-labelled phosphatidylcholine (the iodine was covalently linked to unsaturated fatty acyl chains). The (125)I label of (125)I-labelled liposomes was incorporated into thyroid protein and/or thyroglobulin at a higher rate than was the (131)I label of either Na(131)I or (131)I(2). The iodine was shown to be protein-bound by the co-migration of the labelled iodine with protein under conditions where free iodine, iodide and lipid-bound iodine were removed from protein. The uptake of iodine from the iodinated phospholipid was probably due to phospholipid exchange between the iodinated liposomes and the thyroid cell membrane, since (a) (14)C-labelled phospholipid was metabolized to (14)CO(2) and (b) many lipids in the tissue slice became (14)C-labelled. A very strong inhibition of iodide ;uptake' from Na(131)I, caused by thiosulphate, produced only a minor inhibition of the incorporation of (125)I from (125)I-labelled liposomes into thyroid protein and/or thyroglobulin. This implies that free iodide may not necessarily be formed from the iodinated phospholipids before their entrance or utilization in the cell. Synthetic polytyrosine polypeptide suspensions showed some iodination by (131)I-labelled liposomes. In tissues with low tyrosine contents, such as liver and kidney, only a trace uptake was observed. Salivary gland showed some uptake. Endoplasmic reticulum of thyroid gland showed a higher iodine uptake than that of the corresponding plasma membranes. These experiments, together with the demonstration of the diet-dependent presence of iodinated phospholipids in dog thyroid, leads us to suggest that iodination of the membrane phospholipids of thyroid cells may be directly or indirectly involved at some stage in the synthesis of thyroglobulin, or exists as a scavenger mechanism, to re-utilize and/or recover released iodine from unstable compounds inside the thyroid cell.  相似文献   

13.
At moderate iodination levels (about 20 iodine atoms/mol) human thyroglobulin yields after reduction and alkylation a hormone (T4)-containing N-terminal peptide of 26K. Further iodination of the thyroglobulin in vitro results in the cleavage of this part of the molecule into smaller peptides of 22K and 18K. A precursor-product relationship between the 26K peptide segment and the latter was established by showing an identical N-terminal T4-containing sequence in the 3 peptides. Cleavage of peptide bonds in the 26K segment to give the smaller fragments could possibly be related to the formation of another hormone residue.  相似文献   

14.
Thyroglobulin of very low iodine content has been prepared from a single non-toxic human goitre. The initial iodine content of the protein (0.038%) has been increased to levels of 0.16% and 0.85% by in vitro treatment with thyroid peroxidase and the resulting proteins studied with respect to their intrinsic fluorescence, circular dichroism spectra and binding of the hydrophobic probe 1,8-anilinonaphthalene sulfonic acid (ANS). While significant differences were observed between levels of iodination in both the ANS binding and intrinsic fluorescence of the thyroglobulin, no significant differences in the near and far UV circular dichroism spectra of the protein as a function of iodine content were observed. These data suggest that, the iodination of thyroglobulin effects specific areas of the protein without significant disruption of its overall secondary structure.  相似文献   

15.
Particulate iodoproteins have been studied in the rat thyroid gland using the isotopic 125I equilibration method. Pulse experiments were also performed with a second isotope, 131I. Labelled iodoproteins, both soluble and solubilized by digitonin from the thyroid particulate material, were analyzed by sucrose-gradient ultracentrifugation. 1. At isotopic equilibrium and irrespective of the iodide content of the diet two particulate iodoproteins, with sedimentation coefficients of 27 and 19 S, were solubilized by digitonin. In addition a 9 S iodoprotein was also present but its proportion varied markedly with the iodine content of the diet: it accounted for 50-60% of the label found at the particulate level when the dialy diet of iodine was high (75-500 mug/day) but was almost absent when the diet was only 2 mug/day. 2. Most of this 9 S protein was found in the 600-15 000 times g particulate pellet, i.e. a fraction enriched in lysosomes and phagolysosomes. 3. The iodoamino acid composition of the 9 S fraction was very similar to that of the 19 S particulate thyroglobulin: its hormone content was 19%. 4. The double precipitation technique showed that the 9 S fraction is immunochemically related to thyroglobulin. 5. Pulse experiments showed that the 9 S particulate iodoprotein was slowly labelled by 131I. 6. The amount of 9 S iodoprotein was increased by thyrotropin (30-40% increase versus control experiments 5 min after thyrotropin injection). These properties of the 9 S particulate iodoprotein are discussed in relation to the assumption that it might be a product of partial proteolysis of thyroglobulin after endocytosis and partial digestion by the phagolysosomes.  相似文献   

16.
A tryptic fragment (b5TR,NR), encompassing residues 2515–2750, was isolated from a low-iodine (0.26% by mass) bovine thyroglobulin, by limited proteolysis with trypsin and preparative, continuous-elution SDS–PAGE. The fragment was digested with Asp-N endoproteinase and analyzed by reverse-phase HPLC electrospray ionization quadrupole time-of-flight mass spectrometry, revealing the formation of: 3-monoiodotyrosine and dehydroalanine from Tyr2522; 3-monoiodotyrosine from Tyr2555 and Tyr2569; 3-monoiodotyrosine and 3,5-diiodotyrosine from Tyr2748. The data presented document, by direct mass spectrometric identifications, efficient iodophenoxyl ring transfer from monoiodinated hormonogenic donor Tyr2522 and efficient mono- and diiodination of hormonogenic acceptor Tyr2748, under conditions which permitted only limited iodination of Tyr2555 and Tyr2569, in low-iodine bovine thyroglobulin. The present study thereby provides: (1) a rationale for the preferential synthesis of T3 at the carboxy-terminal end of thyroglobulin, at low iodination level; (2) confirmation for the presence of an interspecifically conserved hormonogenic donor site in the carboxy-terminal domain of thyroglobulin; (3) solution for a previous uncertainty, concerning the precise location of such donor site in bovine thyroglobulin.  相似文献   

17.
In previous work we demonstrated that circulating thyroglobulin contains very little or no iodine. We have now characterized circulating thyroglobulin following administration of thyrotropin (TSH) to determine whether its iodine content remains low or increases after stimulation. The iodine content of circulating thyroglobulin was estimated from its density determined by equilibrium density gradient (isopycnic) centrifugation. TSH stimulated thyroglobulin from 182 +/- 28 ng/ml to 571 +/- 83 ng/ml at 8-14 h. Circulating thyroglobulin in the basal state had a density consistent with very little or no iodine. Its density increased following TSH to a maximum at 8-14 h which was nearly the same as the density of thyroglobulin extracted directly from the thyroid. To determine whether selective peripheral metabolism, based on the degree of iodination, could account for the density shift, purified rat thyroid thyroglobulin was injected into thyroidectomized rats. The density of thyroglobulin remained unchanged for 25 h during which time it was metabolized by more than 97%. Therefore, selective metabolism of thyroglobulin based on iodine content did not occur. We conclude that TSH causes a marked increase in the iodine content of circulating thyroglobulin. It is most likely that in the basal state circulating thyroglobulin comes from selective release of poorly iodinated molecules, while after TSH, it comes from release of previously synthesized, iodinated and stored molecules.  相似文献   

18.
In previous work we demonstrated that circulating thyroglobulin contains very little or no iodine. We have now characterized circulating thyroglobulin following administration of thyrotropin (TSH) to determine whether its iodine content remains low or increases after stimulation. The iodine content of circulating thyroglobulin was estimated from its density determined by equilibrium density gradient (isopycnic) centrifugation. TSH stimulated thyroglobulin from 182 ± 28 ng/ml to 571 ± 83 ng/ml at 8–14 h. Circulating thyroglobulin in the basal state had a density consistent with very little or no iodine. Its density increased following TSH to a maximum at 8–14 h which was nearly the same as the density of thyroglobulin extracted directly from the thyroid. To determine whether selective peripheral metabolism, based on the degree of iodination, could account for the density shift, purified rat thyroid thyroglobulin was injected into thyroidectomized rats. The density of thyroglobulin remained unchanged for 25 h during which time it was metabolized by more than 97%. Therefore, selective metabolism of thyroglobulin based on iodine content did not occur. We conclude that TSH causes a marked increase in the iodine content of circulating thyroglobulin. It is most likely that in the basal state circulating thyroglobulin comes from selective release of poorly iodinated molecules, while after TSH, it comes from release of previously synthesized, iodinated and stored molecules.  相似文献   

19.
Iodine and thyroglobulin concentrations, as well as iodine, T3, T4 and sialic acid contents of thyroglobulin, were measured in thyroid glands collected postmortem from 42 human premature or term newborns and infants. Three groups were considered: very preterm newborns (24-32 postmenstrual weeks, < 5 days postnatal life), preterm and term newborns (34-41 postmenstrual weeks, < 5 days postnatal life) and infants (born at term, postnatal age 1-8 months). Five very preterm and seven preterm newborns received a daily dose of 10 microg/kg L-T4 for at least 3 days. Thyroid weight and sialic acid content of thyroglobulin progressed with maturation. Intrathyroidal concentrations of iodine and thyroglobulin did not increase significantly before the 42nd week of postmenstrual age. The level of thyroglobulin iodination increased during the postnatal life, except in the very preterm neonates. T4 and T3 content of thyroglobulin was directly proportional to its degree of iodination and positively related to its sialic acid content. L-T4 treatment of preterm newborns increased thyroglobulin iodination and T4-T3 content, without increasing thyroglobulin concentration in the thyroid. It was concluded that the storage of thyroglobulin and iodine in the thyroid develops around term birth. This, associated with the resulting rapid theoretical turnover of the intrathyroidal pool of T4 in Tg, could be an important factor of increased risk of neonatal hypothyroxinemia in the premature infants. The L-T4 treatment of preterm newborns does not accelerate the maturational process of the thyroid gland.  相似文献   

20.
The effect of monensin on the secretion of thyroglobulin was studied in open follicles isolated from pig thyroid tissue; in this system, thyroglobulin is secreted into the incubation medium. When monensin was present during a 4-h chase incubation after pulse-labelling with 3H-leucine, the secretion of labelled thyroglobulin was reduced by about 85%; in electron-microscopic autoradiographs of rat thyroid lobes labelled and chase-incubated under similar conditions the relative number of grains over follicle lumina was strongly reduced when monensin was present during the chase. These observations are in agreement with the consensus that monensin arrests transport of secretory proteins in the Golgi complex. In other experiments, pulse-labelled follicles were chase-incubated for 1.5 h whereby labelled thyroglobulin was transported from the RER to exocytic vesicles. Monensin present during a subsequent chase of 0.5 h caused only a moderate decrease of labelled thyroglobulin secretion. TSH present during the second chase-stimulated secretion in both control and monensin-exposed follicles. TSH also caused a drastic reduction of exocytic vesicles in rat thyroid lobes, and the number of vesicles remaining in the cells was the same in controls and lobes exposed to the ionophore. The observations are interpreted to show that monensin does not inhibit the basal or TSH-stimulated transport of thyroglobulin from the site of monensin-induced arrest in the Golgi complex to the apical cell surface or the exocytosis of thyroglobulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号