首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular interactions between insulin receptors and MHC antigens were investigated in human B cells. Two B lymphoblastoid cell lines, IM-9 and 526, chosen for their high insulin binding capacity, were found to express 15,000 and 25,000 insulin receptors per cell, respectively. Insulin receptors were labeled with a 125I-photoreactive insulin analogue, and all other surface proteins by lactoperoxidase-catalyzed radioiodination. Neighbor proteins were cross-linked with a cleavable homobifunctional reagent dithio-bis-(succinimidyl propionate) (DSP) and solubilized before immunoprecipitation by anti-HLA monoclonal antibodies. Gel analysis of the precipitated proteins showed that 90% of insulin receptors precipitable by anti-insulin receptor antibodies were precipitated by anti-class I antibodies (anti-heavy chain and anti-beta 2-microglobulin) after cross-linking with 2 mM DSP. In neither IM-9- nor 526 cells could HLA antigens be precipitated by anti-insulin receptor antibodies, suggesting that the concentration of class I antigens largely exceeds the concentration of insulin receptors at the cell surface. In 526 lymphocytes, class I MHC antigens were also found to adjoin class II antigens, since both molecules could be coprecipitated with anti-HLA A, B, C and with anti-HLA-DR antibodies after chemical cross-linking. Down-regulation of insulin receptors by chronic exposure of IM-9 cells to insulin did not affect the amount of MHC molecules present on the cell surface, and conversely, class I MHC molecules were internalized in 526 cells irrespective of the presence of insulin. These results thus show that insulin receptors and MHC antigens form multimolecular complexes in the plasma membrane of cultured human B cells. These interactions, which do not appear to influence the regulation of these proteins on the cell surface, may be involved in the mechanism of hormone signaling.  相似文献   

2.
We have developed a radioimmunoassay for human insulin receptor. Serum from a patient with Type B severe insulin resistance was used as anti-insulin receptor antiserum. Pure human placental insulin receptor was used as reference preparation and 125I labeled pure insulin receptor as trace. The radioimmunoassay was sensitive (limit of detection less than 17 fmol), reproducible (inter and intra-assay coefficients of variation 12.5% and 1.6% respectively) and specific (no crossreactivity with pure placental IGF-1 receptor, insulin and glucagon). The anti-insulin receptor antibody was, however, able to differentiate between insulin receptor from human placenta and from rat liver. To determine the number of insulin binding sites per receptor, we measured insulin binding (by insulin binding assay) and insulin receptor mass (by radioimmunoassay) in solubilized aliquots from 5 human placentas. The molar ratio of insulin binding to receptor mass was 0.86 +/- 0.12 when binding was determined with monoiodinated 125I-Tyr A 14-insulin. It was 1.94 +/- 0.27 when randomly iodinated 125I-insulin was used. In conclusion, using a sensitive, reproducible and specific radioimmunoassay, we have measured insulin receptor mass independent of insulin binding. Our data are most compatible with binding of one insulin molecule per human placental insulin receptor.  相似文献   

3.
Affinity-purified insulin receptor was photoaffinity labeled with a cleavable radioactive insulin photoprobe. Exhaustive digestion of the labeled alpha-subunit with endoproteinase Glu-C produced a major radioactive fragment of 23 kDa as a part of the putative insulin-binding domain. This fragment could contain either residues 205-316 or 518-633 of the alpha-subunit. Rat hepatoma cells and Chinese hamster ovary cells were transfected with cDNA encoding a human insulin receptor mutant with a deletion of the cysteine-rich region spanning amino acid residues 124-319. Insulin binding by these cells was not increased in spite of high numbers of the mutant insulin receptors being expressed. A panel of monoclonal antibodies which was specific for the receptor alpha-subunit and inhibited insulin binding immunoprecipitated the photolabeled 23-kDa receptor fragment but not the receptor mutant. A synthetic peptide containing residues 243-251 was specifically bound by agarose-insulin beads. We therefore suggest that the 23-kDa fragment contains residues 205-316, and that insulin binding occurs, in part, in the cysteine-rich region of the alpha-subunit.  相似文献   

4.
We have produced and characterized the binding properties of three structural analogs of human insulin-like growth factor I (hIGF-I). These analogs are [1-62]hIGF-I, an analog lacking the carboxyl-terminal 8-amino acid D region of hIGF-I; [1-27, Gly4, 38-70]hIGF-I, an analog in which residues 28-37 of the C region of hIGF-I are replaced by a 4-reside glycine bridge; and [1-27,Gly4,38-62]hIGF-I, an analog with the C region glycine replacement and a D region deletion. The removal of the D region of hIGF-I has little effect on binding to the type 1 and type 2 insulin-like growth factor (IGF) receptors. [1-62]hIGF-I has 2-fold higher affinity for the insulin receptor and 4-fold higher affinity for IGF serum-binding proteins. The replacement of the C region of hIGF-I with a four-glycine span results in a 30-fold loss of affinity for the type 1 IGF receptor. However this analog has near normal affinity for the type 2 IGF receptor, the insulin receptor, and IGF serum-binding proteins. Incorporating the C region glycine replacement and the D region deletion into one analog does not affect binding to either the type 2 receptor or to IGF serum-binding proteins. As predicted from the single deletion analogs [1-27,Gly4,38-62]hIGF-I has reduced affinity for the type 1 IGF receptor (approximately 40-fold) and increased affinity for the insulin receptor (5-fold). These data indicate that determinants in the C region of hIGF-I are involved in maintaining high affinity binding to the type 1 IGF receptor and that neither the C region nor the D region are required for high affinity binding to the type 2 IGF receptor or to IGF serum-binding proteins.  相似文献   

5.
A radioactive photosensitive insulin analogue, 125I-N epsilon B29-(4-azido-2-nitrophenyl-acetyl)insulin, was covalently bound to the receptors of isolated rat adipocytes by irradiation with UV light. This caused a stimulation of lipogenesis. The relative potency of the covalent complexes to that of normal reversible complexes was calculated by comparing the amounts of radioactivity required to be covalently or reversibly bound by adipocytes to cause the same levels of stimulation. For several different occupancies , this relative potency was constant at 50 +/- 3%. Previous studies had shown that the relative potency of covalently bound 125I-N alpha B2-(4-azido-2- nitrophenylacetyl )des- PheB1 -insulin was only 25 +/- 4% under identical conditions. This demonstrates that the sites of crosslinking have a marked effect on the potency of the covalent hormone-receptor complex. It appears that attachment through the C-terminus of the B-chain leads to a better stabilization of the biologically active form than linking through the more flexible N-terminus.  相似文献   

6.
The immunoglobulin fraction of a polyclonal anti-insulin receptor antibody (B-10) derived from a patient with severe insulin resistance and acanthosis nigricans was tested for its ability to activate the protein kinase activity of the insulin receptor and to mimic insulin action in Chinese hamster ovary cells expressing either wild type or kinase-deficient human insulin receptors. This antiserum had previously been reported to be insulinmimetic without activating the insulin receptor protein tyrosine kinase. Antibody B-10 bound to both wild type and mutant human insulin receptors, but it induced receptor down-regulation and stimulated hexose transport and thymidine incorporation into DNA only in cells expressing the wild type receptor. Furthermore, this antibody activated the kinase activity of the wild type insulin receptor in intact cells and in vitro. It is likely, therefore, that the biological activities of antibody B-10, like those of insulin, depend upon the protein tyrosine kinase activity of the insulin receptor.  相似文献   

7.
A case of a 19-year-old, non-obese female with insulin resistant diabetes mellitus and polycystic ovary syndrome was reported. The maximal insulin requirement attained 360 units per day, but a satisfactory control of diabetes did not follow. The patient's serum contained not only anti-insulin antibodies, but also possible anti-insulin receptor antibodies which were demonstrated by the 125I-insulin binding test using insulin receptors derived from human placental plasma membrane. The insulin resistance in this case was assumed to be caused primarily by possible blocking antibodies to insulin receptors and partly by anti-insulin antibodies because of the following observations. First, high serum free insulin (165 microunits/ml) without hypoglycemia indicates the presence of insulin resistance due to other factors than antiinsulin antibodies. Second, the titer of 125I-insulin binding capacity of serum was not unusually higher than those seen in chronically insulin-treated diabetics. Third, immunologically heterospecies insulin (fish insulin) was also ineffective. The clinical features such as absence of ketoacidosis and association with polycystic ovary syndrome resemble those of an unique diabetic syndrome reported previously though acanthosis nigricans and endogenous hyperinsulinemia were not found in this case. Her insulin resistance remitted spontaneously and over the next 18 months' observation, her diabetes remained regulated without insulin therapy.  相似文献   

8.
We studied the effects of insulin on the incorporation of 32Pi into phospholipids in rat fat cells. When the cells were treated with insulin, a new radioactive phospholipid was detected on thin layer chromatography. The substance migrated slower than phosphatidylinositol 4,5-bisphosphate and was hardly detectable in the absence of insulin. This effect of insulin was both time- and dose-dependent with half-maximal stimulation at 120 microU/ml. Pretreatment of insulin with anti-insulin antibody or the cells with anti-insulin receptor antibody inhibited the effect of insulin. The product of phosphatidylinositol 4-phosphate hydrolyzed by phospholipase A2 was coincided with the substance on thin layer chromatography. Quinacrine inhibited the formation of the substance in a dose-dependent manner. These results suggested that insulin stimulates the generation of lysophosphatidylinositol 4-phosphate through the insulin-receptor interaction.  相似文献   

9.
A hybridoma-producing monoclonal antibody blocking the binding of human IgE to lymphocytes Fc receptor (Fc epsilon R) was established by the fusion of murine myeloma cells. P3X63.653.Ag8, with BALB/c spleen cells immunized with Fc epsilon R(+) human B lymphoblastoid cell line cells, RPMI1788. A clone of the hybridoma (H107) produced a monoclonal IgG2b antibody that inhibited the rosette formation of Fc epsilon R(+) human B lymphoblastoid cell line cells (RPMI1788, RPMI8866, CESS, Dakiki, and IM9) with fixed ox red blood cells (ORBC) conjugated with human IgE (IgE-ORBC). In contrast, the rosette formation with IgG-conjugated ORBC (IgG-ORBC) on Fc gamma R(+), Fc epsilon R(-) Daudi cells were not affected by the H107 antibodies. A close association of Fc epsilon R and the antigenic determinant recognized by H107 antibody was suggested by the following results. First, the bindings of 125I-labeled IgE (125I-IgE) or 125I-labeled H107 IgG2b antibody (125I-H107) to RPMI8866 cells were inhibited by cold human IgE and H107 IgG2b but not by other classes of human Ig (IgA and IgG), MPC11 IgG2b, or unrelated monoclonal antibodies. Second, H107 antibody reacted with Fc epsilon R(+) B cell lines but not with Fc epsilon R(-) B cell lines as determined by an indirect immunofluorescence. Third, Fc epsilon R(+) cells were depleted by the incubation in the dish coated with H107 antibody or IgE but not in the dish coated with unrelated antibodies. Finally, there was a correlation between the increase of Fc epsilon R(+) cells and that of H107(+) cells in the peripheral blood lymphocytes of the patients with atopic dermatitis. The surface antigens on Fc epsilon R(+) RPMI8866 cells recognized by H107 antibodies had the molecular size of 45,000 as determined by immunoprecipitation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis.  相似文献   

10.
Insulin was tritiated by exposure to tritium gas activated by microwave radiation. 3H-insulin competed with 125I-insulin for binding to cultured human lymphocytes and to anti-insulin antibody to the same extent as did native insulin. The affinity constant for the binding of 3H-insulin to specific receptors on cultured human lymphocytes was 0.48 × 109 M?1 (SD-0.06). The affinity constant for the binding of 125I-insulin was 0.57 × 109 M?1 (SD=0.23). As was the case with 125I-insulin, the Scatchard plot of the binding of 3H-insulin to human lymphocytes was curvilinear, suggesting the presence of a heterogeneous population of receptors, or of a homogeneous population of receptors that exhibit negative cooperativity. The similarity observed between 3H-insulin and 125I-insulin helps refute the argument that distortion of the insulin molecule caused by introduction of an iodine atom may interfere with its binding to insulin receptors.  相似文献   

11.
Human insulin-like growth factors I and II (hIGF-I, hIGF-II) are potent stimulators of cell and growth processes. They display high sequence similarity to both the A and B chains of insulin but contain an additional connecting C-domain, which reflects their secretion without specific packaging or precursor conversion. IGFs also have an extension at the C-terminus known as the D-domain. This paper describes four homologous hIGF-1 structures, obtained from crystals grown in the presence of the detergent SB12, which reveal additional detail in the C- and D-domains. Two different detergent binding modes observed in the crystals may reflect different hIGF-I biological properties such as the interaction with IGF binding proteins and self-aggregation. While the helical core of hIGF-I is very similar to that in insulin, there are distinct differences in the region of hIGF-I corresponding to the insulin B chain C-terminus, residues B25-B30. In hIGF-I, these residues (24-29) and the following C-domain form an extensive loop protruding 20 A from the core, which results in a substantially different conformation for the receptor binding epitope in hIGF-I compared to insulin. One notable feature of the structures presented here is demonstration of peptide-bond cleavage between Ser35 and Arg36 resulting in an apparent gap between residues 35 and 39. The equivalent region of proinsulin is involved in hormone processing demanding a reassessment of the structural integrity of hIGF-I in relation to its biological function.  相似文献   

12.
Internalization of the human insulin receptor requires the activation by insulin of the intrinsic kinase of the receptor. However, even in the absence of kinase activation, insulin receptors slowly enter the cells. In the present study, we addressed the question of this insulin-independent pathway of internalization. To that end, we traced insulin receptor internalization with a monoclonal antibody (mAb 83-14) directed against the alpha-subunit of the human insulin receptor. Internalization of this antibody was followed in Chinese hamster ovary (CHO) cells transfected with either normal (CHO.HIRC2) or kinase-deficient (CHO.A1018) human insulin receptors. The internalization rate of 125I-mAb 83-14 was comparable in CHO cells expressing kinase-active or kinase-inactive receptors and was similar to that observed for 125I-insulin in CHO.A1018 cells. Moreover, in CHO.HIRC2 cells, the internalization of 125I-mAb 83-14 was identical with that of its 125I-Fab fragments. Thus, mAb 83-14 represents an appropriate tool to study the constitutive internalization of the insulin receptor. Internalization of insulin receptors tagged with 125I-mAb 83-14 was unaffected by cytochalasin B, which excluded a macropinocytotic process. By contrast, internalization was sensitive to hypertonia, which abrogates clathrin-coated pits-mediated endocytosis. The implication of clathrin-coated pits in this internalization process was directly demonstrated by quantitative electron microscopic autoradiography, which showed that 125I-mAb 83-14 present on the nonvillous domain of the cell surface preferentially associate with clathrin-coated pits at all time points.  相似文献   

13.
The insulin receptor from rat skeletal muscle was characterized. Treatment of muscle membranes with the photoactive insulin analog, 125I[N-epsilonB29-monoazidobenzoyl]-insulin revealed a single protein band of 135,000 Da, the alpha subunit. Iodination of total membrane protein followed by Triton X-100 solubilization and immunoprecipitation demonstrated the presence of a protein band of 90,000 Da, the beta subunit, together with a protein band of 190,000 Da, which may be the receptor precursor. In partially purified receptor preparations, the beta subunit exhibited dose-dependent, insulin-stimulated phosphorylation with incorporation of phosphate solely into tyrosine residues, which was also observed in the 190,000-Da receptor precursor. Purified plasma membranes contained a large amount of insulin-degrading activity which had to be inactivated prior to performing insulin-binding studies. If degradation of insulin was not prevented, apparent enhanced binding in the presence of unlabeled insulin was observed.  相似文献   

14.
The cells of the IM-9 human lymphocyte-derived line contain a sub-population of insulin-binding sites whose immunological and hormone-binding characteristics closely resemble those of the atypical insulin-binding sites of human placenta. These binding sites, which have moderately high affinity for multiplication-stimulating activity [MSA, the rat homologue of insulin-like growth factor (IGF) II] and IGF-I, are identified on IM-9 cells by 125I-MSA binding. They account for approximately 30% of the total insulin-receptor population, and do not react with a monoclonal antibody to the type I IGF receptor (alpha IR-3). The relative concentrations of unlabelled insulin, MSA and IGF-I required to displace 50% of 125I-MSA from these binding sites (1:4.7:29 respectively) are maintained for cells, particulate membranes, Triton-solubilized membranes precipitated either by poly(ethylene glycol) or a polyclonal antibody (B-10) to the insulin receptor, and receptors purified by insulin affinity chromatography. Because the atypical insulin/MSA-binding sites outnumber the type I IGF receptors in IM-9 cells by approximately 10-fold, they also compete with the latter receptors for 125I-IGF-I binding. Thus 125I-IGF-I binding to IM-9 cells is inhibited by moderately low concentrations of insulin (relative potency ratios for insulin compared with IGF-I are approx. 1/14 to 1/4) and is partially displaced (65-80%) by alpha IR-3. When type I IGF receptors are blocked by alpha IR-3 or removed by B-10 immunoprecipitation or insulin affinity chromatography, the hormone-displacement patterns for 125I-IGF-I binding resemble those of the atypical insulin/MSA-binding sites.  相似文献   

15.
Four structural analogs of human insulin-like growth factor I (hIGF-I) have been prepared by site-directed mutagenesis of a synthetic IGF-I gene and subsequent expression and purification of the mutant protein from the conditioned media of transformed yeast. [Phe-1,Val1,Asn2, Gln3,His4,Ser8, His9,Glu12,Tyr15,Leu16]IGF-I (B-chain mutant), in which the first 16 amino acids of hIGF-I were replaced with the first 17 amino acids of the B-chain of insulin, has greater than 1,000-, 100-, and 2-fold reduced potency for human serum binding proteins, the rat liver type 2 IGF receptor, and the human placental type 1 IGF receptor, respectively. The B-chain mutant also has 4-fold increased affinity for the human placental insulin receptor. [Gln3,Ala4]IGF-I has 4-fold reduced affinity for human serum binding proteins, but is equipotent to hIGF-I at the types 1 and 2 IGF and insulin receptors. [Tyr15,Leu16]IGF-I has 4-fold reduced affinity for human serum binding proteins and 10-fold increased affinity for the insulin receptor. This peptide is also equipotent to hIGF-I at the types 1 and 2 IGF receptors. The peptide in which these four-point mutations are combined, [Gln3,Ala4,Tyr15,Leu16]IGF-I, has 600-fold reduced affinity for the serum binding proteins. This peptide has 10-fold increased potency for the insulin receptor, but is equipotent to hIGF-I at the types 1 and 2 IGF receptors. All four of these mutants stimulate DNA synthesis in the rat vascular smooth muscle cell line A10 with potencies reflecting their potency at the type 1 IGF receptor. These studies identify some of the domains of hIGF-I which are responsible for maintaining high affinity binding with the serum binding protein and the type 2 IGF receptor. In addition, these peptides will be useful in defining the role of the type 2 IGF receptor and serum binding proteins in the physiological actions of hIGF-I.  相似文献   

16.
A highly sensitive enzyme immunoassay of anti-insulin antibodies in guinea pig serum is described. Guinea pig anti-insulin serum was diluted to various extents with nonspecific guinea pig serum and incubated with insulin. After incubation, free insulin was separated from insulin-anti-insulin antibody complex by treatment with dextran-charcoal. Anti-insulin antibodies in the complex were dissociated from insulin by incubation with 0.23 M HCl and inactivated. The amount of dissociated insulin was measured by sandwich enzyme immunoassay using anti-insulin IgG-coated polystyrene balls and affinity-purified anti-insulin Fab'-horseradish peroxidase conjugate. The detection limit of anti-insulin antibodies in guinea pig serum was 6.7 pg/assay or 150 ng/liter of serum. The present enzyme immunoassay was 10,000-fold more sensitive than the previously described enzyme immunoassay, in which insulin-coated polystyrene balls were incubated with diluted guinea pig anti-insulin serum and subsequently with rabbit (anti-guinea pig IgG) Fab'-horseradish peroxidase conjugate.  相似文献   

17.
We have reported previously that insulin causes a complete but reversible desensitization to insulin action in rat hepatoma HTC cells in tissue culture, and that this insulin resistance is mediated by postbinding mechanisms rather than receptor down-regulation (Heaton, J. H., and Gelehrter, T. D. (1981) J. Biol. Chem. 256, 12257-12262). We report here that insulin causes a similar desensitization to the induction of tyrosine aminotransferase by the insulin-like growth factors IGF-I and IGF-II isolated from human plasma, and by multiplication-stimulating activity, the rat homologue of IGF-II. The results of both competition-binding studies and affinity cross-linking experiments indicate that insulin-like growth factors (IGFs) bind primarily to IGF receptors rather than to insulin receptors. The low concentrations at which these factors induce transaminase is consistent with their acting primarily via IGF receptors. This is confirmed by experiments utilizing anti-insulin receptor antibody which both inhibits 125I-insulin binding and shifts the concentration dependence of insulin induction of tyrosine aminotransferase to the right. This same immunoglobulin does not inhibit 125I-multiplication-stimulating activity binding and only minimally inhibits 125I-IGF-I binding. Anti-insulin receptor antibody also does not significantly shift the concentration dependence for the IGFs, suggesting that IGFs induce transaminase by acting via IGF receptors. Although insulin down regulates insulin receptors, it does not decrease IGF-I or IGF-II binding. We conclude that insulin causes desensitization of HTC cells to IGFs by affecting a postbinding step in IGF action, which may be common to the actions of both insulin and insulin-like growth factors.  相似文献   

18.
Endothelial cells were cultured from bovine fat capillaries, aortae and pulmonary arteries and their interactions with 125I-IGF-I, 125I-MSA (an IGF-II), 125I-insulin and the corresponding unlabeled hormones were evaluated. Each endothelial culture showed similar binding parameters. With 125I-insulin, unlabeled insulin competed with high affinity while IGF-I and MSA were approximately 1% as potent. With 125I-MSA, MSA was greater than or equal to IGF-I in potency and insulin did not compete for binding. Using 125I-IGF-I, IGF-I was greater than or equal to MSA whereas insulin decreased 125I-IGF-I binding by up to 72%. Exposing cells to anti-insulin receptor antibodies inhibited 125I-insulin binding by greater than 90%, did not change 125I-MSA binding, while 125I-IGF-I binding was decreased by 30-44%, suggesting overlapping antigenic determinants between IGF-I and insulin receptors that were not present on MSA receptors. We conclude that cultured capillary and large vessel endothelial cells have distinct receptors for insulin, IGF-I and MSA (IGF-II).  相似文献   

19.
20.
Insulin receptors in various brain regions (olfactory tubercle, hippocampus, and hypothalamus) were photoaffinity labeled using the photoreactive analogue of insulin B2(2-nitro,4-azidophenylacetyl)-des-PheB1-insulin (NAPA-DP-insulin). A protein with an apparent Mr of 400,000 was specifically labeled with 125I-NAPA-DP-insulin in all three brain regions. When radiolabeled proteins were reduced with dithiothreitol prior to electrophoresis, specific labeling occurred predominantly in a protein with an apparent Mr of 115,000 and to a much lesser extent in a protein with an apparent Mr of 83,000. The size of these receptor proteins, based on their electrophoretic mobilities, was consistently smaller than insulin receptor proteins in adipocytes. The covalent labeling of insulin receptors in brain by 125I-NAPA-DP-insulin was not blocked by anti-insulin receptor antiserum. Additionally, in contrast to effects observed in peripheral target tissues, this antisera did not inhibit the binding of 125I-insulin to brain membranes. Neuraminidase treatment resulted in an increase in the electrophoretic mobilities of insulin receptor subunits in adipocytes, but, had no effect on receptor subunits in brain. Solubilized insulin receptors from adipocytes were retained by wheat germ agglutinin columns and specifically eluted with N-acetylglucosamine. In contrast, solubilized insulin receptors from brain did not bind to these columns. The results from this study indicate that structural differences, including molecular weight, antigenicity, and carbohydrate composition exist between insulin receptors in brain and peripheral target tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号