首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To understand low temperature and osmotic stress signaling in plants, we isolated and characterized two allelic Arabidopsis mutants, los5-1 and los5-2, which are impaired in gene induction by cold and osmotic stresses. Expression of RD29A-LUC (the firefly luciferase reporter gene under the control of the stress-responsive RD29A promoter) in response to cold and salt/drought is reduced in the los5 mutants, but the response to abscisic acid (ABA) remains unaltered. RNA gel blot analysis indicates that the los5 mutation reduces the induction of several stress-responsive genes by cold and severely diminishes or even completely blocks the induction of RD29A, COR15, COR47, RD22, and P5CS by osmotic stresses. los5 mutant plants are compromised in their tolerance to freezing, salt, or drought stress. los5 plants are ABA deficient, as indicated by increased transpirational water loss and reduced accumulation of ABA under drought stress in the mutant. A comparison with another ABA-deficient mutant, aba1, reveals that the impaired low-temperature gene regulation is specific to the los5 mutation. Genetic tests suggest that los5 is allelic to aba3. Map-based cloning reveals that LOS5/ABA3 encodes a molybdenum cofactor (MoCo) sulfurase. MoCo sulfurase catalyzes the generation of the sulfurylated form of MoCo, a cofactor required by aldehyde oxidase that functions in the last step of ABA biosynthesis in plants. The LOS5/ABA3 gene is expressed ubiquitously in different plant parts, and the expression level increases in response to drought, salt, or ABA treatment. Our results show that LOS5/ABA3 is a key regulator of ABA biosynthesis, stress-responsive gene expression, and stress tolerance.  相似文献   

2.
RPK1 (receptor-like protein kinase 1) localizes to the plasma membrane and functions as a regulator of abscisic acid (ABA) signaling in Arabidopsis. In our current study, we investigated the effect of RPK1 disruption and overproduction upon plant responses to drought stress. Transgenic Arabidopsis overexpressing the RPK1 protein showed increased ABA sensitivity in their root growth and stomatal closure and also displayed less transpirational water loss. In contrast, a mutant lacking RPK1 function, rpk1-1, was found to be resistant to ABA during these processes and showed increased water loss. RPK1 overproduction in these transgenic plants thus increased their tolerance to drought stress. We performed microarray analysis of RPK1 transgenic plants and observed enhanced expression of several stress-responsive genes, such as Cor15a, Cor15b, and rd29A, in addition to H2O2-responsive genes. Consistently, the expression levels of ABA/stress-responsive genes in rpk1-1 had decreased compared with wild type. The results suggest that the overproduction of RPK1 enhances both the ABA and drought stress signaling pathways. Furthermore, the leaves of the rpk1-1 plants exhibit higher sensitivity to oxidative stress upon ABA-pretreatment, whereas transgenic plants overproducing RPK1 manifest increased tolerance to this stress. Our current data suggest therefore that RPK1 overproduction controls reactive oxygen species homeostasis and enhances both water and oxidative stress tolerance in Arabidopsis.  相似文献   

3.
Nitric oxide (NO) has been shown to play an important role in the plant response to biotic and abiotic stresses in Arabidopsis mutants with lower or higher levels of endogenous NO. The exogenous application of NO donors or scavengers has also suggested an important role for NO in plant defense against environmental stress. In this study, rice plants under drought and high salinity conditions showed increased nitric oxide synthase (NOS) activity and NO levels. Overexpression of rat neuronal NO synthase (nNOS) in rice increased both NOS activity and NO accumulation, resulting in improved tolerance of the transgenic plants to both drought and salt stresses. nNOS-overexpressing plants exhibited stronger water-holding capability, higher proline accumulation, less lipid peroxidation and reduced electrolyte leakage under drought and salt conditions than wild rice. Moreover, nNOS-overexpressing plants accumulated less H2O2, due to the observed up-regulation of OsCATA, OsCATB and OsPOX1. In agreement, the activities of CAT and POX were higher in transgenic rice than wild type. Additionally, the expression of six tested stress-responsive genes including OsDREB2A, OsDREB2B, OsSNAC1, OsSNAC2, OsLEA3 and OsRD29A, in nNOS-overexpressing plants was higher than that in the wild type under drought and high salinity conditions. Taken together, our results suggest that nNOS overexpression suppresses the stress-enhanced electrolyte leakage, lipid peroxidation and H2O2 accumulation, and promotes proline accumulation and the expression of stress-responsive genes under stress conditions, thereby promoting increased tolerance to drought and salt stresses.  相似文献   

4.
5.
Dolichols are long-chain unsaturated polyisoprenoids with multiple cellular functions, such as serving as lipid carriers of sugars used for protein glycosylation, which affects protein trafficking in the endoplasmic reticulum. The biological functions of dolichols in plants are largely unknown. We isolated an Arabidopsis thaliana mutant, lew1 (for leaf wilting1), that showed a leaf-wilting phenotype under normal growth conditions. LEW1 encoded a cis-prenyltransferase, which when expressed in Escherichia coli catalyzed the formation of dolichol with a chain length around C(80) in an in vitro assay. The lew1 mutation reduced the total plant content of main dolichols by approximately 85% and caused protein glycosylation defects. The mutation also impaired plasma membrane integrity, causing electrolyte leakage, lower turgor, reduced stomatal conductance, and increased drought resistance. Interestingly, drought stress in the lew1 mutant induced higher expression of the unfolded protein response pathway genes BINDING PROTEIN and BASIC DOMAIN/LEUCINE ZIPPER60 as well as earlier expression of the stress-responsive genes RD29A and COR47. The lew1 mutant was more sensitive to dark treatment, but this dark sensitivity was suppressed by drought treatment. Our data suggest that LEW1 catalyzes dolichol biosynthesis and that dolichol is important for plant responses to endoplasmic reticulum stress, drought, and dark-induced senescence in Arabidopsis.  相似文献   

6.
7.

Background

Calcium-binding proteins that contain EF-hand motifs have been reported to play important roles in transduction of signals associated with biotic and abiotic stresses. To functionally characterize gens of EF-hand family in response to abiotic stress, an MtCaMP1 gene belonging to EF-hand family from legume model plant Medicago truncatula was isolated and its function in response to drought and salt stress was investigated by expressing MtCaMP1 in Arabidopsis.

Methodology/Principal Findings

Transgenic Arabidopsis seedlings expressing MtCaMP1exhibited higher survival rate than wild-type seedlings under drought and salt stress, suggesting that expression of MtCaMP1 confers tolerance of Arabidopsis to drought and salt stress. The transgenic plants accumulated greater amounts of Pro due to up-regulation of P5CS1 and down-regulation of ProDH than wild-type plants under drought stress. There was a less accumulation of Na+ in the transgenic plants than in WT plants due to reduced up-regulation of AtHKT1 and enhanced regulation of AtNHX1 in the transgenic plants compared to WT plants under salt stress. There was a reduced accumulation of H2O2 and malondialdehyde in the transgenic plants than in WT plants under both drought and salt stress.

Conclusions/Significance

The expression of MtCaMP1 in Arabidopsis enhanced tolerance of the transgenic plants to drought and salt stress by effective osmo-regulation due to greater accumulation of Pro and by minimizing toxic Na+ accumulation, respectively. The enhanced accumulation of Pro and reduced accumulation of Na+ under drought and salt stress would protect plants from water default and Na+ toxicity, and alleviate the associated oxidative stress. These findings demonstrate that MtCaMP1 encodes a stress-responsive EF-hand protein that plays a regulatory role in response of plants to drought and salt stress.  相似文献   

8.
9.
In this study we reported the isolation of a mutant in which the reporter pVP14-LUC was highly expressed in Arabidopsis. The gene expression of maize VP14 is closely correlated with the endogenous ABA levels, and the Arabidopsis homolog of VP14, AtNCED1, encoding an enzyme of ABA biosynthesis, was up-regulated, and high ABA level was detected in the mutant. Map-based cloning revealed that the mutated gene is a novel allele of the AMP1 (Altered Meristem Program 1) which encodes a glutamate carboxypeptidase that plays an important role in shoot apical meristem development and phytohormone homeostasis. We found that the mutant displayed obvious drought tolerance, being with more lateral roots, high seed germination under mannitol, increased ABA accumulation, and highly induced gene expression of RD29A. Using the approaches of artificial microRNA gene silencing in transgenic plants, three AMP1 down-regulated lines were obtained. The AMP1 down-regulated plants exhibited a low rate of water loss, decreased stomatal aperture, and enhanced drought tolerance. These results provide evidence demonstrating the regulatory function of AMP1 in plant drought tolerance and stress responsive gene expression.  相似文献   

10.
Xiong L  Ishitani M  Lee H  Zhu JK 《The Plant cell》2001,13(9):2063-2083
To understand low temperature and osmotic stress signaling in plants, we isolated and characterized two allelic Arabidopsis mutants, los5-1 and los5-2, which are impaired in gene induction by cold and osmotic stresses. Expression of RD29A-LUC (the firefly luciferase reporter gene under the control of the stress-responsive RD29A promoter) in response to cold and salt/drought is reduced in the los5 mutants, but the response to abscisic acid (ABA) remains unaltered. RNA gel blot analysis indicates that the los5 mutation reduces the induction of several stress-responsive genes by cold and severely diminishes or even completely blocks the induction of RD29A, COR15, COR47, RD22, and P5CS by osmotic stresses. los5 mutant plants are compromised in their tolerance to freezing, salt, or drought stress. los5 plants are ABA deficient, as indicated by increased transpirational water loss and reduced accumulation of ABA under drought stress in the mutant. A comparison with another ABA-deficient mutant, aba1, reveals that the impaired low-temperature gene regulation is specific to the los5 mutation. Genetic tests suggest that los5 is allelic to aba3. Map-based cloning reveals that LOS5/ABA3 encodes a molybdenum cofactor (MoCo) sulfurase. MoCo sulfurase catalyzes the generation of the sulfurylated form of MoCo, a cofactor required by aldehyde oxidase that functions in the last step of ABA biosynthesis in plants. The LOS5/ABA3 gene is expressed ubiquitously in different plant parts, and the expression level increases in response to drought, salt, or ABA treatment. Our results show that LOS5/ABA3 is a key regulator of ABA biosynthesis, stress-responsive gene expression, and stress tolerance.  相似文献   

11.
12.
FK506-binding proteins (FKBPs), which belong to the peptidyl-prolyl cis/trans isomerase superfamily, are involved in plant response to abiotic stresses. A number of FKBP family genes have been isolated in plants, but little has been reported of FKBP genes in maize. In this study, a drought-induced FKBP gene, ZmFKBP20-1, was isolated from maize and was characterized for its role in stress responses using gene expression, protein subcellular localization, transformation in Arabidopsis, expression patterns of the stress-responsive genes, and physiological parameter analysis. During drought and salt stresses, ZmFKBP20-1 transgenic Arabidopsis plants exhibited enhanced tolerance, which was concomitant with the altered expression of stress/ABA-responsive genes, such as COR15a, COR47, ERD10, RD22, KIN1, ABI1, and ABI2. The resistance characteristics of ZmFKBP20-1 overexpression were associated with a significant increase in survival rate. These results suggested that ZmFKBP20-1 plays a positive role in drought and salt stress responses in Arabidopsis and provided new insights into the mechanisms of FKBP in response to abiotic stresses in plants.  相似文献   

13.
Drought stress has a negative impact on plant cells and results in the generation of reactive oxygen species (ROS). To increase our understanding of the effects of drought stress on antioxidant processes, we investigated the response of the ascorbate-deficient Arabidopsis thaliana vtc1 mutant to drought stress. After drought stress, vtc1 mutants exhibited increases in several oxidative parameters, including H2O2 content and the production of thiobarbituric acid reactive substances. Decreases in chlorophyll content and chlorophyll fluorescence parameters were also observed. The vtc1 mutants had higher total glutathione than did wild-type (WT) plants after 48 h of drought stress. A reduced ratio of glutathione/total glutathione and an increased ratio of dehydroascorbate/total ascorbate were observed in the vtc1 mutants compared with the WT plants. In addition, the activities of enzymes that are responsible for ROS scavenging, including superoxide dismutase, catalase, and ascorbate peroxidase, were decreased in the vtc1 mutants compared with the WT plants. Similar reductions in activity in the vtc1 mutant were observed for the enzymes that are responsible for the regeneration of ascorbate and glutathione, including monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase. These results suggest that low intrinsic ascorbate and impaired ascorbate–glutathione cycling in the vtc1 mutant induced a decrease in the reduced form of ascorbate, which enhanced sensitivity to drought stress.  相似文献   

14.
15.
16.
17.
Drought resistance is increased in plants by the absence of the hormone gibberellic acid (GA) or by a lack of GA sensitivity. We studied the effects of tissue-specific reduction in GA levels on drought tolerance, on recovery from drought stress, and on primary and secondary growth using transgenic tobacco plants expressing the GA-inactivating gene PtGA2ox 1 (GA 2-oxidase) specifically in leaves, stems, or roots. Localized reduction of bioactive GA1 levels was achieved by tissue-specific expression of the PtGA2ox 1 gene in leaves using the rbcs promoter (LD plants), in roots using the TobRB7 promoter (RD plants), and in stems using the LMX5 promoter (SD plants). In response to drought stress, all transgenic tobacco plants exhibited reduced primary and secondary growth and increased drought tolerance with a corresponding reduction in malondialdehyde levels, higher relative water content, increased proline and sugar content, and elevated peroxidase, superoxide dismutase, and catalase activities relative to wild-type plants. The highest level of drought tolerance and the most rapid recovery from stress was achieved by localized reduction of GA1 in the roots of the RD transgenic plants. In addition, although the total bioactive GA1 content in RD and LD plants was essentially identical, the heights of LD plants were significantly greater and drought tolerance was significantly less than in RD plants. It is possible that the site of gibberellin-related gene expression plays an important role in the balance between growth and drought tolerance.  相似文献   

18.
AtPP2CG1 (Arabidopsis thaliana protein phosphatase 2C G Group 1) was predicted as an abiotic stress candidate gene by bioinformatic analysis in our previous study. The gene encodes a putative protein phosphatase 2C that belongs to Group G of PP2C. There is no report of Group G genes involved in abiotic stress so far. Real-time RT-PCR analysis showed that AtPP2CG1 expression was induced by salt, drought, and abscisic acid (ABA) treatment. The expression levels of AtPP2CG1 in the ABA synthesis-deficient mutant abi2-3 were much lower than that in WT plants under salt stress suggesting that the expression of AtPP2CG1 acts in an ABA-dependent manner. Over-expression of AtPP2CG1 led to enhanced salt tolerance, whereas its loss of function caused decreased salt tolerance. These results indicate that AtPP2CG1 positively regulates salt stress in an ABA-dependent manner. Under salt treatment, AtPP2CG1 up-regulated the expression levels of stress-responsive genes, including RD29A, RD29B, DREB2A and KIN1. GUS activity was detected in roots, leaves, stems, flower, and trichomes of AtPP2CG1 promoter-GUS transgenic plants. AtPP2CG1 protein was localized in nucleus and cytoplasm via AtPP2CG1:eGFP and YFP:AtPP2CG1 fusion approaches.  相似文献   

19.
The partial CaDSR6 (Capsicum annuum Drought Stress Responsive 6) cDNA was previously identified as a drought-induced gene in hot pepper root tissues. However, the cellular role of CaDSR6 with regard to drought stress tolerance was unknown. In this report, full-length CaDSR6 cDNA was isolated. The deduced CaDSR6 protein was composed of 234 amino acids and contained an approximately 30 amino acid-long Asp-rich domain in its central region. This Asp-rich domain was highly conserved in all plant DSR6 homologs identified and shared a sequence identity with the N-terminal regions of yeast p23fyp and human hTCTP, which contain Rab protein binding sites. Transgenic Arabidopsis plants overexpressing CaDSR6 (35S:CaDSR6-sGFP) were tolerant to high salinity, as identified by more vigorous root growth and higher levels of total chlorophyll than wild type plants. CaDSR6-overexpressors were also more tolerant to drought stress compared to wild type plants. The 35S:CaDSR6-sGFP leaves retained their water content and chlorophyll more efficiently than wild type leaves in response to dehydration stress. The expression of drought-induced marker genes, such as RD20, RD22, RD26, RD29A, RD29B, RAB18, KIN2, ABF3, and ABI5, was markedly increased in CaDSR6-overexpressing plants relative to wild type plants under both normal and drought conditions. These results suggest that overexpression of CaDSR6 is associated with increased levels of stress-induced genes, which, in turn, conferred a drought tolerant phenotype in transgenic Arabidopsis plants. Overall, our data suggest that CaDSR6 plays a positive role in the response to drought and salt stresses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号