首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Escherichia coli (E. coli) consists of commensal (ComEC) and diarrhoeagenic (DEC) groups. ComEC are detected using traditional culture methods. Conformational steps are performed after culturing if it is required to test for the presence of DEC, increasing cost and time in obtaining the results. The aim of this study was to develop a single-step multiplex polymerase chain reaction (m-PCR) that can simultaneously amplify genes associated with DEC and ComEC, with the inclusion of controls to monitor inhibition. A total of 701 samples, taken from clinical and environmental water sources in South Africa, were analysed with the optimised m-PCR which targeted the eaeA, stx1, stx2, lt, st, ial, eagg, astA and bfp virulence genes. The mdh and gapdh genes were included as an internal and external control, respectively. The presence of the external control gapdh gene in all samples excluded any possible PCR inhibition. The internal control mdh gene was detected in 100 % of the environmental and 85 % of the clinical isolates, confirming the classification of isolates as E. coli PCR positive samples. All DEC types were detected in varying degrees from the mdh positive environmental and clinical isolates. Important gene code combinations were detected for clinical isolates of 0.4 % lt and eagg. However, 2.3 % of eaeA and ial, and 8.7 % of eaeA and eagg were reported for environmental water samples. The E. coli astA toxin was detected as positive at 35 and 17 % in environmental isolates and clinical isolates, respectively. Interestingly, 25 % of the E. coli astA toxin detected in environmental isolates and 17 % in clinical isolates did not contain any of the other virulence genes tested. In conclusion, the optimised single-step 11-gene m-PCR reactions could be successfully used for the identification of pathogenic and non-pathogenic E. coli types. The m-PCR was also successful in showing monitoring for PCR inhibition to ensure correct reporting of the results.  相似文献   

2.
Effluents discharged from wastewater treatment plants are possible sources of pathogenic bacteria, including Escherichia coli, in the freshwater environment, and determining the possible selection of pathogens is important. This study evaluated the impact of activated sludge and physicochemical wastewater treatment processes on the prevalence of potentially virulent E. coli. A total of 719 E. coli isolates collected from four municipal plants in Québec before and after treatment were characterized by using a customized DNA microarray to determine the impact of treatment processes on the frequency of specific pathotypes and virulence genes. The percentages of potentially pathogenic E. coli isolates in the plant influents varied between 26 and 51%, and in the effluents, the percentages were 14 to 31%, for a reduction observed at all plants ranging between 14 and 45%. Pathotypes associated with extraintestinal pathogenic E. coli (ExPEC) were the most abundant at three of the four plants and represented 24% of all isolates, while intestinal pathogenic E. coli pathotypes (IPEC) represented 10% of the isolates. At the plant where ExPEC isolates were not the most abundant, a large number of isolates were classified as both ExPEC and IPEC; overall, 6% of the isolates were classified in both groups, with the majority being from the same plant. The reduction of the proportion of pathogenic E. coli could not be explained by the preferential loss of one virulence gene or one type of virulence factor; however, the quinolone resistance gene (qnrS) appears to enhance the loss of virulence genes, suggesting a mechanism involving the loss of pathogenicity islands.  相似文献   

3.
Lack of access to potable water has forced many inhabitants of informal settlements in South Africa to rely on surface water sources for their daily water needs, thus exposing these communities to microbial contamination that can result in water-borne diseases. These water sources also serve as natural habitats of pathogenic E. coli strains which harbour virulence factors, which could play a role in the disease process, as well as various multi-drug resistant water-borne pathogens. This study investigated the microbiological quality of two river waters in Durban, South Africa, using total coliform and faecal coliform population as indices. The virulence markers and antibiogram profiles of the E. coli isolates from these rivers were also determined. The results indicated that water from these river sources were of poor microbiological quality and unfit for human consumption. Antibiotic Resistance Profiles of the isolates revealed that 97.1% of the Palmiet River isolates and 71.15% of the Umgeni River isolates were multi-resistant to the antibiotics tested, with all the isolates found to be resistant to novobiocin. Characterization of the virulence markers revealed the presence of stx1, cnf1 and eaeA genes, indicating the possible health risk associated with the ingestion of water from these rivers. The inherent health risks associated with the use of these river water emphasises the need for safe water supply and provision of proper sanitation facilities for the inhabitants of the informal settlements along these river banks.  相似文献   

4.
Wastewater samples from 12 slaughterhouses located in different regions in France were tested for the presence of stx-positive and eae-positive Escherichia coli isolates, and characteristics of the isolates obtained were determined. A total of 224 wastewater samples were collected in wastewater treatment plants at different stages of wastewater processing. Altogether, 5,001 E. coli isolates were obtained by colony counting and screened for the presence of stx and eae genes by multiplex PCR. stx-positive and eae-positive E. coli isolates were detected in 25% of the samples collected; they were found in 13% and 3% of the samples obtained from treated effluent and sludge, respectively, suggesting that they could be spread into the environment. Screening of the samples collected by immunomagnetic separation allowed us to isolate 31 additional E. coli serogroup O157 isolates. Four of these isolates harbored stx and eae genes. All stx-positive and eae-positive E. coli isolates were analyzed for eae and stx genetic variants, as well as for additional virulence factors and serotypes. Our results suggest that the majority of the stx- and eae-positive E. coli isolates from wastewater have low virulence for humans. However, the diversity of the enterohemorrhagic E. coli-associated virulence factors in the strains indicates that the environment may play an important role in the emergence of new pathogenic enterohemorrhagic E. coli strains.  相似文献   

5.
Although the number of Escherichia coli bacteria in surface waters can differ greatly between locations, relatively little is known about the distribution of E. coli pathotypes in surface waters used as sources for drinking or recreation. DNA microarray technology is a suitable tool for this type of study due to its ability to detect high numbers of virulence and antimicrobial resistance genes simultaneously. Pathotype, phylogenetic group, and antimicrobial resistance gene profiles were determined for 308 E. coli isolates from surface water samples collected from diverse aquatic ecosystems at six different sites in the St. Clair River and Detroit River areas. A higher frequency (48%) of E. coli isolates possessing virulence and antimicrobial resistance genes was observed in an urban site located downstream of wastewater effluent outfalls than in the other examined sites (average of 24%). Most E. coli pathotypes were extraintestinal pathogenic E. coli (ExPEC) pathotypes and belonged to phylogenetic groups B2 and D. The ExPEC pathotypes were found to occur across all aquatic ecosystems investigated, including riverine, estuarine, and offshore lake locations. The results of this environmental study using DNA microarrays highlight the widespread distribution of E. coli pathotypes in aquatic ecosystems and the potential public health threat of E. coli pathotypes originating from municipal wastewater sources.  相似文献   

6.

Background

Unsafe water supplies continue to raise public health concerns, especially in urban areas in low resource countries. To understand the extent of public health risk attributed to supply water in Dhaka city, Bangladesh, Escherichia coli isolated from tap water samples collected from different locations of the city were characterized for their antibiotic resistance, pathogenic properties and genetic diversity.

Methodology/Principal Findings

A total of 233 E. coli isolates obtained from 175 tap water samples were analysed for susceptibility to 16 different antibiotics and for the presence of genes associated with virulence and antibiotic resistance. Nearly 36% (n = 84) of the isolates were multi-drug(≥3 classes of antibiotics) resistant (MDR) and 26% (n = 22) of these were positive for extended spectrum β-lactamase (ESBL). Of the 22 ESBL-producers, 20 were positive for bla CTX-M-15, 7 for bla OXA-1-group (all had bla OXA-47) and 2 for bla CMY-2. Quinolone resistance genes, qnrS and qnrB were detected in 6 and 2 isolates, respectively. Around 7% (n = 16) of the isolates carried virulence gene(s) characteristic of pathogenic E. coli; 11 of these contained lt and/or st and thus belonged to enterotoxigenic E. coli and 5 contained bfp and eae and thus belonged to enteropathogenic E. coli. All MDR isolates carried multiple plasmids (2 to 8) of varying sizes ranging from 1.2 to >120 MDa. Ampicillin and ceftriaxone resistance were co-transferred in conjugative plasmids of 70 to 100 MDa in size, while ampicillin, trimethoprim-sulfamethoxazole and tetracycline resistance were co-transferred in conjugative plasmids of 50 to 90 MDa. Pulsed-field gel electrophoresis analysis revealed diverse genetic fingerprints of pathogenic isolates.

Significance

Multi-drug resistant E. coli are wide spread in public water supply in Dhaka city, Bangladesh. Transmission of resistant bacteria and plasmids through supply water pose serious threats to public health in urban areas.  相似文献   

7.
Flies may act as potential vectors for the spread of resistant bacteria to different environments. This study was intended to evaluate the presence of Escherichia coli strains resistant to cephalosporins in flies captured in the areas surrounding five broiler farms. Phenotypic and molecular characterization of the resistant population was performed by different methods: MIC determination, pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and phylotyping. The presence of extended-spectrum beta-lactamase (ESBL) genes, their plasmid location, and the mobile genetic elements involved in their mobilization were studied. Additionally, the presence of 35 genes associated with virulence was evaluated. Out of 682 flies captured, 42 yielded ESBL-producing E. coli. Of these isolates, 23 contained blaCTX-M-1, 18 contained blaCTX-M-14, and 1 contained blaCTX-M-9. ESBL genes were associated mainly with the presence of the IncI1 and IncFIB replicons. Additionally, all the strains were multiresistant, and five of them also harbored qnrS. Identical PFGE profiles were found for E. coli isolates obtained from flies at different sampling times, indicating a persistence of the same clones in the farm environment over months. According to their virulence genes, 81% of the isolates were considered avian-pathogenic E. coli (APEC) and 29% were considered extraintestinal pathogenic E. coli (ExPEC). The entrance of flies into broiler houses constitutes a considerable risk for colonization of broilers with multidrug-resistant E. coli. ESBLs in flies reflect the contamination status of the farm environment. Additionally, this study demonstrates the potential contribution of flies to the dissemination of virulence and resistance genes into different ecological niches.  相似文献   

8.
The presence of broad-spectrum-cephalosporin-resistant Escherichia coli isolates and the implicated mechanisms of resistance and virulence factor genes were investigated in red fox (Vulpes vulpes) in Portugal. Cefotaxime-resistant E. coli isolates were isolated from two of 52 fecal samples (4 %), being both ESBL producers. The β-lactamase genes found in the two isolates were bla SHV-12 + bla TEM-1b. The tet(A) and sul2 genes were also detected in these isolates, together with the non-classical class 1 integron (intI1-dfrA12-orfF-aadA2-cmlA1-aadA1-qacH-IS440-sul3) with the PcH1 promoter. The two isolates belonged to the phylogroup A. Amino acid changes in GyrA (S83L + D87G) and ParC (S80I) proteins were identified in our study. Concerning MLST typing, both isolates were assigned to ST1086, never found before in wild animals, and they presented closely related PFGE patterns. This study reveals the presence of ESBL-producing E. coli isolates, in a wild ecosystem, which could be disseminated through the environment to other niches.  相似文献   

9.
A total of 318 Escherichia coli isolates obtained from diarrheic and healthy pigs in Ontario from 2001 to 2003 were examined for their susceptibility to 19 antimicrobial agents. They were tested by PCR for the presence of resistance genes for tetracycline, streptomycin, sulfonamides, and apramycin and of 12 common virulence genes of porcine E. coli. Antimicrobial resistance frequency among E. coli isolates from swine in Ontario was moderate in comparison with other countries and was higher in isolates from pigs with diarrhea than in isolates from healthy finisher pigs. Resistance profiles suggest that cephamycinases may be produced by ≥8% of enterotoxigenic E. coli (ETEC). Resistance to quinolones was detected only in enterotoxigenic E. coli (≤3%). The presence of sul3 was demonstrated for the first time in Canada in porcine E. coli isolates. Associations were observed among tetA, sul1, aadA, and aac(3)IV and among tetB, sul2, and strA/strB, with a strong negative association between tetA and tetB. The paa and sepA genes were detected in 92% of porcine ETEC, and strong statistical associations due to colocation on a large plasmid were observed between tetA, estA, paa, and sepA. Due at least in part to gene linkages, the distribution of resistance genes was very different between ETEC isolates and other porcine E. coli isolates. This demonstrates that antimicrobial resistance epidemiology differs significantly between pathogenic and commensal E. coli isolates. These results may have important implications with regards to the spread and persistence of resistance and virulence genes in bacterial populations and to the prudent use of antimicrobial agents.  相似文献   

10.
Although Escherichia coli typically colonizes the intestinal tract and vagina of giant pandas, it has caused enteric and systemic disease in giant pandas and greatly impacts the health and survival of this endangered species. In order to understand the distribution and characteristics of E. coli from giant pandas, 67 fecal and 30 vaginal E. coli isolates from 21 giant pandas were characterized for O serogroups, phylogenetic groups, antimicrobial susceptibilities, and pulsed-field gel electrophoresis (PFGE) profiles. In addition, these isolates were tested for the presence of extraintestinal pathogenic E. coli (ExPEC) and diarrheagenic E. coli (DEC) by multiplex PCR detection of specific virulence genes. The most prevalent serogroups for all E. coli isolates were O88, O18, O167, O4, and O158. ExPEC isolates were detected mostly in vaginal samples, and DEC isolates were detected only in fecal samples. Phylogenetic group B1 predominated in fecal isolates, while groups B2 and D were frequently detected in vaginal isolates. Resistance to trimethoprim-sulfamethoxazole was most frequently observed, followed by resistance to nalidixic acid and tetracycline. All except five isolates were typeable by using XbaI and were categorized into 74 PFGE patterns. Our findings indicate that panda E. coli isolates exhibited antimicrobial resistance, and potentially pathogenic E. coli isolates were present in giant pandas. In addition, these E. coli isolates were genetically diverse. This study may provide helpful information for developing strategies in the future to control E. coli infections of giant pandas.  相似文献   

11.
The enzyme glutamate decarboxylase (GAD) is prevalent in Escherichia coli but few strains in the various pathogenic E. coli groups have been tested for GAD. Using PCR primers that amplify a 670-bp segment from the gadA and gadB genes encoding GAD, we examined the distribution of the gadAB genes among enteric bacteria. Analysis of 173 pathogenic E. coli strains, including 125 enterohemorrhagic E. coli isolates of the O157:H7 serotype and its phenotypic variants and 48 isolates of enteropathogenic E. coli, enterotoxigenic E. coli, enteroinvasive E. coli, and other Shiga toxin-producing E. coli (STEC) serotypes, showed that gadAB genes were present in all these strains. Among the 22 non-E. coli isolates tested, only the 6 Shigella spp. carried gadAB. Analysis of naturally contaminated water and food samples using a gadAB-specific DNA probe that was labeled with digoxigenin showed that a gadAB-based assay is as reliable as standard methods that enumerate E. coli organisms on the basis of lactose fermentation. The presence of few E. coli cells initially seeded into produce rinsates could be detected by PCR to gadA/B genes after overnight enrichment. A multiplex PCR assay using the gadAB primers in combination with primers to Shiga toxin (Stx) genes stx1 and stx2 was effective in detecting STEC from the enrichment medium after seeding produce rinsate samples with as few as 2 CFU. The gadAB primers may be multiplexed with primers to other trait virulence markers to specifically identify other pathogenic E. coli groups.  相似文献   

12.
Aims: To determine the occurrence of Escherichia coli harbouring virulence markers of shiga‐ or entero‐toxins and resistance to antimicrobials in surface waters. Methods and Results: Surface water samples were collected at six locations of the river Gomti. E. coli isolates (n = 90) were characterized for their pathogenic potential using polymerase chain reaction to detect virulence genes as well as their sensitivity to antimicrobial agents using disc diffusion methods. In this study, 57·8% of E. coli isolates exhibited resistance to three or more antimicrobial agents. Sensitivity to cephotaxime, gentamicin and norfloxacin was observed in 7·8%, 48·9% and 77·8% of isolates, respectively. Both stx1 and stx2 genes were present in 15·6% of isolates while remaining isolates had either stx1 (17·8%) or stx2 (6·7%). The stx1 gene (33·3%) was more prevalent than stx2 (22·2%). The results indicate that the LT1 and ST1 genes were positive in 21·2% of isolates. Conclusions: The presence of multi‐drug resistance and virulence genes in E. coli isolated from surface water being used for domestic and recreational purposes may result in waterborne outbreaks. Significance and Impact of the Study: The data will be useful in monitoring surface waters for forecasting and management of waterborne outbreaks.  相似文献   

13.
Aims: The aim of this study was to determine the uropathogenic potential of Escherichia coli isolated from retail meats. Methods and Results: Two hundred E. coli isolates recovered from retail meats, which were previously identified molecularly as extraintestinal pathogenic E. coli, were investigated for the presence of 21 uropathogenic E. coli (UPEC) virulence‐associated genes. Twenty‐three E. coli isolates were selected based on their serogroups and the number of virulence genes they contained, and further characterized using multilocus sequence typing, and by tissue culture assays for adherence to and invasion of T‐24 human bladder cells and for their induction of interleukin (IL)‐6 secretion. All virulence genes tested, except afa/dra and hlyD, were detected among the E. coli isolates. Multilocus sequence typing analysis of 23 selected isolates revealed that 17 isolates belonged to STs associated with human UPEC. Nearly all 23 isolates exhibited lower level of adherence and invasion compared to a clinical strain, UPEC CFT073. Conclusions: These observations suggested that a small proportion of E. coli isolates from retail meats carry uropathogenic associated virulence genes and thus may serve as a reservoir of these genes to UPEC in the human intestine. Their virulence potential seemed limited as they were only weakly invasive in human bladder cell culture. Significance and Impact of the Study: These findings support the hypothesis that retail meat E. coli may play a role in relation to urinary tract infection (UTI) and may be considered in development of a UTI prevention strategy.  相似文献   

14.
Escherichia coli isolates (n = 658) obtained from drinking water intakes of Comox Lake (2011 to 2013) were screened for the following virulence genes (VGs): stx1 and stx2 (Shiga toxin-producing E. coli [STEC]), eae and the adherence factor (EAF) gene (enteropathogenic E. coli [EPEC]), heat-stable (ST) enterotoxin (variants STh and STp) and heat-labile enterotoxin (LT) genes (enterotoxigenic E. coli [ETEC]), and ipaH (enteroinvasive E. coli [EIEC]). The only genes detected were eae and stx2, which were carried by 37.69% (n = 248) of the isolates. Only eae was harbored by 26.74% (n = 176) of the isolates, representing potential atypical EPEC strains, while only stx2 was detected in 10.33% (n = 68) of the isolates, indicating potential STEC strains. Moreover, four isolates were positive for both the stx2 and eae genes, representing potential EHEC strains. The prevalence of VGs (eae or stx2) was significantly (P < 0.0001) higher in the fall season, and multiple genes (eae plus stx2) were detected only in fall. Repetitive element palindromic PCR (rep-PCR) fingerprint analysis of 658 E. coli isolates identified 335 unique fingerprints, with an overall Shannon diversity (H′) index of 3.653. Diversity varied among seasons over the years, with relatively higher diversity during fall. Multivariate analysis of variance (MANOVA) revealed that the majority of the fingerprints showed a tendency to cluster according to year, season, and month. Taken together, the results indicated that the diversity and population structure of E. coli fluctuate on a temporal scale, reflecting the presence of diverse host sources and their behavior over time in the watershed. Furthermore, the occurrence of potentially pathogenic E. coli strains in the drinking water intakes highlights the risk to human health associated with direct and indirect consumption of untreated surface water.  相似文献   

15.
Diarrheagenic Escherichia coli, which may include the enteropathogenic E. coli and the enterohemorrhagic E. coli, are a significant cause of diarrheal disease among infants and children in both developing and developed areas. Disease outbreaks related to freshwater exposure have been documented, but the presence of these organisms in the urban aquatic environment is not well characterized. From April 2002 through April 2004 we conducted weekly surveys of streams in the metropolitan Baltimore, Md., area for the prevalence of potentially pathogenic E. coli by using PCR assays targeting the tir and stx1 and stx2 genes. Coliforms testing positive for the presence of the tir gene were cultured from 653 of 1,218 samples (53%), with a greater prevalence associated with urban, polluted streams than in suburban and forested watershed streams. Polluted urban streams were also more likely to test positive for the presence of one of the stx genes. Sequence analysis of the tir amplicon, as well as the entire tir gene from three isolates, indicated that the pathogenic E. coli present in the stream waters has a high degree of sequence homology with the E. coli O157:H7 serotype. Our data indicate that pathogenic E. coli are continually deposited into a variety of stream habitats and suggest that this organism may be a permanent member of the gastrointestinal microflora of humans and animals in the metropolitan Baltimore area.  相似文献   

16.
Contamination of surface water by fecal microorganisms originating from human and nonhuman sources is a public health concern. In the present study, Escherichia coli isolates (n = 412) from the feces of various avian host sources were screened for various virulence genes: stx1 and stx2 (Shiga toxin-producing E. coli [STEC]), eae (enteropathogenic E. coli [EPEC]), est-h, est-p, and elt (encoding heat-stable toxin [ST] variants STh and STp and heat-labile toxin [LT], respectively) (enterotoxigenic E. coli [ETEC]), and ipaH (enteroinvasive E. coli [EIEC]). None of the isolates were found to be positive for stx1, while 23% (n = 93) were positive for only stx2, representing STEC, and 15% (n = 63) were positive for only eae, representing EPEC. In addition, five strains obtained from pheasant were positive for both stx2 and eae and were confirmed as non-O157 by using an E. coli O157 rfb (rfbO157) TaqMan assay. Isolates positive for the virulence genes associated with ETEC and EIEC were not detected in any of the hosts. The repetitive element palindromic PCR (rep-PCR) fingerprint analysis identified 143 unique fingerprints, with an overall Shannon diversity index of 2.36. Multivariate analysis of variance (MANOVA) showed that the majority of the STEC and EPEC isolates were genotypically distinct from nonpathogenic E. coli and clustered independently. MANOVA analysis also revealed spatial variation among the E. coli isolates, since the majority of the isolates clustered according to the sampling locations. Although the presence of virulence genes alone cannot be used to determine the pathogenicity of strains, results from this study show that potentially pathogenic STEC and EPEC strains can be found in some of the avian hosts studied and may contaminate surface water and potentially impact human health.  相似文献   

17.
This study identified and characterized enteropathogenic Escherichia coli (EPEC) in the Canadian food supply. Eighteen of 450 E. coli isolates from food animal sources were identified as atypical EPEC (aEPEC). Several of the aEPEC isolates identified in this study possessed multiple virulence genes, exhibited adherence and attaching and effacing (A/E) lesion formation, disrupted tight junctions, and were coclassified with the extraintestinal pathogenic E. coli (ExPEC) and enterotoxigenic E. coli (ETEC) pathotypes.  相似文献   

18.
Ninety-six class 1 integron-positive and 96 integron-negative Escherichia coli isolates cultured from the water of the Warta River, Poland, were characterized for their phylogenetic group affiliation and for the presence of genes associated with virulence. Most strains belonged to phylogenetic group A, but phylogenetic group affiliation was not related with the presence of integrons. The occurrence of heat-stable toxin gene of enterotoxigenic E. coli, S fimbriae subunit gene sfaS, and siderophore receptor genes, fyuA and iutA, was associated with the presence of class 1 integrons. Moreover, virulence factor score (the total number of virulence-associated genes) was associated with the presence of integrons in groups. The results bring new insight into relations between the presence of integrons in E. coli, virulence traits, as well as phylogenetic group affiliation.  相似文献   

19.
We characterized 144 Escherichia coli isolates from severe cellulitis lesions in broiler chickens from South Brazil. Analysis of susceptibility to 15 antimicrobials revealed frequencies of resistance of less than 30% for most antimicrobials except tetracycline (70%) and sulphonamides (60%). The genotyping of 34 virulence-associated genes revealed that all the isolates harbored virulence factors related to adhesion, iron acquisition and serum resistance, which are characteristic of the avian pathogenic E. coli (APEC) pathotype. ColV plasmid-associated genes (cvi/cva, iroN, iss, iucD, sitD, traT, tsh) were especially frequent among the isolates (from 66.6% to 89.6%). According to the Clermont method of ECOR phylogenetic typing, isolates belonged to group D (47.2%), to group A (27.8%), to group B2 (17.4%) and to group B1 (7.6%); the group B2 isolates contained the highest number of virulence-associated genes. Clonal relationship analysis using the ARDRA method revealed a similarity level of 57% or higher among isolates, but no endemic clone. The virulence of the isolates was confirmed in vivo in one-day-old chicks. Most isolates (72.9%) killed all infected chicks within 7 days, and 65 isolates (38.1%) killed most of them within 24 hours. In order to analyze differences in virulence among the APEC isolates, we created a pathogenicity score by combining the times of death with the clinical symptoms noted. By looking for significant associations between the presence of virulence-associated genes and the pathogenicity score, we found that the presence of genes for invasins ibeA and gimB and for group II capsule KpsMTII increased virulence, while the presence of pic decreased virulence. The fact that ibeA, gimB and KpsMTII are characteristic of neonatal meningitis E. coli (NMEC) suggests that genes of NMEC in APEC increase virulence of strains.  相似文献   

20.
Escherichia coli isolates (n = 300) collected from six sites in subtropical Brisbane, Australia, prior to and after storm events were tested for the presence of 11 virulence genes (VGs) specific to diarrheagenic pathotypes. The presence of eaeA, stx1, stx2, and ehxA genes specific for the enterohemorrhagic E. coli (EHEC) pathotype was detected in 56%, 6%, 10%, and 13% of isolates, respectively. The VGs astA (69%) and aggR (29%), carried by enteroaggregative (EAEC) pathotypes, were frequently detected in E. coli isolates. The enteropathogenic E. coli (EPEC) gene bfp was detected in 24% of isolates. In addition, enteroinvasive E. coli (EIEC) VG ipaH was also detected in 14% of isolates. During dry periods, isolates belonging to the EAEC pathotype were most commonly detected (23%), followed by EHEC (11%) and EPEC (11%). Conversely, a more uniform prevalence of pathotypes, EPEC (14%), EAEC (12%), EIEC (10%), EHEC (7%), and ETEC (7%), was observed after the storm events. The results of this study highlight the widespread occurrence of potentially diarrheagenic pathotypes in the urban aquatic ecosystems. While the presence of VGs in E. coli isolates alone is insufficient to determine pathogenicity, the presence of diarrheagenic E. coli pathotypes in high frequency after the storm events could lead to increased health risks if untreated storm water were to be used for nonpotable purposes and recreational activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号