首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The seminal publication of the Diabetes Prevention Program (DPP) results in 2002 has provided insight into the impact of major therapies on the development of diabetes over a time span of a few years. In the present work, the publicly available DPP data set is used to calibrate and evaluate a recently developed mechanistic mathematical model for the long-term development of diabetes to assess the model's ability to predict the natural history of disease progression and the effectiveness of preventive interventions. A general population is generated from which virtual subject samples corresponding to the DPP enrollment criteria are selected. The model is able to reproduce with good fidelity the observed time courses of both diabetes incidence and average glycemia, under realistic hypotheses on evolution of disease and efficacy of the studied therapies, for all treatment arms. Model-based simulations of the long-term evolution of the disease are consistent with the transient benefits observed with conventional therapies and with promising effects of radical improvement of insulin sensitivity (as by metabolic surgery) or of β-cell protection. The mechanistic diabetes progression model provides a credible tool by which long-term implications of antidiabetic interventions can be evaluated.  相似文献   

2.
Diabetes mellitus is a complex disorder that arises from various causes, including dysregulated glucose sensing and impaired insulin secretion (maturity onset diabetes of youth, MODY), autoimmune-mediated beta-cell destruction (type 1), or insufficient compensation for peripheral insulin resistance (type 2). Type 2 diabetes is the most prevalent form that usually occurs at middle age; it afflicts more than 30 million people over the age of 65, but is appearing with greater frequency in children and adolescents. Dysregulated insulin signaling exacerbated by chronic hyperglycemia promotes a cohort of systemic disorders--including dyslipidemia, hypertension, cardiovascular disease, and female infertility. Understanding the molecular basis of insulin resistance can prevent these disorders and their inevitable progression to type 2 diabetes.  相似文献   

3.
The minimal model was proposed over 25 years ago. Despite (or because of) its simplicity it continues to be used today - both as a clinical tool and an approach to understanding the composite effects of insulin secretion and insulin sensitivity on glucose tolerance and risk for type 2 diabetes mellitus. The original assumptions of the model have led to an understanding of the kinetics of insulin in vivo, as well as the relative importance of beta-cell compensatory failure in the pathogenesis of diabetes. The disposition index (DI), a parameter emerging from the model, represents the ability of the pancreatic islets to compensate for insulin resistance. There is evidence that a locus on chromosome 11 codes for the DI, which has a significant heritability and can predict type 2 diabetes better than any known genetic locus. Even today, the model continues to be a subject of scientific discovery and discourse.  相似文献   

4.
Insulin and insulin resistance   总被引:7,自引:0,他引:7       下载免费PDF全文
As obesity and diabetes reach epidemic proportions in the developed world, the role of insulin resistance and its consequences are gaining prominence. Understanding the role of insulin in wide-ranging physiological processes and the influences on its synthesis and secretion, alongside its actions from the molecular to the whole body level, has significant implications for much chronic disease seen in Westernised populations today. This review provides an overview of insulin, its history, structure, synthesis, secretion, actions and interactions followed by a discussion of insulin resistance and its associated clinical manifestations. Specific areas of focus include the actions of insulin and manifestations of insulin resistance in specific organs and tissues, physiological, environmental and pharmacological influences on insulin action and insulin resistance as well as clinical syndromes associated with insulin resistance. Clinical and functional measures of insulin resistance are also covered. Despite our incomplete understanding of the complex biological mechanisms of insulin action and insulin resistance, we need to consider the dramatic social changes of the past century with respect to physical activity, diet, work, socialisation and sleep patterns. Rapid globalization, urbanisation and industrialization have spawned epidemics of obesity, diabetes and their attendant co-morbidities, as physical inactivity and dietary imbalance unmask latent predisposing genetic traits.  相似文献   

5.
The pathophysiology of vascular disease in diabetes involves abnormalities in endothelial cells, vascular smooth muscle cells, and monocytes. The metabolic abnormalities that characterize diabetes, such as hyperglycemia, increased free fatty acids, and insulin resistance, each provoke molecular mechanisms that contribute to vascular dysfunction. Several molecules have been identified as risk markers, and have been studied to prevent progression of disease and long-term complications. Markers such as C-reactive protein and monocyte chemoattractant protein-1 are used to assess risk for adverse cardiac events, but elevated levels are possible due to the presence of other risk factors as part of the natural physiological defense mechanism. In this review we discuss potential of cyclophilin-A, a secreted oxidative-stress-induced immunophilin with diverse functions. We present evidence for a significant role of cyclophilin-A in the pathogenesis of atherosclerosis in diabetes, and its potential as a marker for vascular disease in type-2 diabetes.  相似文献   

6.
Cardiovascular disease is the primary cause of death in obesity and type-2 diabetes mellitus (T2DM). Alterations in substrate metabolism are believed to be involved in the development of both cardiac dysfunction and insulin resistance in these conditions. Under physiological circumstances the heart utilizes predominantly long-chain fatty acids (LCFAs) (60–70%), with the remainder covered by carbohydrates, i.e., glucose (20%) and lactate (10%). The cellular uptake of both LCFA and glucose is regulated by the sarcolemmal amount of specific transport proteins, i.e., fatty acid translocase (FAT)/CD36 and GLUT4, respectively. These transport proteins are not only present at the sarcolemma, but also in intracellular storage compartments. Both an increased workload and the hormone insulin induce translocation of FAT/CD36 and GLUT4 to the sarcolemma. In this review, recent findings on the insulin and contraction signalling pathways involved in substrate uptake and utilization by cardiac myocytes under physiological conditions are discussed. New insights in alterations in substrate uptake and utilization during insulin resistance and its progression towards T2DM suggest a pivotal role for substrate transporters. During the development of obesity towards T2DM alterations in cardiac lipid homeostasis were found to precede alterations in glucose homeostasis. In the early stages of T2DM, relocation of FAT/CD36 to the sarcolemma is associated with the myocardial accumulation of triacylglycerols (TAGs) eventually leading to an impaired insulin-stimulated GLUT4-translocation. These novel insights may result in new strategies for the prevention of development of cardiac dysfunction and insulin resistance in obesity and T2DM.  相似文献   

7.
Type 2 diabetes is the most prevalent and serious metabolic disease affecting people all over the world. Pancreatic beta-cell dysfunction and insulin resistance are the hallmark of type 2 diabetes. Normal beta-cells can compensate for insulin resistance by increasing insulin secretion and/or beta-cell mass, but insufficient compensation leads to the onset of glucose intolerance. Once hyperglycemia becomes apparent, beta-cell function gradually deteriorates and insulin resistance aggravates. Under diabetic conditions, oxidative stress and endoplasmic reticulum stress are induced in various tissues, leading to activation of the c-Jun N-terminal kinase pathway. The activation of c-Jun N-terminal kinase suppresses insulin biosynthesis and interferes with insulin action. Indeed, suppression of c-Jun N-terminal kinase in diabetic mice improves insulin resistance and ameliorates glucose tolerance. Thus, the c-Jun N-terminal kinase pathway plays a central role in pathogenesis of type 2 diabetes and could be a potential target for diabetes therapy.  相似文献   

8.
Type 2 diabetes is the most prevalent and serious metabolic disease affecting people all over the world. Pancreatic beta-cell dysfunction and insulin resistance are the hallmark of type 2 diabetes. Normal beta-cells can compensate for insulin resistance by increasing insulin secretion and/or beta-cell mass, but insufficient compensation leads to the onset of glucose intolerance. Once hyperglycemia becomes apparent, beta-cell function gradually deteriorates and insulin resistance aggravates. Under diabetic conditions, oxidative stress and endoplasmic reticulum stress are induced in various tissues, leading to activation of the c-Jun N-terminal kinase pathway. The activation of c-Jun N-terminal kinase suppresses insulin biosynthesis and interferes with insulin action. Indeed, suppression of c-Jun N-terminal kinase in diabetic mice improves insulin resistance and ameliorates glucose tolerance. Thus, the c-Jun N-terminal kinase pathway plays a central role in pathogenesis of type 2 diabetes and could be a potential target for diabetes therapy.  相似文献   

9.
In type 2 diabetes mellitus (T2DM) and its related disorders like obesity, the abnormal protein processing, oxidative stress and proinflammatory cytokines will drive the activation of inflammatory pathways, leading to low-grade chronic inflammation and insulin resistance (IR) in the periphery and impaired neuronal insulin signaling in the brain. Studies have shown that such inflammation and impaired insulin signaling contribute to the development of Alzheimer''s disease (AD). Therefore, new therapeutic strategies are needed for the treatment of T2DM and T2DM-linked AD. Melatonin is primarily known for its circadian role which conveys message of darkness and induces night-state physiological functions. Besides rhythm-related effects, melatonin has anti-inflammatory and antioxidant properties. Melatonin levels are downregulated in metabolic disorders with IR, and activation of melatonin signaling delays disease progression. The aim of this Review is to highlight the therapeutic potentials of melatonin in preventing the acceleration of AD in T2DM individuals through its therapeutic mechanisms, including antioxidative effects, anti-inflammatory effects, restoring mitochondrial function and insulin sensitivity.  相似文献   

10.
Obesity is a risk factor for Alzheimer’s disease (AD), which is characterized by amyloid β depositions and cognitive dysfunction. Although insulin resistance is one of the phenotypes of obesity, its deleterious effects on AD progression remain to be fully elucidated. We previously reported that the suppression of insulin signaling in a mouse with a heterozygous mutation (P1195L) in the gene for the insulin receptor showed insulin resistance and hyperinsulinemia but did not develop diabetes mellitus [15]. Here, we generated a novel AD mouse model carrying the same insulin receptor mutation and showed that the combination of insulin resistance and hyperinsulinemia did not accelerate plaque formation or memory abnormalities in these mice. Interestingly, the insulin receptor mutation reduced oxidative damage in the brains of the AD mice. These findings suggest that insulin resistance is not always involved in the pathogenesis of AD.  相似文献   

11.
Insulin resistance is the primary cause of type 2 diabetes. However, if compensated by increased insulin production, insulin resistance by itself does not lead to overt disease. Type 2 diabetes develops when this compensation is insufficient, due to defects in β-cell function and in regulation of the β-cell mass. β-Cell transplantation, as well as approaches that replenish or preserve the endogenous β-cell mass, may facilitate the treatment of type 2 diabetes in patients requiring exogenous insulin.  相似文献   

12.
Type 2 diabetes, insulin secretion and beta-cell mass   总被引:4,自引:0,他引:4  
In nondiabetic subjects, insulin secretion is sufficiently increased as a compensatory adaptation to insulin resistance whereas in subjects with type 2 diabetes, the adaptation is insufficient. Evidences for the islet dysfunction in type 2 diabetes are a)impaired insulin response to various challenges such as glucose, arginine and isoproterenol, b)defective dynamic of insulin secretion resulting in preferential reduction on first phase insulin secretion and irregular oscillations of plasma insulin and c)defective conversion of proinsulin to insulin leading to elevated proinsulin to insulin ratio. In addition, recent studies have also presented evidence of a reduced beta cell mass in diabetes, caused predominantly by enhanced islet apoptosis, although this needs to be confirmed in more studies. These defects may be caused by primary beta cell defects, such as seen in the monogenic diabetes forms of MODY, or by secondary beta cell defects, caused by glucotoxicity, lipotoxicity or islet amyloid aggregation. The defects may also be secondary to defective beta cell stimulation by incretin hormones or the autonomic nerves. The appreciation of islet dysfunction as a key factor underlying the progression from an insulin resistant state into type 2 diabetes has therapeutic implications, since besides improvement of insulin sensitivity, treatment should also aim at improving the islet compensation. This may possibly be achieved by stimulating insulin secretion, supporting islet stimulating mechanisms, removing toxic beta-cell insults and inhibiting beta cell apoptosis.  相似文献   

13.
For many years, the development of insulin resistance has been seen as the core defect responsible for the development of Type 2 diabetes. However, despite extensive research, the initial factors responsible for insulin resistance development have not been elucidated. If insulin resistance can be overcome by enhanced insulin secretion, then hyperglycaemia will never develop. Therefore, a β-cell defect is clearly required for the development of diabetes. There is a wealth of evidence to suggest that disorders in insulin secretion can lead to the development of decreased insulin sensitivity. In this review, we describe the potential initiating defects in Type 2 diabetes, normal pulsatile insulin secretion and the effects that disordered secretion may have on both β-cell function and hepatic insulin sensitivity. We go on to examine evidence from physiological and epidemiological studies describing β-cell dysfunction in the development of insulin resistance. Finally, we describe how disordered insulin secretion may cause intracellular insulin resistance and the implications this concept has for diabetes therapy. In summary, disordered insulin secretion may contribute to development of insulin resistance and hence represent an initiating factor in the progression to Type 2 diabetes.  相似文献   

14.
脂肪酸代谢紊乱是Ⅱ型糖尿病的主要致病因素之一。棕榈酸是血液中含量最高的游离脂肪酸。我们建立了大鼠颈静脉置管输注棕榈酸的模型,发现血液中的大部分棕榈酸被骨骼肌组织所吸收。以棕榈酸处理的C2C12骨骼肌细胞为实验模型发现,棕榈酸进入骨骼肌细胞后的中间代谢产物(磷脂和甘油二酯)的累积,会造成内质网应激及胰岛素抵抗。提示血液中棕榈酸含量的升高可能通过骨骼肌的胰岛素抵抗机制,影响Ⅱ型糖尿病的发生和发展。  相似文献   

15.
Type 2 diabetes mellitus is a major health problem of increasing incidence. To better study the pathogenesis and potential therapeutic agents for this disease, appropriate animal models are needed. Old World nonhuman primates (NHPs) are a useful animal model of type 2 diabetes; like humans, the disease is most common in older, obese animals. Before developing overt diabetes, NHPs have a period of obesity-associated insulin resistance that is initially met with compensatory insulin secretion. When either a relative or absolute deficiency in pancreatic insulin production occurs, fasting glucose concentrations begin to increase and diabetic signs become apparent. Pathological changes in pancreatic islets are also similar to those seen in human diabetics. Initially there is hyperplasia of the islets with abundant insulin production typically followed by replacement of islets with islet-associated amyloid. Diabetic NHPs have detrimental changes in plasma lipid and lipoprotein concentrations, lipoprotein composition, and glycation, which may contribute to progression of atherosclerosis. As both the prediabetic condition (similar to metabolic syndrome in humans) and overt diabetes become better defined in monkeys, their use in pharmacological studies is increasing. Likely due to their genetic similarity to humans and the similar characteristics of the disease in NHPs, NHPs have been used to study recently developed agonists of the peroxisome proliferators-activated receptors. Importantly, agonists of the different receptor subclasses elicit similar responses in both humans and NHPs. Thus, Old World NHPs are a valuable animal model of type 2 diabetes to study disease progression, associated risk factors, and potential new treatments.  相似文献   

16.
Epidemiological, clinical, and experimental animal studies suggest a strong correlation between insulin resistance and Alzheimer’s disease. In fact, type-2 diabetes is considered an important risk factor of developing Alzheimer’s disease. In addition, impaired insulin signaling in the Alzheimer’s disease brain may promote Aβ production, impair Aβ clearance and induce tau hyperphosphorylation, thereby leading to deterioration of the disease. The pathological prion protein, PrPSc, deposits in the form of extracellular aggregates and leads to dementia, raising the question as to whether prion pathogenesis may also be affected by insulin resistance. We therefore established high-fat diet-induced insulin resistance in tga20 mice, which overexpress the prion protein. We then inoculated the insulin-resistant mice with prions. We found that insulin resistance in tga20 mice did not affect prion disease progression, PrPSc deposition, astrogliosis or microglial activation, and had no effect on survival. Our study demonstrates that in a mouse model, insulin resistance does not significantly contribute to prion pathogenesis.  相似文献   

17.
Animal models for insulin resistance and type 2 diabetes are required for the study of the mechanism of these phenomena and for a better understanding of diabetes complications in human populations. Type 2 diabetes is a syndrome that affects 5-10% of the adult population. Hyperinsulinaemia, hypertriglyceridaemia, decreased high-density lipoprotein (HDL) cholesterol levels, obesity and hypertension, all form a cluster of risk factors that increase the risk of coronary artery disease, and are known as insulin resistance syndrome or syndrome X. The gerbil, Psammomys obesus is characterized by primary insulin resistance and is a well-defined model for dietary induced type 2 diabetes. Weanling Psammomys and Albino rats were held individually for several weeks on high energy (HE) and low energy (LE) diets in order to determine the development of metabolic changes leading to diabetes. Feeding Psammomys on HE diet resulted in hyperglycaemia (303 +/- 40 mg/dl), hyperinsulinaemia (194 +/- 31 microU/ml) and a moderate elevation in body weight, obesity and plasma triglycerides. Albino rats on HE diet demonstrated an elevation in plasma insulin (30 +/- 4 microU/ml), hypertriglyceridaemia (170 +/- 11 mg/dl), an elevation in body weight and obesity, but maintained normoglycaemia (98 +/- 6 mg/dl). Psammomys represent a model that is similar to human populations, with primary insulin resistance expressed in young age, which leads to a high percentage of adult type 2 diabetes. Examples for such populations are the Pima Indians, Australian Aborigines and many other Third World populations. The results indicate that the metabolism of Psammomys is well adapted towards life in a low energy environment, where Psammomys takes advantage of its capacity for a constant accumulation of adipose tissue that will serve for maintenance and breeding in periods of scarcity. This metabolism known as 'thrifty metabolism', is compromised at a high nutrient intake.  相似文献   

18.
P Vague  D Raccah 《Hormone research》1992,38(1-2):28-32
It is well known that excessive weight is associated with resistance to insulin-mediated glucose uptake and predisposition to the development of type II diabetes. It has been shown more recently that excessive weight and insulin resistance tend to be associated to android fat distribution, arterial hypertension, elevated levels of triglycerides, low concentration of HDL cholesterol and defective fibrinolysis. The terms syndrome of insulin resistance, metabolic syndrome or syndrome X have been proposed to describe this cluster of abnormalities. The pathophysiological mechanisms which could explain the interrelations between these different parameters are still only partly understood. Epidemiological prospective studies have demonstrated that the metabolic syndrome is a risk factor for coronary heart disease and type II diabetes. The mechanisms involved in the development of diabetes are relatively well established, but those which are implicated in the atherothrombotic process are far from being clearly described. Anyway, sufficient presumption exists to attempt at decreasing insulin resistance when it exists. Physical training and, if indicated, weight reduction are the simplest means.  相似文献   

19.
Diabetes is a group of metabolic diseases characterised by chronic hyperglycaemia caused by multiple causes, which is caused by insulin secretion and/or utilisation defects. It is characterised by increased fasting and postprandial blood glucose levels due to insulin deficiency or insulin resistance. It is reported that the harm of diabetes mainly comes from its complications, and the cardiovascular disease caused by diabetes is the primary cause of its harm. China has the largest number of diabetic patients in the world, and the prevention and control of diabetes are facing great challenges. In recent years, many kinds of literature have been published abroad, which have proved that coumarin and its derivatives are effective in the treatment of diabetic complications such as nephropathy and cardiovascular disease. In this paper, the types of antidiabetic drugs and the anti-diabetic mechanism of coumarins were reviewed.  相似文献   

20.
The incidence of type 2 diabetes mellitus is steadily escalating throughout the world in people from a wide range of ethnic groups and all social and economic levels. Type 2 diabetes is no longer a disease only of adults: parallel with the global epidemic of type 2 diabetes in adults, an 'emerging epidemic' of type 2 diabetes has been observed in youth over the last decade. Research and clinical experience in adults have established that insulin resistance is a major risk factor for type 2 diabetes. However, insulin resistance alone is not sufficient to cause diabetes, which will develop only when insulin secretion by the beta-cells fails. This review discusses the recent emergence of type 2 diabetes in children and adolescents, its risk factors, pathophysiologic mechanisms and treatment modalities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号