首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
WNTs (wingless-type MMTV integration site family, member) are morphogenes considered as important factors taking part in uterus developmental processes and implantation. β-catenin is a downstream effector of WNTs action within the cell as well as, through E-cadherin, affecting epithelial organization and function. This study was conducted to investigate WNT4, WNT5A, WNT7A, β-catenin (CTNNB1) and E-cadherin (CDH1) gene expression and protein localization in the endometrium during the periimplantation period. Furthermore, the effect of 17β-estradiol (E2) and progesterone (P4) on WNTs, CTNNB1 and CDH1 gene expression in the porcine endometrium in vitro was examined. WNT4 protein was localized in the luminal and glandular epithelium as well as in the basal lamina of the uterine mucosa. WNT5A protein was detected only in the luminal epithelium. WNT7A, β-catenin and E-cadherin protein were identified both in the luminal and glandular epithelial cells, however, WNT7A protein immunoreactivity varied during respective days of estrous cycle and/or pregnancy. Despite unchanged expression of WNT4 mRNA in the endometrium of cyclic and early pregnant pigs, the negative influence of E2 on WNT4 gene during in vitro experiment was observed. WNT4 and CDH1 gene expression was negatively correlated with blood plasma E2 and P4 level in uterine luminal flushings (ULFs) on Day 12 of pregnancy. Expression of WNT5A gene was up-regulated in the endometrium on Day 9 of pregnancy when compared to the respective day of the estrous cycle. A significant decrease of WNT7A gene expression and increase of CDH1 mRNA amount was detected on Day 12 of pregnancy. Overall, the results show the spatial localization of WNT4, WNT5A, WNT7A, β-catenin and E-cadherin proteins in porcine endometrium during periimplantation period of pregnancy and indicate significant changes of WNT5A, WNT7A and CDH1 gene expression before implantation in the pig.  相似文献   

2.
3.
WNT7A (wingless-type MMTV integration site family, member 7A) is a known tumor suppressor gene of non-small cell lung carcinomas (NSCLC) and is frequently inactivated due to CpG-island hypermethylation in human cancers. The members of WNT family are involved in cell signaling and play crucial roles in cancer development. In the present work hypermethylation of the WNT7A gene was detected in 66% (29/44) of analyzed clear cell renal cell carcinomas (RCCs) using methyl-specific PCR (MSP). Moreover, bisulfite sequencing confirmed intensive hypermethylation of the 5′-CpG island of the WNT7A gene. Methylation analysis revealed positive correlations between tumor stage, Fuhrman nuclear grade and WNT7A hypermethylation. Additionally, restoration of WNT7A gene expression in the A498 cell line by 5-aza-2′-deoxycytidine treatment confirmed a direct contribution of hypermethylation in silencing of the WNT7A gene. High frequency of loss of heterozygosity (LOH) was demonstrated on chromosome 3p25 in regions surrounding the WNT7A gene. The frequent down-regulation of WNT7A gene expression was detected in 88% (15/17) of clear cell RCCs. We have also shown that the WNT7A gene possesses tumor suppression function by colony-formation and cell proliferation assays in RCC cell lines. In summary, the WNT7A gene is inactivated by genetic/epigenetic alterations in clear cell RCC and demonstrates tumor suppressor properties.  相似文献   

4.

Background

Dental agenesis is the most common, often heritable, developmental anomaly in humans. Although WNT10A gene mutations are known to cause rare syndromes associated with tooth agenesis, including onycho-odontodermal dysplasia (OODD), Schöpf-Schulz-Passarge syndrome (SSPS), hypohidrotic ectodermal dysplasia (HED), and more than half of the cases of isolated oligodontia recently, the genotype-phenotype correlations and the mode of inheritance of WNT10A mutations remain unclear. The phenotypic expression with WNT10A mutations shows a high degree of variability, suggesting that other genes might function with WNT10A in regulating ectodermal organ development. Moreover, the involvement of mutations in other genes, such as EDA, which is also associated with HED and isolated tooth agenesis, is not clear. Therefore, we hypothesized that EDA mutations interact with WNT10A mutations to play a role in tooth agenesis. Additionally, EDA, EDAR, and EDARADD encode signaling molecules in the Eda/Edar/NF-κB signaling pathways, we also checked EDAR and EDARADD in this study.

Methods

WNT10A, EDA, EDAR and EDARADD were sequenced in 88 patients with isolated oligodontia and 26 patients with syndromic tooth agenesis. The structure of two mutated WNT10A and two mutated EDA proteins was analyzed.

Results

Digenic mutations of both WNT10A and EDA were identified in 2 of 88 (2.27%) isolated oligodontia cases and 4 of 26 (15.38%) syndromic tooth agenesis cases. No mutation in EDAR or EDARADD gene was found.

Conclusions

WNT10A and EDA digenic mutations could result in oligodontia and syndromic tooth agenesis in the Chinese population. Moreover, our results will greatly expand the genotypic spectrum of tooth agenesis.  相似文献   

5.
WNT5A, a member of the WNT family of secreted lipid-modified glycoproteins, is a critical regulator of a host of developmental processes, including limb formation, lung morphogenesis, intestinal elongation and mammary gland development. Altered WNT5A expression has been associated with a number of cancers. Interestingly, in certain types of cancers, such as hematological malignancies and colorectal carcinoma, WNT5A is inactivated and exerts a tumor suppressive function, while in other cancers, such as melanoma and gastric carcinoma, WNT5A is overexpressed and promotes tumor progression. The mechanism by which WNT5A achieves these distinct activities in cancers is poorly understood. Here, we provide evidence that the WNT5A gene produces two protein isoforms, WNT5A-long (WNT5A-L) and WNT5A-short (WNT5A-S). Amino-terminal sequencing and a WNT5A-L specific antibody demonstrate that the mature and secreted isoforms are distinct, with WNT5A-L carrying an additional 18 N-terminal amino acids. Biochemical analysis indicates that both purified proteins are similar with respect to their stability, hydrophobicity and WNT/β-catenin signaling activity. Nonetheless, modulation of these two WNT5A isoforms, either through ectopic expression or knockdown, demonstrates that they exert distinct activities in cancer cell lines: while WNT5A-L inhibits proliferation of tumor cell lines, WNT5A-S promotes their growth. Finally, we show that expression of these two WNT5A isoforms is altered in breast and cervix carcinomas, as well as in the most aggressive neuroblastoma tumors. In these cancers, WNT5A-L is frequently down-regulated, whereas WNT5A-S is found overexpressed in a significant fraction of tumors. Altogether, our study provides evidence that the distinct activities of WNT5A in cancer can be attributed to the production of two WNT5A isoforms.  相似文献   

6.
7.
Nonsyndromic hypodontia is a congenital absence of less than six permanent teeth, with a most common subtype maxillary lateral incisor agenesis (MLIA). Mutations in several genes have been described in severe tooth agenesis. The aim of this study was to search for the variants in wingless-type MMTV-integration site family member (WNT10A), paired box 9 (PAX9) and axis inhibitor 2 (AXIN2) genes, and investigate their potential role in the pathogenesis of non-syndromic hypodontia. Clinical examination and panoramic radiograph were performed in the cohort of 60 unrelated Slovak patients of Caucasian origin with nonsyndromic hypodontia including 37 MLIA cases and 48 healthy controls. Genomic DNA was isolated from buccal swabs and Sanger sequencing of WNT10A, PAX9 and AXIN2 was performed. Altogether, we identified 23 single-nucleotide variants, of which five were novel. We have found three rare nonsynonymous variants in WNT10A (p.Gly165Arg; p.Gly213Ser and p.Phe228Ile) in eight (13.33%) of 60 patients. Analysis showed potentially damaged WNT10A variant p.Phe228Ile predominantly occurred only in MLIA patients, and with a dominant form of tooth agenesis (odds ratio \(({\hbox {OR}}_{\mathrm{dom}}) = 9.841\); \(P=0.045\); 95% confidence interval (CI) 0.492–196.701; \({\hbox {OR}}_{\mathrm{rec}} = 0.773\); \(P =1.000\); 95% CI 0.015–39.877). In addition, the WNT10A variant p.Phe228Ile showed a trend associated with familial nonsyndromic hypodontia (\(P =0.024\); OR = 1.20; 95% CI 0.97–1.48). After Bonferroni correction, these effects remained with borderline tendencies. Using a 3D WNT10A protein model, we demonstrated that the variant Phe228Ile changes the protein secondary structure. In PAX9 and AXIN2, common variants were detected. Our findings suggest that the identified WNT10A variant p.Phe228Ile could represent risk for the inherited nonsyndromic hypodontia underlying MLIA. However, further study in different populations is required.  相似文献   

8.
Failure to develop complete dentition, tooth agenesis, is a common developmental anomaly manifested most often as isolated but also as associated with many developmental syndromes. It typically affects third molars or one or few other permanent teeth but severe agenesis is also relatively prevalent. Here we report mutational analyses of seven candidate genes in a cohort of 127 probands with non-syndromic tooth agenesis. 82 lacked more than five permanent teeth excluding third molars, called as oligodontia. We identified 28 mutations, 17 of which were novel. Together with our previous reports, we have identified two mutations in MSX1, AXIN2 and EDARADD, five in PAX9, four in EDA and EDAR, and nine in WNT10A. They were observed in 58 probands (44%), with a mean number of missing teeth of 11.7 (range 4 to 34). Almost all of these probands had severe agenesis. Only few of the probands but several relatives with heterozygous genotypes of WNT10A or EDAR conformed to the common type of non-syndromic tooth agenesis, incisor-premolar hypodontia. Mutations in MSX1 and PAX9 affected predominantly posterior teeth, whereas both deciduous and permanent incisors were especially sensitive to mutations in EDA and EDAR. Many mutations in EDAR, EDARADD and WNT10A were present in several families. Biallelic or heterozygous genotypes of WNT10A were observed in 32 and hemizygous or heterozygous genotypes of EDA, EDAR or EDARADD in 22 probands. An EDARADD variant were in seven probands present together with variants in EDAR or WNT10A, suggesting combined phenotypic effects of alleles in distinct genes.  相似文献   

9.
EPH/EPHRIN signaling is crucial to the segregation of cell populations during the morphogenesis of many tissues. In this issue, Kindberg et al. (2021. J. Cell Biol. https://doi.org/10.1083/jcb.202005216) show that EPH activation can drive both heterotypic cell repulsion and homotypic aggregation by triggering increased cortical tension.

Heightened awareness of the ability of cells to sense and generate mechanical force has enhanced our appreciation of the sophisticated ways that cells self-organize to create architecturally patterned tissues (1). It is now clear that well-known patterns of cell fate gene expression are coordinated with biophysical patterns to segregate and organize cell populations. Central to understanding the design principles underlying tissue self-organization are studies of EPH receptors and their membrane-associated EPHRIN ligands, which are important drivers of morphogenesis across many tissues (2, 3). Both ligand and receptor are membrane bound, and signaling, which can be bidirectional, requires cell–cell contact, enabling the study of proximal influences of EPH/EPHRIN signaling on individual cells.The major consequence of EPH/EPHRIN signaling is to impair cell contact between ligand and receptor-expressing cells, thereby contributing to cell segregation and boundary formation in developing tissues (2, 3). Critical roles for EPH/EPHRIN signaling in neuronal pathfinding have uncovered a key role in repulsive migration, but this mechanism may not explain how EPH/EPHRIN signaling drives cell segregation in dense developing tissues where cells continuously contact other cells (4). Differential adhesion is also thought to contribute to EPH/EPHRIN-driven cell segregation, for example via EPH-stimulated E-cadherin cleavage (5). However, forces from adhesion tension are fundamentally integrated with those imparted by cortical tension, which govern many aspects of cell behavior and tissue morphogenesis (6). Indeed, the differential interfacial tension hypothesis holds that increased cortical tension can reduce the ability of cells to make stable cell contacts (7). Actomyosin accumulation occurs at EPH/EPHRIN interfaces, suggesting that interfacial tension driven by increased cortical actomyosin contractility may be an important driver of EPH/EPHRIN-mediated cell segregation (2, 3). In this issue, Kindberg et al. set out to test this directly by systematically stripping away the complexity of other inputs (8).First, the authors eliminated cell-matrix adhesion and therefore the contribution of cell migration by examining cell doublets cultured in engineered agarose-coated wells. In contrast to homotypic pairs of EPHB2 or EPHRIN-B1–expressing cells that formed an extended contact face with large contact angles, heterotypic EPHB2- and EPHRIN-B1–expressing cell pairs exhibited a signaling-dependent reduction in contact face and angle of contact, consistent with an increase in interfacial tension. Importantly, when EPHB2- and EPHRIN-B1–expressing cells were plated in 3D aggregates in the absence of extracellular matrix attachment, they segregated completely, suggesting that increased interfacial tension may be the key driver of cell segregation.Given the established interdependence of cortical tension and cadherin-based cell contact, Kindberg et al. investigated if the EPHB2/EPHRIN-B1–driven increase in interfacial tension required cadherin-mediated adhesion (6, 7). Surprisingly, the authors found that elimination of cadherin function in low calcium medium did not affect cell segregation, suggesting that EPH/EPHRIN may drive a more general increase in cortical tension. To test this, they pharmacologically interfered with actomyosin contractility, which restored large cell contact areas and angles to heterotypic EPHB2- and EPHRIN-B1–expressing cell pairs and reversibly impaired their ability to segregate in 3D aggregates. Direct measurement of cortical stiffness by atomic force microscopy confirmed an increase in cellular stiffness in both EPHB2- and EPHRIN-B1–expressing cells at early times after mixing and before the onset of segregation, consistent with a general increase in cortical tension.The authors noticed that EPHB2-expressing cells themselves tended to aggregate at a particularly high density in EPHB2/EPHRIN-B1 segregation assays. Importantly, when mixed with both wild-type and EPHRIN-B1–expressing cells, EPHB2-expressing cells segregated into clusters that excluded both cell types. Examination of doublets revealed close contact between EPHB2 homotypic cell pairs that was not influenced by calcium depletion, but was eliminated by inhibition of actomyosin contractility. These data strongly suggest that, in addition to increasing interfacial tension at heterotypic contacts, increased actomyosin contractility in EPHB2 cells elevates cortical tension at the cell–medium interface. This in turn favors the establishment of homotypic EPHB2 cell interactions to minimize tension with the medium. The authors then explored the physiological relevance of these findings and showed that EPHB2- and EPHRIN-B1–expressing cells segregate into more complex structures in free-form hanging drop culture in an actomyosin-dependent manner. Likewise, they demonstrated through elegant genetic experiments that myosin II is required for EPH/EPHRIN-driven cell segregation in a mouse model of X-linked craniofrontonasal syndrome.It seems clear that repulsive migration, differential adhesion, and increased interfacial tension can all contribute to EPH/EPHRIN-driven segregation, depending on the context. While cortical tension may play a more minor role in other contexts (9), the study by Kindberg et al. clearly shows that increased cortical tension can govern boundary formation, highlighting cortical tension modulation as a key driver of tissue self-organization. Exciting follow-up studies will identify the mechanisms by which EPH-driven changes in cortical tension are achieved and determine whether the cortex is organized differently at heterotypic and cell–medium interfaces. Possibilities include direct modulation of myosin II activity, which is thought to dominate cortical tension, alteration of the composition or configuration of the cortical actin network, plasma membrane-to-cortex attachment, and/or the organization of the plasma membrane itself (10). Clues may come from live imaging, which revealed strikingly dynamic cell–cell contacts among EPHB2/EPHRIN-B1 cell doublets, which could reflect pulsed cortical contractions that are now thought to be an inherent property of the cortical cytoskeleton that is stabilized in a regulated manner (10).Beyond aspects of morphogenesis, an appreciation that EPH-triggered changes in cortical tension can promote both heterotypic and homotypic cellular interactions could provide important insight into the heavily studied but poorly understood role of EPH receptors in cancer development and progression, particularly given the growing recognition of spatially important aspects of tumor heterogeneity. More broadly, these studies should prompt us to consider whether altering cortical tension is an important component of the signaling output of other membrane receptors. Many receptor tyrosine kinases are known to elicit changes in cell contact, surface topology, and cytoskeletal organization, but most studies focus on downstream signaling, leaving a largely unexplored chasm between receptor activation and cellular and tissue architecture.  相似文献   

10.
Odonto-onycho-dermal dysplasia (OODD), a rare autosomal-recessive inherited form of ectodermal dysplasia including severe oligodontia, nail dystrophy, palmoplantar hyperkeratosis, and hyperhidrosis, was recently shown to be caused by a homozygous nonsense WNT10A mutation in three consanguineous Lebanese families. Here, we report on 12 patients, from 11 unrelated families, with ectodermal dysplasia caused by five previously undescribed WNT10A mutations. In this study, we show that (1) WNT10A mutations cause not only OODD but also other forms of ectodermal dysplasia, reaching from apparently monosymptomatic severe oligodontia to Schöpf-Schulz-Passarge syndrome, which is so far considered a unique entity by the findings of numerous cysts along eyelid margins and the increased risk of benign and malignant skin tumors; (2) WNT10A mutations are a frequent cause of ectodermal dysplasia and were found in about 9% of an unselected patient cohort; (3) about half of the heterozygotes (53.8%) show a phenotype manifestation, including mainly tooth and nail anomalies, which was not reported before in OODD; and (4) heterozygotes show a sex-biased manifestation pattern, with a significantly higher proportion of tooth anomalies in males than in females, which may implicate gender-specific differences of WNT10A expression.  相似文献   

11.
Genetic factors and estrogen deficiency contribute to the development of osteoporosis. The single-nucleotide polymorphism (SNP) rs2887571 is predicted from genome-wide association studies (GWASs) to associate with osteoporosis but has had an unknown mechanism. Analysis of osteoblasts from 110 different individuals who underwent joint replacement revealed that the genotype of rs2887571 correlates with WNT5B expression. Analysis of our ChIP-sequencing data revealed that SNP rs2887571 overlaps with an estrogen receptor alpha (ERα) binding site. Here we show that 17β-estradiol (E2) suppresses WNT5B expression and further demonstrate the mechanism of ERα binding at the enhancer containing rs2887571 to suppress WNT5B expression differentially in each genotype. ERα interacts with NFATc1, which is predicted to bind directly at rs2887571. CRISPR-Cas9 and ChIP-qPCR experiments confirm differential regulation of WNT5B between each allele. Homozygous GG has a higher binding affinity for ERα than homozygous AA and results in greater suppression of WNT5B expression. Functionally, WNT5B represses alkaline phosphatase expression and activity, decreasing osteoblast differentiation and mineralization. Furthermore, WNT5B increases interleukin-6 expression and suppresses E2-induced expression of alkaline phosphatase during osteoblast differentiation. We show that WNT5B suppresses the differentiation of osteoblasts via receptor tyrosine kinase-like orphan receptor 1/2 (ROR1/2), which activates DVL2/3/RAC1/CDC42/JNK/SIN3A signaling and inhibits β-catenin activity. Together, our data provide mechanistic insight into how ERα and NFATc1 regulate the non-coding SNP rs2887571, as well as the function of WNT5B on osteoblasts, which could provide alternative therapeutic targets for osteoporosis.  相似文献   

12.
Maintenance of tissue homeostasis and immune surveillance are important functions of the lymphatic vascular system. Lymphatic vessels are lined by lymphatic endothelial cells (LECs). By gene micro-array expression studies we recently compared human lymphangioma-derived LECs with umbilical vein endothelial cells (HUVECs). Here, we followed up on these studies. Besides well-known LEC markers, we observed regulation of molecules involved in immune regulation, acetylcholine degradation and platelet regulation. Moreover we identified differentially expressed WNT pathway components, which play important roles in the morphogenesis of various organs, including the blood vascular system. WNT signaling has not yet been addressed in lymphangiogenesis. We found high expression of FZD3, FZD5 and DKK2 mRNA in HUVECs, and WNT5A in LECs. The latter was verified in normal skin-derived LECs. With immunohistological methods we detected WNT5A in LECs, as well as ROR1, ROR2 and RYK in both LECs and HUVECs. In the human, mutations of WNT5A or its receptor ROR2 cause the Robinow syndrome. These patients show multiple developmental defects including the cardio-vascular system. We studied Wnt5a-knockout (ko) mouse embryos at day 18.5. We show that the number of dermal lymphatic capillaries is significantly lower in Wnt5a-null-mice. However, the mean size of individual lymphatics and the LEC number per vessel are greater. In sum, the total area covered by lymphatics and the total number of LECs are not significantly altered. The reduced number of lymphatic capillaries indicates a sprouting defect rather than a proliferation defect in the dermis of Wnt5a-ko-mice, and identifies Wnt5a as a regulator of lymphangiogenesis.  相似文献   

13.
Functional and mechanistic studies of Wnt signaling have been severely hindered by the inaccessibility of bioactive proteins. To overcome this long-standing barrier, we engineered and characterized a panel of Chinese hamster ovary (CHO) cell lines with inducible transgenes encoding tagged and un-tagged human WNT1, WNT3A, WNT5A, WNT7A, WNT11, WNT16 or the soluble Wnt antagonist Fzd8CRD, all integrated into an identical genomic locus. Using a quantitative real-time bioluminescence assay, we show that cells expressing WNT1, 3A and 7A stimulate Wnt/beta-catenin reporter activity, while the other WNT expressing cell lines interfere with this activation. Additionally, in contrast to WNT3A, WNT1 only exhibits activity when cell-associated, and thus only signals to neighboring cells. The reporter assay also revealed a rapid decline of Wnt activity at 37°C, indicating that Wnt activity is highly labile. These engineered cell lines will reduce the cost of making and purifying Wnt proteins and serve as a continuous, reliable and regulatable source of Wnts to research laboratories around the world.  相似文献   

14.
15.
Induced pluripotent stem cell (iPSC) technology offers a novel approach for conversion of human primary fibroblasts into melanocytes. During attempts to explore various protocols for differentiation of iPSCs into melanocytes, we found a distinct and self‐renewing cell lineage that could differentiate into melanocytes, named as melanocyte precursor cells (MPCs). The MPCs exhibited a morphology distinctive from that of melanocytes, in lacking either the melanosomal structure or the melanocyte‐specific marker genes MITF, TYR, and SOX10. In addition, gene expression studies in the MPCs showed high‐level expression of WNT5A, ROR2, which are non‐canonical WNT pathway markers, and its related receptor TGFβR2. In contrast, MPC differentiation into melanocytes was achieved by activating the canonical WNT pathway using the GSK3β inhibitor. Our data demonstrated the distinct characteristic of MPCs' ability to differentiate into melanocytes, and the underlying mechanism of interfacing between canonical WNT signaling pathway and non‐canonical WNT signaling pathway.  相似文献   

16.
17.
The WNT signaling pathway has an essential role in colorectal carcinogenesis and progression, which involves a cascade of genetic and epigenetic changes. We aimed to analyze DNA methylation affecting the WNT pathway genes in colorectal carcinogenesis in promoter and gene body regions using whole methylome analysis in 9 colorectal cancer, 15 adenoma, and 6 normal tumor adjacent tissue (NAT) samples by methyl capture sequencing. Functional methylation was confirmed on 5-aza-2′-deoxycytidine-treated colorectal cancer cell line datasets. In parallel with the DNA methylation analysis, mutations of WNT pathway genes (APC, β-catenin/CTNNB1) were analyzed by 454 sequencing on GS Junior platform. Most differentially methylated CpG sites were localized in gene body regions (95% of WNT pathway genes). In the promoter regions, 33 of the 160 analyzed WNT pathway genes were differentially methylated in colorectal cancer vs. normal, including hypermethylated AXIN2, CHP1, PRICKLE1, SFRP1, SFRP2, SOX17, and hypomethylated CACYBP, CTNNB1, MYC; 44 genes in adenoma vs. NAT; and 41 genes in colorectal cancer vs. adenoma comparisons. Hypermethylation of AXIN2, DKK1, VANGL1, and WNT5A gene promoters was higher, while those of SOX17, PRICKLE1, DAAM2, and MYC was lower in colon carcinoma compared to adenoma. Inverse correlation between expression and methylation was confirmed in 23 genes, including APC, CHP1, PRICKLE1, PSEN1, and SFRP1. Differential methylation affected both canonical and noncanonical WNT pathway genes in colorectal normal-adenoma-carcinoma sequence. Aberrant DNA methylation appears already in adenomas as an early event of colorectal carcinogenesis.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号