首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A protein, the mediatophore, has been purified from Torpedo electric organ presynaptic plasma membranes. This protein mediates the release of acetylcholine through artificial membranes when activated by calcium and is made up of 15-kDa proteolipid subunits. After immunization with purified delipidated mediatophore, monoclonal antibodies binding to the 15-kDa proteolipid band on Western blots of purified mediatophore were selected. A 15-kDa proteolipid antigen was also detected in cholinergic synaptic vesicles. Using an immunological assay, it was estimated that presynaptic plasma membranes and synaptic vesicles contain similar proportions of 15-kDa proteolipid antigen. Detection by immunofluorescence in the electric organ showed that only nerve endings were labeled. In electric lobes, the staining was associated with intracellular membranes of the electroneuron cell bodies and in axons. Nerve endings at Torpedo neuromuscular junctions were also labeled with anti-15-kDa proteolipid monoclonal antibodies.  相似文献   

2.
The nature of the G-proteins present in the pre- and post-synaptic plasma membranes and in the synaptic vesicles of cholinergic nerve terminals purified from the Torpedo electric organ was investigated. In pre- and post-synaptic plasma membranes, Bordetella pertussis toxin, known to catalyze the ADP-ribosylation of the alpha-subunit of several G-proteins, labels two substrates at 41 and 39 kDa. The 39 kDa subunit detected by ADP-ribosylation in the synaptic plasma membrane fractions was immunologically similar to the Go alpha-subunit purified from calf brain. In contrast to bovine chromaffin cell granules, no G-protein could be detected in Torpedo synaptic vesicles either by ADP-ribosylation or by immunoblotting.  相似文献   

3.
B A Bahr  S M Parsons 《Biochemistry》1992,31(25):5763-5769
The vesamicol receptor (VR) present in cholinergic synaptic vesicles isolated from the electric organ of Torpedo was solubilized in cholate detergent and stabilized with glycerol and a phospholipid mixture. The receptor was purified in 7% yield by hydroxylapatite, wheat germ lectin affinity, DEAE anion-exchange, and size exclusion chromatographies based on a [3H]vesamicol binding assay. A final specific binding of 4400 pmol/mg of protein was obtained. The cholate-solubilized VR complex exhibited variable aggregation states with particle molecular masses of 210-3500 kDa in different experiments. The purified VR exhibited very heterogeneous electrophoretic mobility in sodium dodecyl sulfate-polyacrylamide gel electrophoresis with very diffuse protein staining at about 240 kDa. No "classical" polypeptide or glycopeptide band was detected. One form of the SV1 epitope, which is characteristic of cholinergic synaptic vesicle proteoglycan, copurified precisely with the VR. The SV2 epitope, which is found in most neuronal and endocrine secretory vesicles, also closely purified with the VR. Substantially purified VR retained both enantioselectivity for (-)-vesamicol and a linked AcCh-binding site. This confirms the allosteric model for the VR in the AcCh transporter. The physicochemical properties of the VR and copurification of it with the SV1 epitope strongly suggest that the VR is associated with cholinergic vesicle proteoglycan. A second proteoglycan that is not associated with the VR but which carries the SV1 and SV2 epitopes also was observed.  相似文献   

4.
Abstract: Synaptic vesicles isolated from electric ray electric organ have been shown previously to contain a 34-kDa protein that binds azido-ATP, azido-AMP, and N -ethylmaleimide. The protein was found to share similarities with the mitochondrial ADP/ATP carrier and assumed to represent the synaptic vesicle nucleotide transporter. Synaptic vesicles were purified by sucrose density gradient centrifugation and subsequent chromatography on Sephacryl S-1000 from both Torpedo electric organ and bovine brain cerebral cortex. They contained ATP-binding proteins of 35 kDa and 34 kDa, respectively. ATP binding was inhibited by AMP. Both proteins were highly enriched after column chromatography of vesicle proteins of AMP-Sepharose. Antibodies were obtained against both proteins. Antibodies against the bovine brain synaptic vesicle protein of 34 kDa bound specifically to the 35-kDa protein of Torpedo vesicles. An N-terminal sequence obtained against the 34-kDa protein of bovine brain synaptic vesicles identified it as glyceraldehyde-3-phosphate dehydrogenase. The previously observed molecular characteristics of the putative vesicular nucleotide transporter in Torpedo fit those of glyceraldehyde-3-phosphate dehydrogenase. We, therefore, suggest that the protein previously identified as putative nucleotide transporter is, in fact, glyceraldehyde-3-phosphate dehydrogenase.  相似文献   

5.
Two proteins of the presynaptic plasma membrane, syntaxin and SNAP 25, and VAMP/synaptobrevin, a synaptic vesicle membrane protein, form stable protein complexes which are involved in the docking and fusion of synaptic vesicles at the mammalian brain presynaptic membrane. Similar protein complexes were revealed in an homogeneous population of cholinergic synaptosomes purified from Torpedo electric organ by combining velocity sedimentation and immunoprecipitation experiments. After CHAPS solubilization, virtually all the nerve terminal syntaxin was found in the form of large 16 S complexes, in association with 65% of SNAP 25 and 15% of VAMP. Upon Triton X100 solubilization, syntaxin was still recovered in association with SNAP 25 and VAMP but in smaller 8 S complexes. A small (2–5%) percentage of the nerve terminal 15 kDa proteolipid subunit of the v-H+ ATPase and of mediatophore was copurified with syntaxin, using two different antisyntaxin monoclonal antibodies. The use of an homogeneous population of peripheral cholinergic nerve terminals allowed us to extend results on the composition of the brain presynaptic protein complexes to the Torpedo electric organ synapse, a model of the rapid neuromuscular synapses. Copyright © 1996 Elsevier Science Ltd  相似文献   

6.
Calelectrin, a calcium-dependent membrane-binding protein of subunit molecular weight 32,000 has been isolated from the electric organ of Torpedo, and shown to occur in cholinergic neurones and in bovine adrenal medulla. In this study a monospecific antiserum against the Torpedo protein has been used to study the localization of calelectrin in the rat adrenal gland. The cortex was not stained, whereas in the medulla the cytoplasm of the chromaffin cells was stained in a particulate manner. An identical staining pattern was obtained with an antiserum against the chromaffin granule enzyme dopamine beta-hydroxylase, although the two antisera did not cross-react with the same antigen. The purified protein aggregates bovine chromaffin granule membranes and cholinergic synaptic vesicles and also self aggregates in a calcium-dependent manner. Negative staining results demonstrate that calcium induces a transformation of the purified protein from circular structures 30-80 nm in diameter into a highly aggregated structure. Calelectrin may have a structural or regulatory role in the intracellular organization of secretory cells.  相似文献   

7.
A protein that binds to membranes in a calcium-dependent manner between calcium concentrations of 10(-5) and 10(-6) M has been isolated in large amounts (20 mg/kg tissue) from the entirely cholinergic electric organ of Torpedo marmorata. The protein bound reversibly to membrane fractions in a calcium-specific and saturable manner. The protein also bound to lipids isolated from Torpedo electric organ and to clathrin-coated vesicles prepared from pig brain. The protein bound to a Triton X-100-sensitive site. It had an apparent subunit molecular weight of 32,000 by polyacrylamide gel electrophoresis and of 35,900 by amino acid analysis; a broad isoelectric range of 4.8 to 5.5; and 27% of its amino acids after hydrolysis were observed to be aspartic and glutamic acids. Synaptosomes derived from electric organ were enriched in the protein which is probably localised within the nerve ending. It was localised in the synaptic region of the electric organ by means of immunofluorescence. In the electric lobe, discrete patches of fluorescence were seen within the cell bodies that innervate the electric organ. The protein may be involved in the recognition of membranes within the cholinergic neurone. Proteins with similar purification properties were found in all tissues investigated so far, and polypeptides of subunit molecular weight 32,000 were identified in bovine adrenal medulla and guinea pig brain synaptosomes.  相似文献   

8.
Abstract: The distribution of o-rab3—a synaptic vesicle-associated low-molecular-weight GTP-binding protein—was studied in various neural tissues of the electric ray Torpedo marmorata. o-rab3 was shown to be associated selectively with isolated cholinergic synaptic vesicles derived from the electric organ. Gel filtration of cholinergic synaptic vesicles using Sephacryl S-1000 column chromatography demonstrated a copurification of o-rab3 with the synaptic vesicle content marker ATP and with SV2—a synaptic vesicle transmembrane glycoprotein. Indirect immunofluorescence using antibodies against o-rab3 and SV2 and a double labeling protocol revealed an identical distribution of both antigens in the cholinergic nerve terminals within the electric organ and at neuromuscular junctions. An immunoelectron microscopic analysis demonstrated the presence of o-rab3 at the surface of the synaptic vesicle membrane. In the CNS immunofluorescence of o-rab3 and SV2 overlap only in small and distinct areas. Whereas SV2 has an overall distribution in nerve terminals of the entire CNS, o-rab3 is restricted to a subpopulation of nerve terminals in the dorsolateral neuropile of the rhombencephalon and in the dorsal horn of the spinal cord. Our results demonstrate that the synaptic vesicle-associated G protein o-rab3 is specifically expressed only in subpopulations of neurons in the Torpedo CNS.  相似文献   

9.
L M Gracz  W C Wang  S M Parsons 《Biochemistry》1988,27(14):5268-5274
Crude cholinergic synaptic vesicles from a homogenate of the electric organ of Torpedo californica were centrifuged to equilibrium in an isosmotic sucrose density gradient. The classical VP1 synaptic vesicles banding at 1.055 g/mL actively transported [3H]acetylcholine (AcCh). An organelle banding at about 1.071 g/mL transported even more [3H]AcCh. Transport by both organelles was inhibited by the known AcCh storage blockers trans-2-(4-phenylpiperidino)cyclohexanol (vesamicol, formerly AH5183) and nigericin. Relative to VP1 vesicles the denser organelle was slightly smaller as shown by size-exclusion chromatography. It is concluded that the denser organelle corresponds to the recycling VP2 synaptic vesicle originally described in intact Torpedo marmorata electric organ [Zimmermann, H., & Denston, C.R. (1977) Neuroscience (Oxford) 2, 695-714; Zimmermann, H., & Denston, C.R. (1977) Neuroscience (Oxford) 2, 715-730]. The properties of the receptor for vesamicol were studied by measuring binding of [3H]vesamicol, and the amount of SV2 antigen characteristic of secretory vesicles was assayed with a monoclonal antibody directed against it. Relative to VP1 vesicles the VP2 vesicles had a ratio of [3H]AcCh transport activity to vesamicol receptor concentration that typically was 4-7-fold higher, whereas the ratio of SV2 antigen concentration to vesamicol receptor concentration was about 2-fold higher. Based on an antibody standardization, in a typical preparation the VP1 vesicles contained 237 +/- 15 pmol of receptor/mg of protein whereas VP2 vesicles contained 102 +/- 3 pmol of receptor/mg of protein, and VP2 vesicles transported AcCh 2-3-fold more actively than VP1 vesicles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Antisera were raised in guinea pigs to synaptic vesicles purified from the electric organ of Torpedo marmorata. In cholinergic nerve terminals from Torpedo the major antigens identified had Mr 300,000-150,000, 86,000, and 18,000. The Mr 86,000 antigen was conserved between Torpedo and rat, where it is neuron-specific and concentrated in nerve terminals. When rat brain synaptosomes are subfractionated the antigen is associated with synaptic vesicles. The antigen is not found in the cytoskeleton and in the vesicle-free cytosol. Immunohistochemical localization of the antigen in rat shows it to be associated with synapses in diaphragm, cerebellum, hippocampus, and cerebral cortex. The staining pattern of the antigen indicates that the antigen is not cholinergic-specific. The function of the Mr 86,000 antigen remains to be identified.  相似文献   

11.
Svp25 is a major glycoprotein of cholinergic synaptic vesicles isolated from the Torpedo electric organ. On SDS-PAGE svp25 migrates as a protein of Mr 25,000 and on two dimensional gel electrophoresis separates into several isoforms around a pI of 6.0. It binds concanavalin A and on phase separation with Triton X-114 behaves as an integral membrane protein. Svp25 represents a major vesicular 45Ca2(+)-binding protein. Under non-reducing conditions svp25 forms complexes of higher molecular weight which are multiples of 25,000. Svp25 is contained in the dense web of nerve terminal ramifications at the ventral side of the electroplaque cells. Colloidal gold labelling using a monospecific antibody confirms the selective association of the protein with synaptic vesicles. Although the function of the vesicular svp25 glycoprotein is not known, its ability to bind Ca2+ suggests that it is regulated by activation of the nerve terminal.  相似文献   

12.
Cholinergic synaptic vesicles from the electric organ of Torpedo marmorata are associated with a Mg2+-ATPase insensitive to ouabain and oligomycin. Treatment of vesicle membranes with dichloromethane releases a Mg2+-ATPase with apparent molecular mass of around 250 kDa as determined by gel filtration. The vesicular ATPase resembles the mitochondrial F1-ATPase in these properties. Gel electrophoresis of the solubilized ATPase shows however that only a single 50-kDa band is present as compared to the alpha-subunit (52 kDa) and beta-subunit (50 kDa) of electric organ mitochondrial F1-ATPase present in this range of molecular mass range. In agreement, covalent photoaffinity labelling of isolated vesicles with azido-ATP shows a 50-kDa band. Vesicle ghosts were found to accumulate [14C]methylamine in an ATP-dependent manner indicating the presence of an inwardly directed proton pump. We conclude that cholinergic vesicles contain a proton pump probably driven by the Mg2+-ATPase here described, which generates an electrochemical gradient across the vesicle membrane and is necessary for uptake and storage of acetylcholine within the vesicles.  相似文献   

13.
Rabbits were immunized with cholinergic synaptic vesicles isolated from the electric organ of Torpedo marmorata. The resultant antiserum had one major antibody activity against an antigen called the Torpedo vesicle antigen. This antigen could not be demonstrated in muscle, liver or blood and is therefore, suggested to be nervous-tissue specific. The vesicle antigen was quantified in various parts of the nervous system and in subcellular fractions of the electric organ of Torpedo marmorata and was found to be highly enriched in synaptic vesicle membranes. The antigen bound to concanavalin A, thereby demonstrating the presence of a carbohydrate moiety. By means of charge-shift electrophoresis, amphiphilicity was demonstrated, indicating that the Torpedo vesicle antigen is an intrinsic membrane protein. The antigen was immunochemically unrelated to other brain specific proteins such as 14-3-2, S-100, the glial fibrillary acidic protein and synaptin. Furthermore, it was unrelated to two other membrane proteins, the nicotinic acetylcholine receptor and acetylcholinesterase, present in Torpedo electric organ. The antiserum against Torpedo synaptic vesicles did not react with preparations of rat brain synaptic vesicles or ox adrenal medullary chromaffin granules.  相似文献   

14.
Cholinergic synaptic vesicles were isolated from the electric organs of the electric eel (Electrophorus electricus) and the electric catfish (Malapterurus electricus) as well as from the diaphragm of the rat by density gradient centrifugation followed by column chromatography on Sephacryl-1000. This was verified by both biochemical and electron microscopic criteria. Differences in size between synaptic vesicles from the various tissue sources were reflected by their elution pattern from the Sephacryl column. Specific activities of acetylcholine (ACh; in nmol/mg of protein) of chromatography-purified vesicle fractions were 36 (electric eel), 2 (electric catfish), and 1 (rat diaphragm). Synaptic vesicles from all three sources contained ATP in addition to ACh (molar ratios of ACh/ATP, 9-12) as well as binding activity for an antibody raised against Torpedo cholinergic synaptic vesicle proteoglycan. Synaptic vesicles from rat diaphragm contained binding activity for the monoclonal antibody asv 48 raised against a rat brain 65-kilodalton synaptic vesicle protein. Antibody asv 48 binding was absent from electric eel and electric catfish synaptic vesicles. These antibody binding results, which were obtained by a dot blot assay on isolated vesicles, directly correspond to the immunocytochemical results demonstrating fluorescein isothiocyanate staining in the respective nerve terminals. Our results imply that ACh, ATP, and proteoglycan are common molecular constituents of motor nerve terminal-derived synaptic vesicles from Torpedo to rat. In addition to ACh, both ATP and proteoglycan may play a specific role in the process of cholinergic signal transmission.  相似文献   

15.
Antipeptide Antibodies Against a Torpedo Cysteine-String Protein   总被引:1,自引:0,他引:1  
Abstract: An antipeptide antiserum was raised against the C-terminal undecapeptide of a Torpedo cysteine-string protein (csp), a putative subunit or modulator of presynaptic calcium channels. This antiserum was shown to identify selectively the 27-kDa in vitro translation product of the csp cRNA both by immunoprecipitation and on immunoblots. When affinity-purified anti-csp antibodies were used to probe immunoblots of membrane proteins from Torpedo electric organ or liver, specific immunoreactivity was detected only in electric organ. This immunoreactivity was associated principally with a single protein species of about 34 kDa. These results indicate that csp immunoreactivity is detectably expressed in electroplax, a heavily innervated tissue, but not in liver, which should have an appreciably lower abundance of presynaptic calcium channel proteins. Moreover, the increased relative molecular mass of csp in electric organ (compared with in vitro translated material) implies that csp is posttranslationally modified. Finally, immunoblot analysis of either intact, alkali-treated, or solubilized membrane fractions of electric organ reveals that csp is predominantly a membrane protein.  相似文献   

16.
G A Rogers  S M Parsons 《Biochemistry》1992,31(25):5770-5777
The acetylcholine (AcCh) binding site in the AcCh transporter-vesamicol receptor (AcChT-VR) present in synaptic vesicles isolated from the electric organ of Torpedo was characterized. A high-affinity analogue of AcCh containing an aryl azido group, namely, cyclohexylmethyl cis-N-(4-azidophenacyl)-N-methylisonipecotate bromide (AzidoAcCh), was synthesized in nonradioactive and highly tritiated forms. AzidoAcCh was shown to be a competitive inhibitor of [3H]AcCh active transport and binding of [3H]-vesamicol to the allosteric site. The [3H]AzidoAcCh saturation curve was determined. In all cases the AcChT.AzidoAcCh complex exhibited an inhibition or dissociation constant of about 0.3 microM. Binding of [3H]AzidoAcCh was inhibited by vesamicol and AcCh. AzidoAcCh irreversibly blocked greater than 90% of the [3H]vesamicol binding sites after multiple rounds of photolysis and reequilibration with fresh ligand. Autofluorographs of synaptic vesicles photoaffinity-labeled with [3H]AzidoAcCh showed specific labeling of material exhibiting a continuous distribution from 50 to 250 kDa after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The result demonstrates that the AcChT has an unexpected structure highly suggestive of the synaptic vesicle proteoglycan.  相似文献   

17.
Vesamicol is a highly potent inhibitor of active acetylcholine transport into isolated cholinergic vesicles from Torpedo. On the basis of transport kinetics and vesamicol sensitivity, we have shown that the acetylcholine transporter could be in an activated state even in the absence of a stimulated ATPase. In this preparation, N,N'-dicyclohexylcarbodiimide (DCCD), an hydrophobic carbodiimide, inactivates both ACh transport and vesamicol binding. Inhibition of vesamicol binding by DCCD is time dependent, saturable and prevented by vesamicol. DCCD first affected the affinity constant for vesamicol. Ki-value for DCCD lies in the micromolar range. These results imply that there is a DCCD reactive site within the ACh transporter and that it is located in an hydrophobic environment near the vesamicol binding site. SDS-gel electrophoresis after labelling of the vesicle membrane proteins with [14C]DCCD shows that radioactivity is mainly incorporated in a 15 kDa subunit. Time-course and concentration dependence of [14C]DCCD labelling and vesamicol inhibition do not coincide. Hence, the two processes are probably unrelated and the result rather points to another inactivation mechanism which can be an intramolecular cross link.  相似文献   

18.
An antiserum to cholinergic synaptic vesicles isolated from the electric organ of Torpedo marmorata was purified by adsorption with fractions containing unwanted antigens. The adsorbed antiserum responds to the proteoglycan core material of the cholinergic synaptic vesicles. The major antigen migrates in an anomalous fashion on sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), forming a broad band with an apparent molecular weight of approximately 120,000 - 300,000. The distribution of this antigen after sucrose density gradient centrifugation of synaptic vesicles is the same as that of vesicular ATP. The antigen comigrates with a substance that can be stained with Alcian-Blue after SDS-PAGE of highly purified synaptic vesicles. This substance is related to the low-molecular-weight, Alcian-Blue-positive glycosaminoglycan vesiculin, which is formed from the high-molecular-weight proteoglycan by prolonged dialysis against water or by protease treatment. No antibodies were detected against vesiculin itself, indicating that the antigenic determinants are restricted to the proteoglycan.  相似文献   

19.
Cholinergic synaptic vesicles obtained from Torpedo electric organ have an active transport system for acetylcholine (ACh). Linked to ACh transport is a cytoplasmically oriented receptor for the inhibitory drug (-)-trans-2-(4-phenylpiperidino)cyclohexanol (vesamicol, formerly AH5183). Storage of freshly isolated vesicles for several days leads to more vesamicol binding. This can be induced immediately by hyposmotic lysis of the vesicles, which reseal to form right-side-out ghosts. The increased drug binding was due to a twofold increase in the affinity and a 20% increase in the amount of the receptor expressed, probably as a result of the release of an endogenous factor. Binding of vesamicol to ghosts was specifically inhibited by exogenous ACh acting with a dissociation constant of 18 mM. This suggests that the vesamicol binding site probably is linked to a low-affinity ACh binding site that is different from the higher affinity transport binding site. Equilibrium and kinetic attempts to determine whether exogenous ACh acts on the outside or the inside of the ghost membrane to inhibit vesamicol binding failed because of rapid equilibration of exogenous ACh across the ghost membrane. It is argued that the endogenous factor released by hyposmotic lysis might be ACh. Potential roles for such a transmembrane signal regulating the vesamicol receptor are discussed.  相似文献   

20.
The ligand binding relationship between the acetylcholine transporter (AcChT) and the vesamicol receptor (VR) and the kinetics of active transport were studied in synaptic vesicles purified from the Torpedo electric organ using analogues of AcCh and vesamicol. Methoxyvesamicol, which should exhibit better equilibration properties for kinetics measurements than the more potent parent, inhibits active transport in a nonlinear noncompetitive manner. AcCh analogues competitively inhibit binding of [3H]vesamicol with higher affinity in hyposmotically lysed vesicle ghosts than in intact vesicles, apparently due to removal of a competing internal, osmotically active factor. AcCh and actively transported analogues of AcCh that are up to 57% larger in van der Waals volume exhibit up to a 200-fold ratio for the dissociation constant measured by inhibition of vesamicol binding to ghosts (KIAg) compared to the Michaelis constant for transport (KM) or the IC50 value for inhibition of [3H]AcCh active transport. In contrast, two AcCh analogues that are about 120% larger and that almost surely are not transported exhibit a KIAg/IC50 ratio of about 1. The data demonstrate that the vesamicol family of compounds binds to an allosteric site in the AcChT. Initiation of active transport has no apparent effect on the affinities of vesamicol and AcCh analogues, which suggests that most of the AcChT-VR in purified vesicles is transport incompetent. Vesicle ghosts actively transport [3H]AcCh nearly as well as intact vesicles, which suggests that internal factor does not affect transport-competent AcChT-VR. A kinetics model is proposed that predicts that AcCh analogues exhibiting a KIAg/IC50 ratio significantly greater than 1 are actively transported. Some of the microscopic constants in the model are estimated. The AcChT binds AcCh very weakly with a dissociation constant of about 20-50 mM, but it transports substrates rapidly in a process exhibiting remarkably little selectivity for the detailed shape and volume of the transported ion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号