首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Cell fate reprogramming makes possible the generation of new cell types from healthy adult cells to replace those lost or damaged in disease. Additionally, reprogramming patient cells into specific cell types allows for drug screening and the development of new therapeutic tools. Generation of new neurons is of particular interest because of the potential to treat diseases of the nervous system, such as neurodegenerative disorders and spinal cord injuries, with cell replacement therapy. Recent advances in cell fate reprogramming have led to the development of novel methods for the direct conversion of fibroblasts into neurons and neural stem cells. This review will highlight the advantages of these new methods over neuronal induction from embryonic stem cells and induced pluripotent stem cells, as well as outline the limitations and the potential for future applications.  相似文献   

3.
Somatic cell reprogramming may become a powerful approach to generate specific human cell types for cell-fate determination studies and potential transplantation therapies of neurological diseases. Here we report a reprogramming methodology with which human adipose stem cells (hADSCs) can be differentiated into neural cells. After being reprogrammed with polycistronic plasmid carrying defined factor OCT3/4, SOX2, KLF4 and c-MYC, and further treated with neural induce medium, the hADSCs switched to differentiate toward neural cell lineages. The generated cells had normal karyotypes and exogenous vector sequences were not inserted in the genomes. Therefore, this cell lineage conversion methodology bypasses the risk of mutation and gene instability, and provides a novel strategy to obtain patient-specific neural cells for basic research and therapeutic application.  相似文献   

4.
Recent advances in human embryonic stem cell (hESC) biology now offer an alternative cell source for tissue engineers, as these cells are capable of proliferating indefinitely and differentiating to many clinically relevant cell types. Novel culture methods capable of exerting spatial and temporal control over the stem cell microenvironment allow for more efficient expansion of hESCs, and significant advances have been made toward improving our understanding of the biophysical and biochemical cues that direct stem cell fate choices. Effective production of lineage specific progenitors or terminally differentiated cells enables researchers to incorporate hESC derivatives into engineered tissue constructs. Here, we describe current efforts using hESCs as a cell source for tissue engineering applications, highlighting potential advantages of hESCs over current practices as well as challenges which must be overcome.  相似文献   

5.
In vitro stem cell systems traditionally employ oxygen levels that are far removed from the in vivo situation. This study investigates whether an ambient environment containing a physiological oxygen level of 3% (normoxia) enables the generation of neural precursor cells (NPCs) from human embryonic stem cells (hESCs) and whether the resultant NPCs can undergo regional specification and functional maturation. We report robust and efficient neural conversion at 3% O(2), demonstration of tri-lineage potential of resultant NPCs and the subsequent electrophysiological maturation of neurons. We also show that NPCs derived under 3% O(2) can be differentiated long term in the absence of neurotrophins and can be readily specified into both spinal motor neurons and midbrain dopaminergic neurons. Finally, modelling the oxygen stress that occurs during transplantation, we demonstrate that in vitro transfer of NPCs from a 20 to 3% O(2) environment results in significant cell death, while maintenance in 3% O(2) is protective. Together these findings support 3% O(2) as a physiologically relevant system to study stem cell-derived neuronal differentiation and function as well as to model neuronal injury.  相似文献   

6.
Drosophila neuroblasts are similar to mammalian neural stem cells in their ability to self-renew and to produce many different types of neurons and glial cells. In the past two decades, great advances have been made in understanding the molecular mechanisms underlying embryonic neuroblast formation, the establishment of cell polarity and the temporal regulation of cell fate. It is now a challenge to connect, at the molecular level, the different cell biological events underlying the transition from neural stem cell maintenance to differentiation. Progress has also been made in understanding the later stages of development, when neuroblasts become mitotically inactive, or quiescent, and are then reactivated postembryonically to generate the neurons that make up the adult nervous system. The ability to manipulate the steps leading from quiescence to proliferation and from proliferation to differentiation will have a major impact on the treatment of neurological injury and neurodegenerative disease.  相似文献   

7.
Embryonic stem (ES) cells are a useful experimental material to recapitulate the differentiation steps of early embryos, which are usually invisible and inaccessible from outside of the body, especially in mammals. ES cells have greatly facilitated the analyses of gene expression profiles and cell characteristics. In addition, understanding the mechanisms during neural differentiation is important for clinical purposes, such as developing new therapeutic methods or regenerative medicine. As neurons have very limited regenerative ability, neurodegenerative diseases are usually intractable, and patients suffer from the disease throughout their lifetimes. The functional cells generated from ES cells in vitro could replace degenerative areas by transplantation. In this review, we will first demonstrate the historical views and widely accepted concepts regarding the molecular mechanisms of neural induction and positional information to produce the specific types of neurons in model animals. Next, we will describe how these concepts have recently been applied to the research in the establishment of the methodology of neural differentiation from mammalian ES cells. Finally, we will focus on examples of the applications of differentiation systems to clinical purposes. Overall, the discussion will focus on how historical developmental studies are applied to state‐of‐the‐art stem cell research.  相似文献   

8.
Human pluripotent stem cells (hPSCs) have great potential for studying human embryonic development, for modeling human diseases in the dish and as a source of transplantable cells for regenerative applications after disease or accidents. Neural crest (NC) cells are the precursors for a large variety of adult somatic cells, such as cells from the peripheral nervous system and glia, melanocytes and mesenchymal cells. They are a valuable source of cells to study aspects of human embryonic development, including cell fate specification and migration. Further differentiation of NC progenitor cells into terminally differentiated cell types offers the possibility to model human diseases in vitro, investigate disease mechanisms and generate cells for regenerative medicine. This article presents the adaptation of a currently available in vitro differentiation protocol for the derivation of NC cells from hPSCs. This new protocol requires 18 days of differentiation, is feeder-free, easily scalable and highly reproducible among human embryonic stem cell (hESC) lines as well as human induced pluripotent stem cell (hiPSC) lines. Both old and new protocols yield NC cells of equal identity.  相似文献   

9.
Over the past two decades, regenerative therapies using stem cell technologies have been developed for various neurological diseases. Although stem cell therapy is an attractive option to reverse neural tissue damage and to recover neurological deficits, it is still under development so as not to show significant treatment effects in clinical settings. In this review, we discuss the scientific and clinical basics of adult neural stem cells (aNSCs), and their current developmental status as cell therapeutics for neurological disease. Compared with other types of stem cells, aNSCs have clinical advantages, such as limited proliferation, inborn differentiation potential into functional neural cells, and no ethical issues. In spite of the merits of aNSCs, difficulties in the isolation from the normal brain, and in the in vitro expansion, have blocked preclinical and clinical study using aNSCs. However, several groups have recently developed novel techniques to isolate and expand aNSCs from normal adult brains, and showed successful applications of aNSCs to neurological diseases. With new technologies for aNSCs and their clinical strengths, previous hurdles in stem cell therapies for neurological diseases could be overcome, to realize clinically efficacious regenerative stem cell therapeutics.  相似文献   

10.
Stem cells are cells specialized cell, capable of renewing themselves through cell division and can differentiate into multi-lineage cells. These cells are categorized as embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and adult stem cells. Mesenchymal stem cells (MSCs) are adult stem cells which can be isolated from human and animal sources. Human MSCs (hMSCs) are the non-haematopoietic, multipotent stem cells with the capacity to differentiate into mesodermal lineage such as osteocytes, adipocytes and chondrocytes as well ectodermal (neurocytes) and endodermal lineages (hepatocytes). MSCs express cell surface markers like cluster of differentiation (CD)29, CD44, CD73, CD90, CD105 and lack the expression of CD14, CD34, CD45 and HLA (human leucocyte antigen)-DR. hMSCs for the first time were reported in the bone marrow and till now they have been isolated from various tissues, including adipose tissue, amniotic fluid, endometrium, dental tissues, umbilical cord and Wharton''s jelly which harbours potential MSCs. hMSCs have been cultured long-term in specific media without any severe abnormalities. Furthermore, MSCs have immunomodulatory features, secrete cytokines and immune-receptors which regulate the microenvironment in the host tissue. Multilineage potential, immunomodulation and secretion of anti-inflammatory molecules makes MSCs an effective tool in the treatment of chronic diseases. In the present review, we have highlighted recent research findings in the area of hMSCs sources, expression of cell surface markers, long-term in vitro culturing, in vitro differentiation potential, immunomodulatory features, its homing capacity, banking and cryopreservation, its application in the treatment of chronic diseases and its use in clinical trials.  相似文献   

11.
The ability to differentiate mouse embryonic stem cells (ESC) to neural progenitors allows the study of the mechanisms controlling neural specification as well as the generation of mature neural cell types for further study. In this protocol we describe a method for the differentiation of ESC to neural progenitors using serum-free, monolayer culture. The method is scalable, efficient and results in production of ~70% neural progenitor cells within 4 - 6 days. It can be applied to ESC from various strains grown under a variety of conditions. Neural progenitors can be allowed to differentiate further into functional neurons and glia or analyzed by microscopy, flow cytometry or molecular techniques. The differentiation process is amenable to time-lapse microscopy and can be combined with the use of reporter lines to monitor the neural specification process. We provide detailed instructions on media preparation and cell density optimization to allow the process to be applied to most ESC lines and a variety of cell culture vessels.  相似文献   

12.
Functional synaptogenesis and network emergence are signature endpoints of neurogenesis. These behaviors provide higher-order confirmation that biochemical and cellular processes necessary for neurotransmitter release, post-synaptic detection and network propagation of neuronal activity have been properly expressed and coordinated among cells. The development of synaptic neurotransmission can therefore be considered a defining property of neurons. Although dissociated primary neuron cultures readily form functioning synapses and network behaviors in vitro, continuously cultured neurogenic cell lines have historically failed to meet these criteria. Therefore, in vitro-derived neuron models that develop synaptic transmission are critically needed for a wide array of studies, including molecular neuroscience, developmental neurogenesis, disease research and neurotoxicology. Over the last decade, neurons derived from various stem cell lines have shown varying ability to develop into functionally mature neurons. In this review, we will discuss the neurogenic potential of various stem cells populations, addressing strengths and weaknesses of each, with particular attention to the emergence of functional behaviors. We will propose methods to functionally characterize new stem cell-derived neuron (SCN) platforms to improve their reliability as physiological relevant models. Finally, we will review how synaptically active SCNs can be applied to accelerate research in a variety of areas. Ultimately, emphasizing the critical importance of synaptic activity and network responses as a marker of neuronal maturation is anticipated to result in in vitro findings that better translate to efficacious clinical treatments.  相似文献   

13.
Since the generation of the first induced pluripotent stem (iPS) cells, the stem cell field has grown at an unparalleled pace. Today, these cells have become the major tools in the advancement of personalized medicine. Here we review the experiments that lead to their discovery as well as the latest developments in iPS cell biology. By emphasizing the current applications and limitations of induced pluripotency, we discuss how iPS cells are shaping innovation in personalized therapies. In addition, we analyze the major landmarks in direct lineage reprogramming, a potentially faster alternative to the use of iPS cells in therapy. Finally, we present the current progress in disease modeling and future directions of the treatment of genetic disorders.  相似文献   

14.
Induced pluripotent stem cell (iPSC)-based technologies offer an unprecedented opportunity to perform high-throughput screening of novel drugs for neurological and neurodegenerative diseases. Such screenings require a robust and scalable method for generating large numbers of mature, differentiated neuronal cells. Currently available methods based on differentiation of embryoid bodies (EBs) or directed differentiation of adherent culture systems are either expensive or are not scalable. We developed a protocol for large-scale generation of neuronal stem cells (NSCs)/early neural progenitor cells (eNPCs) and their differentiation into neurons. Our scalable protocol allows robust and cost-effective generation of NSCs/eNPCs from iPSCs. Following culture in neurobasal medium supplemented with B27 and BDNF, NSCs/eNPCs differentiate predominantly into vesicular glutamate transporter 1 (VGLUT1) positive neurons. Targeted mass spectrometry analysis demonstrates that iPSC-derived neurons express ligand-gated channels and other synaptic proteins and whole-cell patch-clamp experiments indicate that these channels are functional. The robust and cost-effective differentiation protocol described here for large-scale generation of NSCs/eNPCs and their differentiation into neurons paves the way for automated high-throughput screening of drugs for neurological and neurodegenerative diseases.  相似文献   

15.
16.
Reprograming somatic cells using exogenetic gene expression represents a groundbreaking step in regenerative medicine. Induced pluripotent stem cells(i PSCs) are expected to yield novel therapies with the potential to solve many issues involving incurable diseases. In particular, applying i PSCs clinically holds the promise of addressing the problems of immune rejection and ethics that have hampered the clinical applications of embryonic stem cells. However, as i PSC research has progressed, new problems have emerged that need to be solved before the routine clinical application of i PSCs can become established. In this review, we discuss the current technologies and future problems of human i PSC generation methods for clinical use.  相似文献   

17.
Neural stem cells are the most immature progenitor cells in the nervous system and are defined by their ability to self-renew by symmetric division as well as to give rise to more mature progenitors of all neural lineages by asymmetric division (multipotentiality). The interest in neural stem cells has been growing in the past few years following the demonstration of their presence also in the adult nervous system of several mammals, including humans. This observation implies that the brain, once thought to be entirely post-mitotic, must have at least a limited capacity for self-renewal. This raises the possibility that the adult nervous system may still have the necessary plasticity to undergo repair of inborn defects and acquired injuries, if ways can be found to exploit the potential of neural stem cells (either endogenous or derived from other sources) to replace damaged or defective cells. A full understanding of the molecular mechanisms regulating generation and maintenance of neural stem cells, their choice between different differentiation programmes and their migration properties is essential if these cells are to be used for therapeutic applications. Here, we summarize what is currently known of the genes and the signalling pathways involved in these mechanisms.  相似文献   

18.
Brain diseases affect 1 in 6 people worldwide. These diseases range from acute neurological conditions such as stroke to chronic neurodegenerative disorders such as Alzheimer’s disease. Recent advancements in tissue-engineered brain disease models have overcome many of the different shortcomings associated with the various animal models, tissue culture models, and epidemiologic patient data that are commonly used to study brain disease. One innovative method by which to model human neurological disease is via the directed differentiation of human pluripotent stem cells (hPSCs) to neural lineages including neurons, astrocytes, and oligodendrocytes. Three-dimensional models such as brain organoids have also been derived from hPSCs, offering more physiological relevance due to their incorporation of various cell types. As such, brain organoids can better model the pathophysiology of neural diseases observed in patients. In this review, we will emphasize recent developments in hPSC-based tissue culture models of neurological disorders and how they are being used to create neural disease models.  相似文献   

19.
Carter RL  Chan AW 《遗传学报》2012,39(6):253-259
Pluripotent cellular models have shown great promise in the study of a number of neurological disorders.Several advantages of using a stem cell model include the potential for cells to derive disease relevant neuronal cell types,providing a system for researchers to monitor disease progression during neurogenesis,along with serving as a platform for drug discovery.A number of stem cell derived models have been employed to establish in vitro research models of Huntington’s disease that can be used to investigate cellular pathology and screen for drug and cell-based therapies.Although some progress has been made,there are a number of challenges and limitations that must be overcome before the true potential of this research strategy is achieved.In this article we review current stem cell models that have been reported,as well as discuss the issues that impair these studies.We also highlight the prospective application of Huntington’s disease stem cell models in the development of novel therapeutic strategies and advancement of personalized medicine.  相似文献   

20.
成人中枢神经系统存在着一定量的神经干细胞,其具有两大关键能力;自我更新和多向分化潜能。缺血性脑卒中是一种由于由脑血流的缺失或减少引起的脑动脉闭塞,进而导致脑组织梗死的脑血管疾病。虽然对于脑损伤的药物治疗已经取得了一定的成果,但目前以干细胞为基础的治疗方法仍成为了研究热点。无论是内源性神经干细胞还是外源性神经干细胞移植均可在脑损伤后向远端损伤区迁移并分化成新的神经细胞,从而在中枢神经系统疾病尤其是脑梗死后进行组织修复和功能恢复。因此在这篇综述中,我们主要探讨不同类型的干细胞对脑梗死介导的脑损伤的应用潜能,对比不同类型干细胞对缺血性脑卒中的治疗优缺点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号