首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The Minitek disc system was utilized for the differentiation of Pseudomonas pseudomallei, the causative agent of melioidosis, from Ps. cepacia. The system was simple to use, inexpensive, and furnished rapid, clear-cut test results after 4 h. This procedure is suitable for differentiating soil bacteria presumptively identified as Ps. pseudomallei, Ps. cepacia or flavobacteria, and for the rapid confirmation of the presumptive identification of either Ps. pseudomallei or Ps. cepacia obtained by commercial identification-kit systems in the clinical laboratory.  相似文献   

3.
Undecyl acetate esterase has been purified from Pseudomonas cepacia grown on the methyl ketone, 2-tridecanone. The K(m) for undecyl acetate was 2.3 x 10(-2) M. Polyacrylamide gel electrophoresis indicated that two esterase bands were being recovered during purification. These bands were separated by preparative polyacrylamide gel electrophoresis. Molecular weights were estimated to be approximately 34,500 by several methods. Molecular sieve polyacrylamide gel electrophoresis indicated that the two esterases had the same molecular weight but different charge, which is indicative of isoenzymes.  相似文献   

4.
Degradation of 2-chlorobenzoate by Pseudomonas cepacia 2CBS   总被引:10,自引:0,他引:10  
A bacterium was isolated from water by enrichment on 2-chlorobenzoate as sole source of carbon and energy. Based on morphological and physiological properties, this microorganism was assigned to the species Pseudomonas cepacia. The organism was designated Pseudomonas cepacia 2CBS. During growth on 2-chlorobenzoate, the chlorine substituent was released quantitatively, and a small amount of 2,3-dihydroxybenzoate accumulated in the culture medium. Mutants of Pseudomonas cepacia 2CBS were induced by treatment with N-methyl-N'-nitro-N-nitrosoguanidine. Some of these mutants produced catechol from 2-chlorobenzoate. Other mutants accumulated the meta-cleavage product of catechol, 2-hydroxy-cis,cis-muconic acid semialdehyde. In crude cell-free extracts of Pseudomonas cepacia 2CBS, an enzyme was detected which catalysed the conversion of 2-chlorobenzoate to catechol. Molecular oxygen, NADH and exogenous Fe2+ were required for activity. Stoichiometric amounts of chloride were released. Experiments with 18O2 revealed that both oxygen atoms in the hydroxyl groups of the product were derived from molecular oxygen. Thus, the enzyme catalysing the conversion of 2-chlorobenzoate was identified as 2-chlorobenzoate 1,2-dioxygenase (1,2-hydroxylating, dehalogenating, decarboxylating). 2-Chlorobenzoate 1,2-dioxygenase from Pseudomonas cepacia 2CBS was shown to be a multicomponent enzyme system. The activities of catechol 2,3-dioxygenase and catechol 1,2-dioxygenase were detected in crude cell-free extracts. The activity of catechol 2,3-dioxygenase was 60 times higher than the activity of catechol 1,2-dioxygenase, indicating that catechol is mainly degraded via meta-cleavage in Pseudomonas cepacia 2CBS. No enzyme was found which converted 2,3-dihydroxybenzoate, suggesting that this compound is a dead-end metabolite of 2-chlorobenzoate catabolism. A pathway for the degradation of 2-chlorobenzoate by Pseudomonas cepacia 2CBS is proposed.  相似文献   

5.
The sal gene encoding Pseudomonas cepacia salicylate hydroxylase was cloned and the sal encoding Pseudomonas putida salicylate hydroxylase was subcloned into plasmid vector pRO2317 to generate recombinant plasmids pTK3 and pTK1, respectively. Both cloned genes were expressed in the host Pseudomonas aeruginosa PAO1. The parental strain can utilize catechol, a product of the salicylate hydroxylase-catalyzed reaction, but not salicylate as the sole carbon source for growth due to a natural deficiency of salicylate hydroxylase. The pTK1- or pTK3-transformed P. aeruginosa PAO1, however, can be grown on salicylate as the sole carbon source and exhibited activities for the cloned salicylate hydroxylase in crude cell lysates. In wild-type P. cepacia as well as in pTK1- or pTK3-transformed P. aeruginosa PAO1, the presence of glucose in addition to salicylate in media resulted in lower efficiencies of sal expression P. cepacia apparently can degrade salicylate via the meta cleavage pathway which, unlike the plasmid-encoded pathway in P. putida, appears to be encoded on chromosome. As revealed by DNA cross hybridizations, the P. cepacia hsd and ht genes showed significant homology with the corresponding plasmid-borne genes of P. putida but the P. cepacia sal was not homologous to the P. putida sal. Furthermore, polyclonal antibodies developed against purified P. cepacia salicylate hydroxylase inactivated the cloned P. cepacia salicylate hydroxylase but not the cloned P. putida salicylate hydroxylase in P. aeruginosa PAO1. It appears that P. cepacia and P. putida salicylate hydroxylases, being structurally distinct, were probably derived through convergent evolution.  相似文献   

6.
O-serotyping of 30 Pseudomonas cepacia strains isolated from the soil and rhizosphere of different plant species in the territory of the USSR has been performed using 15 O-typing antisera according to the Heidt and Nakamura schemes. It is suggested to introduce two new O-serogroups (serogroups K and L) into the available P. cepacia classification scheme. They are most often met among the P. cepacia strains in different geographical areas of the USSR simultaneously with serogroups 2 (G) and 1 (D). To elucidate the molecular principles of serological inhomogeneity of the species the immunochemical studies of lipopolysaccharides of a number of P. cepacia strains have been conducted and the structure has been determined for repeating links of O-specific polysaccharides of P. cepacia strains attributed to 4 Nakamura serogroups, 3 Heidt serogroups, to serogroups K and L, as well as for certain strains from the collection of the Institute of Microbiology and Virology of the Ukr. SSR Academy of Sciences.  相似文献   

7.
AIMS: To screen and clone a novel enzyme with specific activity for the resolution of (R)-beta-acetylmercaptoisobutyrate (RAM) from (R,S)-beta-acetylmercaptoisobutyrate [(R,S)-ester]. METHODS AND RESULTS: A micro-organism that produces a novel esterase was isolated and identified as the bacterium Burkholderia cepacia by using the analysis of cellular fatty acids, Biolog automated microbial identification/characterization system, and 16S rRNA gene sequence analysis. A novel esterase gene was cloned from the chromosomal DNA of B. cepacia and was designated as cpoA. The cpoA encodes a polypeptide of 273 amino acids which shows a strong sequence homology with many bacterial nonhaeme chloroperoxidases. In addition, a typical serine-hydrolase motif, Gly-X-Ser-X-Gly, and the highly conserved catalytic triad, Ser95, Asp224, and His253, were identified in the deduced amino acid sequence of cpoA by multiple sequence alignment. CONCLUSION: The cpoA cloned from B. cepacia encodes a novel esterase which is highly related to the nonhaeme chloroperoxidases. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first report that describes the isolation and cloning of a serine esterase gene from B. cepacia, which is useful in the chiral resolution of (R,S)-ester. The cloned gene will allow additional research on the bifunctionality of the enzyme with esterase and chloroperoxidase activity at the structural and functional levels.  相似文献   

8.
L H Wang  R Y Hamzah  Y M Yu  S C Tu 《Biochemistry》1987,26(4):1099-1104
A single strain of Pseudomonas cepacia cells was differentially induced to synthesize salicylate hydroxylase, 3-hydroxybenzoate 6-hydroxylase, or 4-hydroxybenzoate 3-hydroxylase. A procedure was developed for the purification of 3-hydroxybenzoate 6-hydroxylase to apparent homogeneity. The purified hydroxylase appears to be a monomer with a molecular weight of about 44,000 and exhibits optimal activity near pH 8. The hydroxylase contains one FAD per enzyme molecule and utilizes NADH and NADPH with similar efficiencies. The reaction stoichiometry for this enzyme has been determined. In comparison with other aromatic flavohydroxylases, this enzyme is unique in inserting a new hydroxyl group to the substrate at a position para to an existing one.  相似文献   

9.
10.
This work demonstrates the ring-cleavage pathways of catechol on Pseudomonas cepacia ATCC 29351, formed upon its growth on salicylate and benzoate, each as a sole carbon source. When grown on salicylate, P. cepacia induces only the catechol ortho pathway by its induction of catechol 1,2-dioxygenase. However, interestingly, benzoate-grown cells induce the ortho and meta pathways for the biodegradation of catechol, by inducing simultaneously catechol 1,2-dioxygenase and 2,3-dioxygenase, respectively, in the ratio of 7:1. The results indicate that P. cepacia ATCC 29351 possesses the genetic capacity for enzymes of both the ortho- and meta-cleavage pathways of benzoate degradation, although the phenotypic expression for the ortho pathway is higher. The simultaneous induction of catechol 1,2- and 2,3-dioxygenase is not detected in salicylate degradation. Although catechol is the metabolic intermediate for both salicylate and benzoate, catechol did not induce either pathway when used as a sole carbon source.  相似文献   

11.
12.
A raw antibiotic has been isolated from culture fluid of strain Pseudomonas cepacia 5798. It was methylated and separated into individual components using the column and thin-layer chromatography. The isolated substances possessed antimicrobial activity; two of them were studied more in detail by the UV-, IR- and PMR-spectroscopy methods. Results of the study of physicochemical properties of methyl derivatives of antibiotics from P. cepacia permit supposing that the latter are aromatic substances with nitrogen atoms in the side chain.  相似文献   

13.
We report the isolation of Pseudomonas cepacia MB2, believed to be the first microorganism to utilize 2-methylbenzoic acid as the sole carbon source. Its growth range included all mono- and dimethylbenzoates (with the exception of 2,5- and 2,6-dimethylbenzoates) and 3-chloro-2-methylbenzoate (but not 4- or 5-chloro-2-methylbenzoate) but not chlorobenzoates lacking a methyl group. 2-Chlorobenzoate, 3-chlorobenzoate, and 2,3-, 2,4-, and 3,4-dichlorobenzoates inhibited growth of MB2 on 2-methylbenzoate as a result of cometabolism to the corresponding chlorinated catechols which blocked the key enzyme catechol 2,3-dioxygenase. A metapyrocatechase-negative mutant, MB2-G5, showed accumulation of dimethylcatechols from 2,3- and 3,4-dimethylbenzoates, and phenols were detected in resting-cell transformation extracts bearing the same substitution pattern as the original substrate, presumably following thermal degradation of the intermediate dihydrodiol. 2-Methylphenol was also found in extracts of the mutant cells with 2-methylbenzoate. These observations suggested a major route of methylbenzoate metabolism to be dioxygenation to a carboxy-hydrodiol which then forms a catechol derivative. In addition, the methyl group of 2-methylbenzoate was oxidized to isobenzofuranone (by cells of MB2-G5) and to phthalate (by cells of a separate mutant that could not utilize phthalate, MB2-D2). This pathway also generated a chlorinated isobenzofuranone from 3-chloro-2-methylbenzoate.  相似文献   

14.
We report the isolation of Pseudomonas cepacia MB2, believed to be the first microorganism to utilize 2-methylbenzoic acid as the sole carbon source. Its growth range included all mono- and dimethylbenzoates (with the exception of 2,5- and 2,6-dimethylbenzoates) and 3-chloro-2-methylbenzoate (but not 4- or 5-chloro-2-methylbenzoate) but not chlorobenzoates lacking a methyl group. 2-Chlorobenzoate, 3-chlorobenzoate, and 2,3-, 2,4-, and 3,4-dichlorobenzoates inhibited growth of MB2 on 2-methylbenzoate as a result of cometabolism to the corresponding chlorinated catechols which blocked the key enzyme catechol 2,3-dioxygenase. A metapyrocatechase-negative mutant, MB2-G5, showed accumulation of dimethylcatechols from 2,3- and 3,4-dimethylbenzoates, and phenols were detected in resting-cell transformation extracts bearing the same substitution pattern as the original substrate, presumably following thermal degradation of the intermediate dihydrodiol. 2-Methylphenol was also found in extracts of the mutant cells with 2-methylbenzoate. These observations suggested a major route of methylbenzoate metabolism to be dioxygenation to a carboxy-hydrodiol which then forms a catechol derivative. In addition, the methyl group of 2-methylbenzoate was oxidized to isobenzofuranone (by cells of MB2-G5) and to phthalate (by cells of a separate mutant that could not utilize phthalate, MB2-D2). This pathway also generated a chlorinated isobenzofuranone from 3-chloro-2-methylbenzoate.  相似文献   

15.
Abstract The sequence of 1383 nucleotides of the DNA encoding 16S rDNA was determined for strains of human intestinal spirochaetes, comprising an unnamed isolate and " Brachyspira aalborgi " NCTC 11492. A phylogenetic tree was inferred from aligned sequence comparisons between the intestinal spirochaetes, representatives of the Spirochaetales and Escherichia coli . The type strain of Brachyspira aalborgi , though related to the Serpulina spp. at approx. 96.5% sequence similarity was distinct and separated from the unnamed human intestinal isolate, HIS Oman, N26. The latter formed a separated and novel lineage that bisected the Spirochaetales.  相似文献   

16.
2,4-Dichlorophenol hydroxylase, a flavoprotein monooxygenase from Pseudomonas cepacia grown on 2,4-dichlorophenoxyacetic acid (2,4-D) as the sole source of carbon, was purified to homogeneity by a single-step affinity chromatography on 2,4-DCP-Sepharose CL-4B. The enzyme was eluted from the affinity matrix with the substrate 2,4-dichlorophenol. The enzyme has a molecular weight of 275,000 consisting of four identical subunits of molecular weight 69,000 and requires exogenous addition of FAD for its complete catalytic activity. The enzyme required an external electron donor NADPH for hydroxylation of 2,4-dichlorophenol to 3,5-dichlorocatechol. NADPH was preferred over NADH. The enzyme had Km value of 14 microM for 2,4-dichlorophenol, and 100 microM for NADPH. The enzyme activity was significantly inhibited by heavy metal ions like Hg2+ and Zn2+ and showed marked inhibition with thiol reagents. Trichlorophenols inhibited the enzyme competitively. The hydroxylase activity decreased as a function of increasing concentrations of Cibacron blue and Procion red dyes. The apoenzyme prepared showed complete loss of FAD when monitored spectrophotometrically and had no enzymatic activity. The inactive apoenzyme was reconstituted with exogenous FAD which completely restored the enzyme activity.  相似文献   

17.
Pseudomonas cepacia hydrolyzed rac-1-phenyl-2-propyl acetate and propionate asymmetrically, affording R(?)-1-phenyl-2-propanol and the ester of S(+)-l-phenyl-2-propanol.  相似文献   

18.
The ability of 46 strains of Pseudomonas cepacia to inhibit phytopathogenic fungi and the effect of iron on their antifungal activity were studied. The antifungal effect of the bacteria and the antimicrobial activity of their crude yellow and violet pigments showed a 4-5-fold decrease in the presence of Fe(III). The addition of 100 micrograms/ml of FeCl3 to the medium decreased the biosynthesis of violet and yellow pigments; the complex of the yellow pigment with Fe(III) promoted the growth of the P. cepacia producing strain under iron-deficient conditions. The data obtained suggest a participation of some P. cepacia pigments in iron transport. The resistance of the P. cepacia strains to the synthetic chelating agents hydroxyethylenediphosphonic and diethylenediaminepentaacetic acids was demonstrated, which may indicate a high Fe(III)-binding constant of P. cepacia siderophores.  相似文献   

19.
A novel esterase was found in Pseudomonas fluorescens cells and purified to homogeneity as determined by polyacrylamide gel electrophoresis. The esterase was extracted from the cells by freeze-thawing and hypotonic treatment. Purification was achieved by ammonium sulfate precipitation, followed by successive chromatographies on DEAE-cellulose and benzylamine-agarose and then electrophoresis. The enzyme catalyzed the hydrolysis of methyl esters, such as methyl butyrate, but its hydrolyzing activity decreased with increase in the chain length of the alcohol moiety, and it did not catalyze the hydrolysis of triacylglycerols, such as triacetin. In contrast, the enzyme acted on various acyl residues in a series of methyl esters, such as dimethyl succinate, methyl methacrylate, and dimethyl malate. The optimum pH for activity of this enzyme with methyl butyrate was 7.0-8.5. The enzyme was inhibited by phenylmethylsulfonylfluoride. Its molecular weight was estimated as 48,000 by molecular sieve electrophoresis and gel filtration on Sephadex G-150.  相似文献   

20.
Cepabactin from Pseudomonas cepacia, a new type of siderophore   总被引:10,自引:0,他引:10  
In iron-deficient conditions of growth Pseudomonas cepacia ATCC 25416 excreted both pyochelin and a low-molecular-mass compound which strongly chelated iron(III), and facilitated iron translocation as demonstrated by growth and uptake experiments. The name cepabactin is proposed for this new siderophore. Comparisons of UV-visible spectra and chromatographic behaviour, together with 1H-NMR spectra, led to the conclusion that cepabactin is 1-hydroxy-5-methoxy-6-methyl-2(1H)-pyridinone, a compound which can be considered as a cyclic hydroxamate, but also as a heterocyclic analogue of catechol. This pyridinone has already been described by other workers as an antibiotic produced by Pseudomonas alcaligenes, and by a soil isolate closely related to Pseudomonas cepacia. Thus, cepabactin appears to act as a siderophore for more than one species of non-fluorescent pseudomonad.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号