首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Discontinuous transcription and splicing in trypanosomes   总被引:25,自引:0,他引:25  
L H Van der Ploeg 《Cell》1986,47(4):479-480
  相似文献   

2.
3.
4.
It is becoming increasingly clear that parasitic protozoa remain a scourge to humans in the 21st century. The trypanosomes are a diverse group of insect-transmitted parasites that wiggle their way through multiple life cycle stages as they destroy human lives. Exquisitely detailed studies of these organisms reveal basic differences in gene expression that separate these single celled eukaryotes from multicellular eukaryotic organisms and have suggested numerous potential drug targets.  相似文献   

5.
Lee SH  Stephens JL  Paul KS  Englund PT 《Cell》2006,126(4):691-699
All eukaryotic and prokaryotic organisms are thought to synthesize fatty acids using a type I or type II synthase. In addition, eukaryotes extend pre-existing long chain fatty acids using microsomal elongases (ELOs). We have found that Trypanosoma brucei, a eukaryotic human parasite that causes sleeping sickness, uses three elongases instead of type I or type II synthases for the synthesis of nearly all its fatty acids. Trypanosomes encounter diverse environments during their life cycle with different fatty acid requirements. The tsetse vector form requires synthesis of stearate (C18), whereas the bloodstream form needs myristate (C14). We find that trypanosome fatty acid synthesis is modular, with ELO1 converting C4 to C10, ELO2 extending C10 to C14, and ELO3 elongating C14 to C18. In blood, ELO3 downregulation favors myristate synthesis, whereas low concentrations of exogenous fatty acids in cultured parasites cause upregulation of the entire pathway, allowing the parasite to adapt to different environments.  相似文献   

6.
Sphingolipids are essential components of eukaryotic membranes, and many unicellular eukaryotes, including kinetoplastid protozoa, are thought to synthesize exclusively inositol phosphorylceramide (IPC). Here we characterize sphingolipids from Trypanosoma brucei, and a trypanosome sphingolipid synthase gene family (TbSLS1-4) that is orthologous to Leishmania IPC synthase. Procyclic trypanosomes contain IPC, but also sphingomyelin, while surprisingly bloodstream-stage parasites contain sphingomyelin and ethanolamine phosphorylceramide (EPC), but no detectable IPC. In vivo fluorescent ceramide labelling confirmed stage-specific biosynthesis of both sphingomyelin and IPC. Expression of TbSLS4 in Leishmania resulted in production of sphingomyelin and EPC suggesting that the TbSLS gene family has bi-functional synthase activity. RNAi silencing of TbSLS1-4 in bloodstream trypanosomes led to rapid growth arrest and eventual cell death. Ceramide levels were increased more than threefold by silencing suggesting a toxic downstream effect mediated by this potent intracellular messenger. Topology predictions support a revised six-transmembrane domain model for the kinetoplastid sphingolipid synthases consistent with the proposed mammalian sphingomyelin synthase structure. This work reveals novel diversity and regulation in sphingolipid metabolism in this important group of human parasites.  相似文献   

7.
8.
9.
Most, if not all, trypanosome mRNAs have the same 35-base sequence at their 5' terminus which is derived from a short RNA (medRNA) probably by the process of trans-splicing. It is of interest, evolutionarily and mechanistically, to determine the chemical structure of the 5' terminus of the precursor (medRNA) and product (mRNA). We demonstrate here that the cap structure of both is most probably 7-methylguanosine in a 5',5' triphosphate linkage, consistent with a precursor/product relationship.  相似文献   

10.
In Trypanosoma brucei, most mitochondrial mRNAs undergo internal changes by RNA editing and 3′ end modifications. The temporally separated and functionally distinct modifications are manifested by adenylation prior to editing, and by post‐editing extension of a short A‐tail into a long A/U‐heteropolymer. The A‐tail stabilizes partially and fully edited mRNAs, while the A/U‐tail enables mRNA binding to the ribosome. Here, we identify an essential pentatricopeptide repeat‐containing RNA binding protein, kinetoplast polyadenylation factor 3 (KPAF3), and demonstrate its role in protecting pre‐mRNA against degradation by the processome. We show that KPAF3 recruits KPAP1 poly(A) polymerase to the 3′ terminus, thus leading to pre‐mRNA stabilization, or decay depending on the occurrence and extent of editing. In vitro, KPAF3 stimulates KPAP1 activity and inhibits mRNA uridylation by RET1 TUTase. Our findings indicate that KPAF3 selectively directs pre‐mRNA toward adenylation rather than uridylation, which is a default post‐trimming modification characteristic of ribosomal and guide RNAs. As a quality control mechanism, KPAF3 binding ensures that mRNAs entering the editing pathway are adenylated and, therefore, competent for post‐editing A/U‐tailing and translational activation.  相似文献   

11.
12.
13.
Telomere conversion in trypanosomes.   总被引:11,自引:7,他引:11       下载免费PDF全文
Activation of the gene coding for variant surface glycoprotein (VSG) 118 in Trypanosoma brucei proceeds via a duplicative transposition to a telomeric expression site. The resulting active expression-linked extra copy (ELC) is usually flanked by DNA that lacks sites for most restriction enzymes and that is thought to interfere with the cloning of the ELC as recombinant DNA in Escherichia coli. We have circumvented this problem by cloning an aberrant 118 ELC gene, flanked at the 3'-side by at least 1 kb DNA, that contains restriction enzyme sites. Our analysis shows that this DNA and the 3'-end of the 118 ELC gene are derived from another VSG gene (1.1006) that is permanently located at a telomeric position. We propose that the 3'-end of the 1.1006 gene and (all of) its 3' flanking sequence moved to the expression site by a telomere conversion. Such a telomere conversion can also account for the appearance of an extra copy of the 1.1006 gene detected in a sub-population of our trypanosome strain.  相似文献   

14.
The glycosyl phosphatidylinositol anchor of the trypanosome variant surface glycoprotein contains myristate as its sole fatty acid component. Surprisingly, there does not appear to be enough myristate in either the parasite or its host's bloodstream to sustain myristoylation of the enormous quantity of variant surface glycoprotein produced. Here, we discuss how the trypanosome solves its myristate dilemma. The parasite not only efficiently salvages and processes myristate from the bloodstream, but it also makes myristate de novo using a recently discovered specialized fatty acid synthesis system.  相似文献   

15.
16.
Discontinuous DNA synthesis by purified mammalian proteins   总被引:20,自引:0,他引:20  
Five proteins purified from mouse cells acting together efficiently convert a single-stranded circular DNA template to covalently closed duplex circle by a discontinuous mechanism. DNA polymerase alpha/primase with the assistance of alpha accessory factor covers the single-stranded circle with RNA-primed DNA fragments. Primers are removed by a combination of RNase H-1 and a 5'-exonuclease that was identified by its ability to complete this in vitro system. The 5'-exonuclease is required to remove residual one or two ribonucleotides at the primer/DNA junction that are resistant to RNase H-1. Gap filling is by the DNA polymerase alpha/primase, and DNA ligase I converts the DNA fragments to continuous strand. The concerted action of the five proteins emulates synthesis of the staging strand at the replication fork.  相似文献   

17.
Control of gene expression in trypanosomes.   总被引:25,自引:0,他引:25       下载免费PDF全文
  相似文献   

18.
19.
Inhibition of protein synthesis stabilizes histone mRNA.   总被引:17,自引:19,他引:17       下载免费PDF全文
  相似文献   

20.
The absence of a fossil record has meant that the evolution of protozoa has remained largely a matter for speculation. Recent advances in molecular biology and phylogenetic analysis, however, are allowing the 'history written in the genes' to be interpreted. Here, Jamie Stevens and Wendy Gibson review progress in reconstruction of trypanosome phylogeny based on molecular data from rRNA and protein-coding genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号