首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For optimal proteolytic function, the central core of the proteasome (core particle (CP) or 20S) has to associate with activators. We investigated the impact of the yeast activator Blm10 on proteasomal peptide and protein degradation. We found enhanced degradation of peptide substrates in the presence of Blm10 and demonstrated that Blm10 has the capacity to accelerate proteasomal turnover of the unstructured protein tau-441 in vitro. Mechanistically, proteasome activation requires the opening of a closed gate, which allows passage of unfolded proteins into the catalytic chamber. Our data indicate that gate opening by Blm10 is achieved via engagement of its C-terminal segment with the CP. Crucial for this activity is a conserved C-terminal YYX motif, with the penultimate tyrosine playing a preeminent role. Thus, Blm10 utilizes a gate opening strategy analogous to the proteasomal ATPases HbYX-dependent mechanism. Because gating incompetent Blm10 C-terminal point mutants confers a loss of function phenotype, we propose that the cellular function of Blm10 is based on CP association and activation to promote the degradation of proteasome substrates.  相似文献   

2.
The copper(II) complex of the clinically used antitumor agent bleomycin (Blm) has cytotoxic as well as antitumor properties. To understand the relationship of the bleomycin ligand, copper bleomycin, and other possible metal complexes of this agent, kinetic studies of the formation of Cu(II)Blm, ligand substitution reactions of CuBlm with ethylenediaminetetraaletic acid, and the redox reaction of CuBlm with thiols have been completed and interpreted along with previous studies of the thermodynamic stability of Cu2+ with bleomycin. Cu(II)Bm is found to be kinetically and thermodynamically stable in ligand substitution processes and is only slowly reduced and dissociated by sulfhydryl reagents. The rate constant of reduction of the complex by 2-mercaptoethanol (2-ME) at pH 7.4 and 25 degrees C is 9.5 X 10(-3) M-1 sec-1, explaining the inhibition of Fe2+-dependent strand scission of DNA by Cu2+ in the presence of 2-ME. CuBlm forms in preference to Fe(II)Blm and cannot be reduced and dissociated rapidly enough by thiols to liberate Blm and form the reactive iron complex. In agreement with the observed chemical stability of CuBlm, it is also shown that the complex is stable in human plasma and in the presence of Ehrlich cells suspended in ascites fluid. Interestingly, little CuBlm enters these cells to carry out cytotoxic reactions. Finally, it is shown that both Cu2+ and Zn2+, at equivalent concentrations to Fe2+, effectively inhibit the strand scission of DNA by Fe(II)Blm plus oxygen. However, at substoichiometric amounts of Cu2+, the ferroxidase activity of Blm enables the drug to remain effective in the strand-scission reaction, despite the lowered Cu-free Blm/Fe2+ ratio. These results are discussed in light of the proposed mechanism of action of bleomycin.  相似文献   

3.
The 20 S proteasome is regulated at multiple levels including association with endogenous activators. Two activators have been described for the yeast 20 S proteasome: the 19 S regulatory particle and the Blm10 protein. The sequence of Blm10 is 20% identical to the mammalian PA200 protein. Recent studies have shown that the sequences of Blm10 and PA200 each contain multiple HEAT-repeats and that each binds to the ends of mature proteasomes, suggesting a common structural and biochemical function. In order to advance structural studies, we have developed an efficient purification method that produces high yields of stoichiometric Blm10-mature yeast 20 S proteasome complexes and we constructed a three-dimensional (3D) model of the Blm10-20 S complex from cryo-electron microscopy images. This reconstruction shows that Blm10 binds in a defined orientation to both ends of the 20 S particle and contacts all the proteasome alpha subunits. Blm10 displays the solenoid folding predicted by the presence of multiple HEAT-like repeats and the axial gates on the alpha rings of the proteasome appear to be open in the complex. We also performed a genetic analysis in an effort to identify the physiological role of Blm10. These experiments, however, did not reveal a robust phenotype upon gene deletion, overexpression, or in a screen for synthetic effects. This leaves the physiological role of Blm10 unresolved, but challenges earlier findings of a role in DNA repair.  相似文献   

4.
Proteasomes play a key regulatory role in all eukaryotic cells by removing proteins in a timely manner. There are two predominant forms: The 20S core particle (CP) can hydrolyze peptides and certain unstructured proteins, and the 26S holoenzyme is able to proteolyse most proteins conjugated to ubiquitin. The 26S complex consists of a CP barrel with a 19S regulatory particle (RP; a.k.a PA700) attached to its outer surface. Several studies purified another proteasome activator with a MW of 200 kDa (PA200) that attaches to the same outer ring of the CP. A role for PA200 has been demonstrated in spermatogenesis, in response to DNA repair and in maintenance of mitochondrial inheritance. Enhanced levels of PA200-CP complexes are observed under conditions in which either activated or disrupted CP prevail, suggesting it participates in regulating overall proteolytic activity. PA200, or its yeast ortholog Blm10, may also incorporate into 26S proteasomes yielding PA200-CP-RP hybrids. A three-dimensional molecular structure determined by x-ray crystallography of Blm10-CP provides a model for activation. The carboxy terminus of Blm10 inserts into a dedicated pocket in the outer ring of the CP surface, whereas multiple HEAT-like repeats fold into an asymmetric solenoid wrapping around the central pore to stabilize a partially open conformation. The resulting hollow domelike structure caps the entire CP surface. This asymmetric structure may provide insight as to how the 19S RP, with two HEAT repeatlike subunits (Rpn1, Rpn2) alongside six ATPases (Rpt1-6), attaches to the same surface of the CP ring, and likewise, induces pore opening.  相似文献   

5.
The effect of bleomycin (Blm) on DNA synthesis has been studied in a synchronous culture of human embryonic lung cells. The data obtained suggest that in the Blm presence in a medium (20 micrograms/ml) DNA synthesis initiation in new replicons is suppressed. The Blm action at different S-phase intervals has been shown to inhibit DNA synthesis unequally. Four discrete time intervals have been singled out in the course of the 10-hr S-phase in which a grouped initiation of replicon portions can be supposed. Together with the data on DNA replication in large-size replicon units (50-500 microns), the obtained results account well for the uneven DNA synthesis in S-phase, manifested by 3 or 4 peaks of [3H]-thymidine incorporation in pulse-labelled cells.  相似文献   

6.
Proteasome activity is fine-tuned by associating the proteolytic core particle (CP) with stimulatory and inhibitory complexes. Although several mammalian regulatory complexes are known, knowledge of yeast proteasome regulators is limited to the 19-subunit regulatory particle (RP), which confers ubiquitin-dependence on proteasomes. Here we describe an alternative proteasome activator from Saccharomyces cerevisiae, Blm10. Synthetic interactions between blm10Delta and other mutations that impair proteasome function show that Blm10 functions together with proteasomes in vivo. This large, internally repetitive protein is found predominantly within hybrid Blm10-CP-RP complexes, representing a distinct pool of mature proteasomes. EM studies show that Blm10 has a highly elongated, curved structure. The near-circular profile of Blm10 adapts it to the end of the CP cylinder, where it is properly positioned to activate the CP by opening the axial channel into its proteolytic chamber.  相似文献   

7.
Short‐lived proteins are degraded by proteasome complexes, which contain a proteolytic core particle (CP) but differ in the number of regulatory particles (RPs) and activators. A recently described member of conserved proteasome activators is Blm10. Blm10 contains 32 HEAT‐like modules and is structurally related to the nuclear import receptor importin/karyopherin β. In proliferating yeast, RP‐CP assemblies are primarily nuclear and promote cell division. During quiescence, RP‐CP assemblies dissociate and CP and RP are sequestered into motile cytosolic proteasome storage granuli (PSG). Here, we show that CP sequestration into PSG depends on Blm10, whereas RP sequestration into PSG is independent of Blm10. PSG rapidly clear upon the resumption of cell proliferation and proteasomes are relocated into the nucleus. Thereby, Blm10 facilitates nuclear import of CP. Blm10‐bound CP serves as an import receptor–cargo complex, as Blm10 mediates the interaction with FG‐rich nucleoporins and is dissociated from the CP by Ran‐GTP. Thus, Blm10 represents the first CP‐dedicated nuclear import receptor in yeast.  相似文献   

8.
We have previously described two synthetic models gathering a simplified model of the complexing part of Bleomycin (Blm) and the intercalating moiety of m-AMSA. These molecules, namely AGGA and AGAMGA, do not seem able to cleave DNA as Blm does. The present work is devoted to the study of a new derivative, AGAGLU, which includes in its structure a judiciously chosen connector between the two parts of the molecule. This compound, the chelating and DNA-binding properties of which are described here, has been shown to induce single-strand breakage of duplex DNA in a high level.  相似文献   

9.
Rabbit liver Cd-metallothionein (CdMT) and Cd-complex of synthetically prepared pentapeptide (gamma-Glu-Cys)2-Gly were studied as examples of animal and plant metallothioneins. Using hanging mercury electrode, cathodic stripping voltammetry after adsorptive accumulation of the Cd(II)-SR complex at different potentials, is suitable for estimating changes occurring in metal coordination due to the presence of metal ions such as Zn2+, Cu2+, Hg2+ or excessive Cd2+. Conditions under which similar behaviour can be observed for both CdMT and Cd-pentapeptide complex are specified. On carbon electrodes, detailed study of reduction processes of Cd(II)-SR complexes is prevented by occurrence of a large catalytic current; oxidation processes are more suitable for study at these electrodes. Carbon composite paste electrode (10% SiO2) allows deposition of Cd(II)-SR complex during its reduction, as was demonstrated with Cd-cysteine, CdMT or Cd-pentapeptide complex. After deposition, oxidation peak of the uncomplexed Cd2+ ions and one or two oxidation peaks corresponding to a formation of the RS-Cd(II) complex are observed. Also, similarly as on Hg electrode, it was observed that excessive Cd2+ or Zn2+ ions influence oxidation peaks of the RS-Cd(II) complex formation. Combination of measurements on mercury electrode and composite paste electrode is recommended for studies of metallothionein interactions with metal ions or other metal complexes.  相似文献   

10.
The eukaryotic 20 S proteasome is formed by dimerization of two precursor complexes containing the maturation factor Ump1. Beta7/Pre4 is the only one of the 14 subunits forming the 20 S proteasome that is absent from these precursor complexes in Saccharomyces cerevisiae. Increased expression of Pre4 leads to a reduction in the level of precursor complex, indicating that Pre4 incorporation into these complexes is rate-limiting for their dimerization. When we purified these precursor complexes, we observed co-purification of Blm10, a large protein known to attach to the alpha ring surface of proteasomes. In contrast to single mutants lacking either Blm10 or the C-terminal extension of Pre4, a mutant lacking both grew extremely poorly, accumulated very high levels of precursor complexes, and was impaired in beta subunit maturation. The effect of blm10Delta on proteasome biogenesis is modest, apparently because the 19 S regulatory particle is capable of substituting for Blm10, as long as precursor complex dimers are stabilized by the Pre4 C terminus. We found that a mutation (sen3/rpn2) affecting the Rpn2 subunit inhibits attachment of the 19 S activator to the 20 S particle or its precursors. Although the sen3 mutation alone had no apparent effect on precursor complex dimerization and active site maturation, the sen3 blm10 double mutant was impaired in these processes. Together these data demonstrate that Blm10 and the 19 S activator have a partially redundant function in stabilizing nascent 20 S proteasomes and in promoting their activation.  相似文献   

11.
HO(2)-Co(III)bleomycin is a model for HO(2)-Fe(III)bleomycin, which initiates single and double strand cleavage of DNA. In order to enlarge the understanding of its structure and reactivity, three-dimensional structures of HO(2)-Co(III)bleomycin bound to two DNA oligomers, d(GAGCTC)(2) (I) and d(GGAAGCTTCC)(2) (II), that have 5'-GC-3' binding sites, have been determined by nuclear magnetic resonance (NMR) methods. Besides previously recognized determinants of binding selectivity, a probable hydrogen bond was detected between the pyrimidinyl acetamido NH(2) and the carbonyl of cytosine base paired to G at the recognition site. Another hydrogen bond between the NH of the dimethylsulfonium R group and N7 of guanine opposite cytosine at the GC site may contribute to specification of the pyrimidine. Substitution of G with inosine shifted HO(2)-Co(III)Blm A(2)[bond]I and Fe(III)Blm[bond]I into fast exchange on the NMR time scale, supporting the role of the 2-amino group in site specification for each molecule. The conformationally stable metal-domain linker established a close-packed adduct with the minor groove in which the hydroperoxide ligand occupies a sterically constrained pocket that is isolated from the solvent. The hydroperoxide group is directed toward one of the two cytosine H4' hydrogens but is sterically blocked from access to the other by the drug. These findings enlarge the structural understanding of selective binding of Co(III)/Fe(III)Blm species at G-pyrimidine sites. They also rationalize the instability of a number of ligands bound to Co(III)/Fe(III)Blm at specific binding sequences and the relative unreactivity of Fe(III)Blm[bond]I with ascorbate as well as its lack of interaction with spin labels.  相似文献   

12.
Topoisomerase IIIα (Top3α) is an essential component of the double Holliday junction (dHJ) dissolvasome complex in metazoans, along with Blm and Rmi1/2. This important anti-recombinogenic function cannot be performed by Top3β, the other type IA topoisomerase present in metazoans. The two share a catalytic core but diverge in their tail regions. To understand this difference in function, we investigated the role of the unique C terminus of Top3α. The Drosophila C terminus contains an insert region not conserved among metazoans. This insert contributes an independent interaction with Blm, which may account for the absence of Rmi1 in Drosophila. Mutant Top3α lacking this insert maintains the ability to perform dHJ dissolution but only partially rescues a top3α null fly line, indicating an in vivo role for the insert. Truncation of the C terminus has a minimal effect on the type IA relaxation activity of Top3α; however, dHJ dissolution is greatly reduced. The Top3α C terminus was found to strongly interact with both Blm and DNA, which are critical to the dissolution reaction; these interactions are greatly reduced in the truncated enzyme. The truncation mutant also cannot rescue the viability of top3α null flies, indicating an essential in vivo role. Our data therefore suggest that the Top3α C terminus has an important role in dHJ dissolution (by providing an interaction interface for Blm and DNA) and an essential function in vivo.  相似文献   

13.
《Free radical research》2013,47(1):499-508
The hydrogen peroxide dependent oxidation of the epinephrinecopper complex to adrenochrome is mediated by free copper ions. The oxidation is enhanced by chloride ions and by the presence of serum albumin. The reaction is not inhibited by SOD or by hydroxyl radical scavengers.

The 2:1 epinephrine or dopamine:Cu(II) complexes are able to bind to DNA and to catalyze its oxidative destruction in the presence of hydrogen peroxide. The DNA-epinephrine-Cu(II) terenary complex has characteristic spectral properties. It has the capacity to catalyze the reduction of oxygen or H2O2 and it preserves the capacity over a wide range of comp1ex:DNA ratios. The rate of DNA cleavage is proportional to the rate of epinephrine oxidation and the rate determining step of the reaction Seems to be the reduction of free Cu(II) ions. The ability to form redox active stable DNA ternary complexes, suggests that under specific physiological conditions, when “free” copper ions are available. catecholamina may induce oxidative degradation of DNA and other biological macromolecules.  相似文献   

14.
The hydrogen peroxide dependent oxidation of the epinephrinecopper complex to adrenochrome is mediated by free copper ions. The oxidation is enhanced by chloride ions and by the presence of serum albumin. The reaction is not inhibited by SOD or by hydroxyl radical scavengers.

The 2:1 epinephrine or dopamine:Cu(II) complexes are able to bind to DNA and to catalyze its oxidative destruction in the presence of hydrogen peroxide. The DNA-epinephrine-Cu(II) terenary complex has characteristic spectral properties. It has the capacity to catalyze the reduction of oxygen or H2O2 and it preserves the capacity over a wide range of comp1ex:DNA ratios. The rate of DNA cleavage is proportional to the rate of epinephrine oxidation and the rate determining step of the reaction Seems to be the reduction of free Cu(II) ions. The ability to form redox active stable DNA ternary complexes, suggests that under specific physiological conditions, when “free” copper ions are available. catecholamina may induce oxidative degradation of DNA and other biological macromolecules.  相似文献   

15.
The glycopeptide, bleomycin, binds metal ions including Cu2+. It is the copper complex of this material that is isolated from Streptomyces verticillus. Both free ligand and copper complex are excellent antitumor agents in animals. The biochemical and pharmacological relationship between these compounds has not been established. The present study begins an analysis of the chemistry and biochemistry of copper-bleomycin with structural and equilibrium properties of the complex. Potentiometric and fluorometric titrations of bleomycin confirm three acidic groups with pKa values of 7.50, 4.93, and 2.72. The conjugate nitrogen bases of these groups, comprise three of the binding sites for Cu2+ according to similar titrations of copper-bleomycin. The fourth is a conjugate base of an acid with a very large pKa that cannot be measured by these techniques. The participation of a fourth such group is inferred from both proton release studies of the binding of metal and ligand above pH 8 and from several studies of the thermodynamic stability of copper bleomycin. At low pH binding of copper to bleomycin occurs in two steps, as observed by several independent techniques which monitor either the metal or the ligand. Log stability constants for the reactions Cu2+ + HkBlm ? CuHk-nBlm + nH+ and CuHk-nBlm ? CuHk-n-rBlm + rH+ are 1.32 and ?4.31, respectively, with n of 2.21 in the first equation and r of 2.07 in the second equation. The derived logarithm of the pH independent stability constant for copper bleomycin multiplied by the protonation constant for the unknown fourth ligand in the binding site is 12.16. This agrees closely with values obtained from measurements of conditional formation constants. One of the groups which binds in the second reaction is the substituted pyrimidine.  相似文献   

16.
Independent mouse models for Bloom syndrome (BS) exist, each thought to disrupt Blm gene function. However, animals bearing these alleles exhibit distinct phenotypes. Blm(tm1Ches) and Blm(tm1Grdn) homozygous mutant animals exhibit embryonic lethality while in another, Blm(tm3Brd), homozygosity yields viable, fertile animals with a cancer predisposition. Further characterization reveals the Blm(tm3Brd) allele to be a hypomorph, producing a diminished quantity of normal mRNA and protein. The Blm(tm3Brd) allele produces sufficient normal protein to rescue Blm(tm1Ches) lethality. Evaluation of viable animals reveals an inverse correlation between the quantity of Blm protein and the level of chromosome instability and a similar genotypic relationship for tumor predisposition indicating that Blm protein is rate limiting for maintaining genomic stability and the avoidance of tumors.  相似文献   

17.
The aerobic redox reaction of Fe(III)bleomycin (Blm) and ascorbate was examined in the absence of DNA and in the presence of 7.5 and 25 calf thymus DNA base pairs per-drug molecule, in order to investigate the effect of DNA binding on the properties of FeBlm activation and DNA strand cleavage. Under these successive conditions, the rate of initial reduction of Fe(III)Blm became progressively slower and biphasic. Using 7.5 base pairs per-molecule of FeBlm, 2-3 times as much drug reacted in the faster step as with the larger DNA to drug ratio. In each case, the more rapid process was identified with the reaction of high spin Fe(III)Blm-DNA. With the smaller ratio, dioxygen consumption, formation of HO(2)-Fe(III)Blm-DNA, and production of DNA strand breaks as measured by the formation of base propenal were largely rate limited by the initial reaction of ascorbate with Fe(III)Blm-DNA. After a burst of reaction with the larger ratio of base pairs to Fe(III)Blm, a small fraction of the total Fe(III)Blm, representing high spin Fe(III)Blm, entered a steady state as HO(2)-Fe(III)Blm-DNA. Thereafter, reaction of dioxygen and base propenal formation occurred slowly with similar first-order rate kinetics. In order to explain these results, it is hypothesized that the metal domain-linker of Fe(III)Blm adopts two conformations with respect to DNA. One, at specific binding sites, is relatively unreactive with ascorbate. The other, present at non-specific sites as HPO(4)-Fe(III)Blm, is readily reactive with ascorbate to generate HO(2)-Fe(III)Blm-DNA. At the larger base pair to drug ratio, movement of Fe(III)Blm between specific and non-specific sites to generate HO(2)-Fe(III)Blm is a necessary part of the mechanism of strand scission.  相似文献   

18.
The hypothesis was investigated that axial ligands bound to Fe(III)-bleomycin [Fe(III)Blm] are destabilized at specific 5'-guanine-pyrimidine-3' binding sites but are stable at nonselective dinucleotides. DNA oligomers and calf-thymus DNA were used in reactions with L-Fe(III)Blm, where phosphate and cyanide served as examples of large and small ligands (L). Both ligands underwent dissociation when L-Fe(III)Blm was bound to d(GGAAGCTTCC)2 (I) but not d(GGAAATTTCCC)2 (II) and at large ratios of calf-thymus DNA to drug. Fe(III)Blm is high spin in 20 mM phosphate buffer, signifying the presence of a phosphate adduct. In the titration of HPO4-Fe(III)Blm with calf-thymus DNA, a large excess of DNA was needed to reach the low-spin state, consistent with an equilibrium competition between phosphate and DNA for Fe(III)Blm. Equilibrium constants for binding Fe(III)Blm and CN-Fe(III)Blm to calf-thymus DNA (6.8x10(5) M(-1) and 5.9x10(4) M(-1), respectively, in HEPES buffer at 25 degrees C and pH 7.4) showed that the CN- ligand also reduced the affinity of DNA for the drug. The kinetics of dissociation of CN- from CN-Fe(III)Blm-DNA were slow and first order in bound drug. The reversible nature of these dissociation reactions was shown using 1H NMR spectroscopy of Fe(III)Blm-I in the absence and presence of large excesses of CN- or phosphate. The results are discussed in terms of a two-state hypothesis for the binding of L-Fe(III)Blm to specific and nonspecific dinucleotides. It is proposed that steric restrictions at specific sites inhibit binding of these ligands.  相似文献   

19.
The effect of oxidative stress induced by neurotoxic metal ions on the properties of the brain 20S proteasome or multicatalytic proteinase complex (MPC) has been studied. Exposure of the 20S proteasome to increasing amounts of Fe(III), Fe(II), Cu(II) or Zn(II) affects its main hydrolytic activities: trypsin-like (T-L), chymotrypsin-like (ChT-L), peptidylglutamyl-peptide hydrolase (PGPH), branched-chain amino acid preferring (BrAAP) and caseinolytic activities, although in different ways. T-L activity showed gradual activation by both iron ions but inhibition by Cu(II) and Zn(II). ChT-L and PGPH activities were inhibited whereas BrAAP activity was widely activated by all the tested metal salts except for zinc ions. Moreover, the exposure to ferrous salt increased the degradation rate of casein. The functional effects appear to be linked to oxidation-induced modifications, as demonstrated by an increase of carbonyl groups following the exposure to metal ions. In addition, modifications induced by ferrous salt on the catalytic subunits were also supported by western blot analyses performed using anti-X, anti-Y and anti-Z antibodies. The results obtained clearly indicate that metal-catalyzed oxidation strongly affects the functions of the brain 20S proteasome, even though the catalytic subunits seem to be differently influenced by oxidative phenomena.  相似文献   

20.
Bleomycin (Blm) is an antitumor agent which binds to specific sequences of DNA and as HO(2)-Fe(III)Blm causes single and double strand cleavage. In the present investigation, binding of O(2)-Co(II)Blm to a native DNA polymer, calf thymus DNA, was examined using conventional Raman spectroscopy. O(2)-Co(II)Blm is a model for O(2)-Fe(II)Blm, the direct precursor of HO(2)-Fe(III)Blm. Although the DNA polymer retained a predominant B-form structure, Raman spectral evidence was obtained for localized structural changes to A, C and Z-DNA forms. The presence of these alternate DNA forms within B-DNA implied the presence of B/A, B/C and B/Z junctions. The observed changes in DNA secondary structure were attributed to perturbation of structural water resulting from binding of O(2)-Co(II)Blm within the minor groove.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号