首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two enzymes of polyisoprenoid synthesis, 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase (mevalonate:NADP oxidoreductase [acylating CoA], EC 1.1.1.34) and mevalonate kinase (ATP:mevalonate 5-phosphotransferase, EC 2.7.1.36), are present in the microsomal and soluble fractions of Neurospora crassa, respectively. HMG CoA reductase specifically uses NADPH as reductant and has a K(m) for dl-HMG CoA of 30 micro M. The activities of HMG CoA reductase and mevalonate kinase are low in conidia and increase threefold during the first 12 hr of stationary growth. Maximum specific activities of both enzymes occur when aerial hyphae and conidia first appear (2 days), but total activities peak later (3-4 days). Addition to the growth media of ergosterol or beta-carotene, alone or in combination, does not affect the specific or total activity of either enzyme. The mevalonate kinase of N. crassa, purified 200-fold to a specific activity of 5 micro moles/min/mg, is free from HMG CoA reductase, phosphomevalonate kinase, ATPase, adenylate kinase, and NADH oxidase activities. Mevalonate kinase specifically requires ATP as cosubstrate and exhibits a marked preference for Mg(2+) over Mn(2+), especially at high ratios of divalent metal ion to ATP. Kinase activity is inhibited by p-hydroxymercuribenzoate, and this inhibition is partially prevented by mevalonate or MgATP. Optimum activity occurs at pH 8.0-8.5 and at about 55 degrees C. The Neurospora kinase, like that of hog liver, has a sequential mechanism for substrate addition. The Michaelis constants obtained were 2.8 mM for dl-mevalonate and 1.8 mM for MgATP(-2). Geranyl pyrophosphate is an inhibitor competitive with MgATP (K(i) = 0.11 mM).  相似文献   

2.
3.
Reductase kinase and mevalonate kinase are separated by: a) ammonium sulfate fractionation; b) chromatography on agarose-Procion Red HE3B; and c) chromatography on DEAE-Sephacel. Fractions containing only reductase kinase reversibly inactivated microsomal or homogeneous HMG-CoA reductase. Fractions containing only mevalonate kinase revealed artifactual reductase kinase activity in the absence of EDTA or mevalonic acid; however, addition of EDTA or mevalonate before reductase assay completely blocked any apparent decline in HMG-CoA reductase activity. Under these conditions no dephosphorylation (reactivation) was observed by phosphatase. The combined results demonstrate unequivocally that reductase kinase and mevalonate kinase are two different enzymes and inactivation of HMG-CoA reductase is catalyzed by ATP-Mg-dependent reductase kinase.  相似文献   

4.
The role of mevalonate and its products in the regulation of cellular proliferation was examined using 6-fluoromevalonate (Fmev), a compound that blocks the conversion of mevalonate pyrophosphate to isopentenyl pyrophosphate. Fmev suppressed DNA synthesis by a variety of transformed and malignant T cell, B cell, and myeloid cell lines. In contrast to results previously reported with mitogen-stimulated human peripheral blood T cell DNA synthesis, low concentrations of low density lipoprotein (LDL) alone could not restore proliferation to these cell lines. The same concentrations of LDL were able to provide sufficient cholesterol and support the growth of all cell lines when mevalonate synthesis was blocked with a specific inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, lovastatin. Fmev-mediated inhibition was totally prevented in some but not all cell lines when the concentration of exogenous LDL was increased 5-10-fold above that required to permit proliferation of lovastatin-blocked cells. Residual HMG-CoA reductase activity of cells cultured with LDL inversely correlated with the restoration of growth to Fmev-blocked cultures. Confirmation of the critical role of HMG-CoA reductase activity and mevalonate synthesis in the inhibition of cellular proliferation by Fmev was obtained by demonstrating that the specific inhibitor of this enzyme, lovastatin, restored proliferation of Fmev-blocked cells. Furthermore, supplementation of cultures with mevalonate, the product of HMG-CoA reductase activity, markedly inhibited proliferation of Fmev-blocked cells. These findings indicate that mevalonate or one of the mevalonate phosphates, which accumulates in Fmev-blocked cells, is a critical negative regulator of cellular proliferation.  相似文献   

5.
Methods are described for the assay and partial purification of mevalonate kinase from superovulated rat ovary. The total activity of mevalonate kinase in superovulated rat ovary was 1.6+/-0.14units/g wet wt.; it was unchanged by the administration of luteinizing hormone in vivo. The K(m) of a partially purified preparation of mevalonate kinase for dl-Mevalonate was 3.6+/-0.5mum; its K(m) for MgATP(2-) was 120+/-7.7mum. The enzyme was inhibited by geranyl pyrophosphate and farnesyl pyrophosphate, but not by isopentenyl pyrophosphate or 3,3'-dimethylallyl pyrophosphate. dl-mevalonate 5-phosphate inhibited at high concentrations. With both geranyl pyrophosphate and farnesyl pyrophosphate the inhibition was competitive with respect to MgATP(2-). The K(i) for inhibition by geranyl pyrophosphate was 1.3+/-0.2mum; the K(i) for inhibition by farnesyl pyrophosphate was 1.0+/-0.3mum. These findings are discussed with reference to the control by luteinizing hormone of steroidogenesis from acetate.  相似文献   

6.
An enzymic activity which competes with 3-hydroxy-3-methylglutaryl coenzyme A reductase for D-hydroxymethylglutaryl CoA has been found in isolated rat liver microsomes and in microsomal extracts. The presence of this activity in enzyme preparations causes a decrease in the rate of mevalonate formation leading to an underestimation of reductase activity and an overestimation of the apparent Km of the reductase. The product formed by this competing enzymic activity behaves similarly to, but not identically with, mevalonolactone when chromatographed on Bio-Rad AG 1-x8 formate, which is used in many reductase assay procedures to separate mevalonolactone from hydroxymethylglutaryl CoA. Removal of this competing enzymic activity from reductase preparations can be accomplished by gel filtration using Bio-Gel A 1.5m, by washing the microsomes or by incubating the microsomal extract at 37 degrees C. Using enzyme preparations free of this competing enzymic activity, the apparent Km values of the reductase for D-hydroxymethylglutaryl CoA and NADPH were found to be 1.3 and 26 micronM respectively.  相似文献   

7.
Phenylalanine, phenylpyruvate and phenylacetate produced a considerable inhibition of chick liver mevalonate 5-pyrophosphate decarboxylase while mevalonate kinase and mevalonate 5-phosphate kinase were not significantly affected. Phenolic derivatives of phenylalanine produced a similar inhibition of decarboxylase activity than that found in the presence of phenyl metabolites. The degree of inhibition was progressive with increasing concentrations of inhibitors (1.25–5.00 mM). Simultaneous supplementation of different metabolites in conditions similar to those in experimental phenylketonuria (0.25 mM each) produced a clear inhibition of liver decarboxylase and 3-hydroxy-3-methylglutaryl-CoA reductase. To our knowledge, this is the first report on the in vitro inhibition of both liver regulatory enzymes of cholesterogenesis in phenylketonuria-like conditions. Our results show a lower inhibition of decarboxylase than that of reductase but suggest an important regulatory role of decarboxylase in cholesterol synthesis.  相似文献   

8.
In this paper, we assess the relative degree of regulation of the rate-limiting enzyme of isoprenoid biosynthesis, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, by sterol and nonsterol products of mevalonate by utilizing cultured Chinese hamster ovary cells blocked in sterol synthesis. We also examine the two other enzymes of mevalonate biosynthesis, acetoacetyl-CoA thiolase and HMG-CoA synthase, for regulation by mevalonate supplements. These studies indicate that in proliferating fibroblasts, treatment with mevalonic acid can produce a suppression of HMG-CoA reductase activity similar to magnitude to that caused by oxygenated sterols. In contrast, HMG-CoA synthase and acetoacetyl-CoA thiolase are only weakly regulated by mevalonate when compared with 25-hydroxycholesterol. Furthermore, neither HMG-CoA synthase nor acetoacetyl-CoA thiolase exhibits the multivalent control response by sterol and mevalonate supplements in the absence of endogenous mevalonate synthesis which is characteristic of nonsterol regulation of HMG-CoA reductase. These observations suggest that nonsterol regulation of HMG-CoA reductase is specific to that enzyme in contrast to the pleiotropic regulation of enzymes of sterol biosynthesis observed with oxygenated sterols. In Chinese hamster ovary cells supplemented with mevalonate at concentrations that are inhibitory to reductase activity, at least 80% of the inhibition appears to be mediated by nonsterol products of mevalonate. In addition, feed-back regulation of HMG-CoA reductase by endogenously synthesized nonsterol isoprenoids in the absence of exogenous sterol or mevalonate supplements also produces a 70% inhibition of the enzyme activity.  相似文献   

9.
Recent studies have demonstrated that green and black tea consumption can lower serum cholesterol in animals and in man, and suppression of hepatic cholesterol synthesis is suggested to contribute to this effect. To evaluate this hypothesis, we measured cholesterol synthesis in cultured rat hepatoma cells in the presence of green and black tea extracts and selected components. Green and black tea decreased cholesterol synthesis by up to 55% and 78%, respectively, as measured by a 3-h incorporation of radiolabeled acetate. Inhibition was much less evident when radiolabeled mevalonate was used, suggesting that the inhibition was mediated largely at or above the level of HMG-CoA reductase. Both extracts directly inhibited HMG-CoA reductase when added to microsomal preparations, although the extent of inhibition was considerably less than the decrease in cholesterol synthesis observed in whole cells. As HMG-CoA reductase activity also can be decreased by enzyme phosphorylation by AMP kinase, the phosphorylation state of HMG-CoA reductase and AMP kinase, which is activated by phosphorylation, was determined in lysates from cells treated with tea extracts. Both extracts increased AMP-kinase phosphorylation and HMG-CoA reductase phosphorylation by 2.5- to 4-fold, but with different time courses: maximal phosphorylation with green tea was evident within 30 min of treatment, whereas with black tea phosphorylation was slower to develop, with maximal phosphorylation occurring > or =3 hours after treatment. These results suggest that both green and black tea decrease cholesterol synthesis in whole cells by directly inhibiting HMG-CoA reductase and by promoting its inactivation by AMP kinase.  相似文献   

10.
Regulation of heart muscle pyruvate dehydrogenase kinase   总被引:31,自引:25,他引:6       下载免费PDF全文
1. The activity of pig heart pyruvate dehydrogenase kinase was assayed by the incorporation of [(32)P]phosphate from [gamma-(32)P]ATP into the dehydrogenase complex. There was a very close correlation between this incorporation and the loss of pyruvate dehydrogenase activity with all preparations studied. 2. Nucleoside triphosphates other than ATP (at 100mum) and cyclic 3':5'-nucleotides (at 10mum) had no significant effect on kinase activity. 3. The K(m) for thiamin pyrophosphate in the pyruvate dehydrogenase reaction was 0.76mum. Sodium pyrophosphate, adenylyl imidodiphosphate, ADP and GTP were competitive inhibitors against thiamin pyrophosphate in the dehydrogenase reaction. 4. The K(m) for ATP of the intrinsic kinase assayed in three preparations of pig heart pyruvate dehydrogenase was in the range 13.9-25.4mum. Inhibition by ADP and adenylyl imidodiphosphate was predominantly competitive, but there was nevertheless a definite non-competitive element. Thiamin pyrophosphate and sodium pyrophosphate were uncompetitive inhibitors against ATP. It is suggested that ADP and adenylyl imidodiphosphate inhibit the kinase mainly by binding to the ATP site and that the adenosine moiety may be involved in this binding. It is suggested that thiamin pyrophosphate, sodium pyrophosphate, adenylyl imidodiphosphate and ADP may inhibit the kinase by binding through pyrophosphate or imidodiphosphate moieties at some site other than the ATP site. It is not known whether this is the coenzyme-binding site in the pyruvate dehydrogenase reaction. 5. The K(m) for pyruvate in the pyruvate dehydrogenase reaction was 35.5mum. 2-Oxobutyrate and 3-hydroxypyruvate but not glyoxylate were also substrates; all three compounds inhibited pyruvate oxidation. 6. In preparations of pig heart pyruvate dehydrogenase free of thiamin pyrophosphate, pyruvate inhibited the kinase reaction at all concentrations in the range 25-500mum. The inhibition was uncompetitive. In the presence of thiamin pyrophosphate (endogenous or added at 2 or 10mum) the kinase activity was enhanced by low concentrations of pyruvate (25-100mum) and inhibited by a high concentration (500mum). Activation of the kinase reaction was not seen when sodium pyrophosphate was substituted for thiamin pyrophosphate. 7. Under the conditions of the kinase assay, pig heart pyruvate dehydrogenase forms (14)CO(2) from [1-(14)C]pyruvate in the presence of thiamin pyrophosphate. Previous work suggests that the products may include acetoin. Acetoin activated the kinase reaction in the presence of thiamin pyrophosphate but not with sodium pyrophosphate. It is suggested that acetoin formation may contribute to activation of the kinase reaction by low pyruvate concentrations in the presence of thiamin pyrophosphate. 8. Pyruvate effected the conversion of pyruvate dehydrogenase phosphate into pyruvate dehydrogenase in rat heart mitochondria incubated with 5mm-2-oxoglutarate and 0.5mm-l-malate as respiratory substrates. It is suggested that this effect of pyruvate is due to inhibition of the pyruvate dehydrogenase kinase reaction in the mitochondrion. 9. Pyruvate dehydrogenase kinase activity was inhibited by high concentrations of Mg(2+) (15mm) and by Ca(2+) (10nm-10mum) at low Mg(2+) (0.15mm) but not at high Mg(2+) (15mm).  相似文献   

11.
The biosynthetic mechanism for determining the side-chain length of ubiquinone in rat heart mitochondria was investigated. The biosynthesis of nonaprenyl ubiquinone (UQ-9) and decaprenyl ubiquinone (UQ-10) in the mitochondria from rat hearts previously perfused with mevalonolactone was accelerated depending on the concentration of mevalonolactone. Furthermore the synthesis ratio between UQ-10 and UQ-9 (UQ-10/UQ-9) increased in accordance with the increasing concentration of mevalonolactone used. In addition, an enhancement of the synthesis ratio (UQ-10/UQ-9) was observed when the rats were treated with isoproterenol to increase the activity of 3-hydroxymethylglutaryl-CoA (HMG-CoA) reductase, a rate-limiting enzyme which forms mevalonate. Moreover, the addition of isopentenyl pyrophosphate, which is a metabolite of mevalonate, elevated the synthetic ratios UQ-10/UQ-9 in intact mitochondria and decaprenyl pyrophosphate/solanesyl pyrophosphate in the partially purified polyprenyl pyrophosphate synthetase from rat heart. These results suggest that the HMG-CoA reductase could be involved as a determining factor of the side-chain length of ubiquinone in rat heart.  相似文献   

12.
The reversible phosphorylation of microsomal 3-hydroxy-3-methylglutaryl CoA reductase in host liver and hepatoma 5123C has been investigated. The percentage of the total enzyme activity in vivo was similar in the normal liver, host liver and hepatoma 5123C. The inclusion of 30 mM EDTA and 10 mM mevalonic acid in assays of 3-hydroxy-3-methylglutaryl CoA reductase inactivation in vitro eliminated artifacts generated by the presence of mevalonate kinase. Inactivation of 3-hydroxy-3-methylglutaryl CoA reductase from normal liver, host liver and hepatoma occurred at a similar rate with similar half-times. We conclude that phosphorylation/dephosphorylation of 3-hydroxy-3-methylglutaryl CoA reductase occurs in hepatomas and that the lack of dietary cholesterol feedback inhibition in the hepatomas is not a result of a defect in this particular aspect of the reversible phosphorylation system.  相似文献   

13.
The in vivo effect of clofibrate on the main regulatory enzymes of cholesterogenesis has been comparatively studied for the first time in chick liver and brain. 3-Hydroxy-3-methylglutaryl-CoA reductase and mevalonate 5-pyrophosphate decarboxylase from chick liver were significantly inhibited by this hypocholesterolenic drug, while mevalonate kinase and mevalonate 5-phosphate kinase were not affected. No enzyme from chick brain was significantly inhibited by the in vivo treatment. However, both liver and brain reductase activity was inhibited in vitro by clofibrate, inhibition that was progressive with increasing concentrations (1.25-5.00 mM) of drug.  相似文献   

14.
Summary The activities of the mevalonate metabolizing enzymes-HMG-CoA reductase, mevalonate kinase, mevalonate phosphokinase and mevalonate pyrophosphate decarboxylase -were assayed with the respective substrates in green seedlings of Arachis hypogaea. MVAPP decarboxylase is the rate-limiting step among these enzymes and is inhibited by phenolic acids. Its activity in the seedlings was found to decrease in the absence of light and on treatment with abscisic acid. These results suggest that regulation of isoprene pathway in groundnut seedlings may occur at the level of mevalonate decarboxylation.Abbreviations HMG CoA 3-hydroxy-3-methyl-glutaryl coenzyme A - MVA Mevalonate - MVAP Mevalonate-5-phosphate - MVAPP Mevalonate-5-pyrophosphate - DTT Dithiothreitol - ABA Abscisic Acid  相似文献   

15.
3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase) activity (mevalonate:NADP+ oxidoreductase )CoA-acylating) EC 1.1.1.34) was demonstrated in beef adrenal cortex. Most of the HMG-CoA reductase activity is in the microsomal fraction while a small percentage of the activity is associated with the mitochondria, Mitochondria purified on a linear sucrose gradient are enriched in HMG-CoA reductase and cytochrome c oxidase activities. The reductase present in microsomal preparations from the whole adrenal cortex has an apparent Km of 5.6 X 10(-5) M for (R,S)-HMG-CoA. Reductase activities found in the microsomal fractions from the zona glomerulosa, the zona fasciculata, and the zona reticularis were 1.32, 7.37, and 9.74 nmol mevalonate formed per milligram protein in 30 min respectively.  相似文献   

16.
The mevalonate pathway is utilized for the biosynthesis of isoprenoids in many bacterial, eukaryotic, and archaeal organisms. Based on previous reports of its feedback inhibition, mevalonate kinase (MVK) may play an important regulatory role in the biosynthesis of mevalonate pathway-derived compounds. Here we report the purification, kinetic characterization, and inhibition analysis of the MVK from the archaeon Methanosarcina mazei. The inhibition of the M. mazei MVK by the following metabolites derived from the mevalonate pathway was explored: dimethylallyl diphosphate (DMAPP), geranyl pyrophosphate (GPP), farnesyl pyrophosphate (FPP), isopentenyl monophosphate (IP), and diphosphomevalonate. M. mazei MVK was not inhibited by DMAPP, GPP, FPP, diphosphomevalonate, or IP, a proposed intermediate in an alternative isoprenoid pathway present in archaea. Our findings suggest that the M. mazei MVK represents a distinct class of mevalonate kinases that can be differentiated from previously characterized MVKs based on its inhibition profile.  相似文献   

17.
Hep G2 cells were incubated under conditions known to influence the HMG-CoA (3-hydroxy-3-methylglutaryl-CoA) reductase activity, e.g. in the presence of compactin (a competitive inhibitor of HMG-CoA reductase itself) and U18666A (a squalene-2,3-epoxide cyclase inhibitor). We studied the effects of these conditions both on the HMG-CoA reductase activity and on the reductase mRNA content. In the presence of compactin the mRNA content increased, but less than the enzyme activity, as determined after removal of the inhibitor. The increase in mRNA could be prevented by addition of mevalonate or by a combination of low-density lipoprotein (LDL) plus a low concentration of mevalonate. LDL alone prevented the compactin-induced increases in mRNA and activity only partially. The effect of U18666A on reductase mRNA content and activity was biphasic, i.e. a slight decrease at low (0.3-0.5 microM) concentrations, with a concomitant formation of polar sterols [Boogaard, Griffioen & Cohen (1987) Biochem. J. 241, 345-351], and an increase at high (20-30 microM) concentrations, with complete blockage of sterol formation. At these high concentrations of U18666A, additional compactin (2 microM) increased the reductase activity, but not the mRNA content. We conclude that non-sterol metabolites of mevalonate regulate exclusively at the enzyme level, whereas sterol metabolites regulate at the reductase mRNA level. In the latter group of regulators we distinguish mevalonate metabolites which can, and metabolites which cannot, be replaced by exogenous LDL.  相似文献   

18.
We have studied the regulated degradation of the enzyme 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase within the endoplasmic reticulum in cells permeabilized with digitonin. Using Chinese hamster ovary cells transfected with a plasmid encoding HMGal, a chimeric protein containing the membrane domain of HMG-CoA reductase coupled to beta-galactosidase, we have demonstrated mevalonate and sterol-stimulated loss of beta-galactosidase activity. In pulse-chase experiments we have demonstrated mevalonate-stimulated degradation of both HMGal and HMG-CoA reductase. The rate of mevalonate-stimulated degradation observed in permeabilized cells tends to be slightly slower than that observed in intact cells treated with mevalonate and is dependent upon incubation of cells with mevalonate prior to permeabilization. The degradation process measured in this report extends a previous report of HMG-CoA reductase degradation in digitonin-permeabilized cells (Leonard, D. A., and Chen, H. W. (1987) J. Biol. Chem. 262, 7914-7919) by mimicking key physiological features of the in vivo process, including: stimulation by regulatory molecules, specifically mevalonate and sterols; inhibition by cycloheximide; and inhibition by an inhibitor of neutral cysteine proteases.  相似文献   

19.
A procedure for the purification of 3-hydroxy-3-methylglutaryl coenzyme A reductase [mevalonate:NADP+ oxidoreductase (CoA-acylating); EC 1.1.1.34] from rat liver microsomes has been developed. The enzyme preparations obtained by this procedure have specific activities of 16 to 23 μmol of mevalonate formed per minute per milligram of protein. These enzyme preparations were judged to be homogeneous on the basis of comigration of enzyme activity and protein on polyacrylamide gels.  相似文献   

20.
3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase in the ileum of rats was inactivated by Mg2+-ATP and reversibly reactivated by cytoplasmic activator from the liver. The mevalonate kinase reaction was presumably not involved in this inactivation. Studies of nucleotide specificity for the inactivation revealed that ATP was most effective in the reaction among the nucleotides tested. In contrast to the hepatic microsomal HMG-CoA reductase, more than one-half of intestinal reductase existed in an active form. These observations indicated the presence of phosphorylation-dephosphorylation mechanism for modulation of intestinal HMG-CoA reductase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号