首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Effects of exogenous spermidine (Spd) on the reactive oxygen species level and polyamine metabolism against copper (Cu) stress in Alternanthera philoxeroides (Mart.) Griseb leaves were investigated. Cu treatment induced a marked accumulation of Cu and enhanced contents of malondialdehyde (MDA), hydrogen peroxide (H2O2) and the generation rate of O2 ·−. It also significantly increased putrescine (Put) levels but lowered spermidine (Spd) and spermine (Spm) levels. The activities of arginine decarboxylase (ADC), ornithine decarboxylase (ODC) and polyamine oxidase (PAO) were all elevated with the increase of Cu concentration. However, application of exogenous Spd effectively decreased H2O2 content and the generation rate of O2 ·−, prevented Cu-induced lipid peroxidation and reduced Cu accumulation. Moreover, it declined level of endogenous Put and increased levels of Spd and Spm. Activities of ADC, ODC and PAO were all inhibited by exogenous Spd. The results indicated that application of exogenous Spd could enhance the tolerance of A. philoxeroides to Cu stress by reducing the reactive oxygen level and balancing polyamine metabolism.  相似文献   

2.
Aquatic macrophytes were found to be the potential scavengers of heavy metals from aquatic environment. In this study, influences of ladder concentration of lead (Pb) on the leaves of Potamogeton crispus Linn were studied after 7 days of treatment. The accumulation of Pb, nutrient element contents, the generation rate of superoxide radical (O2·−), MDA, proline, and polyamine (PAs) contents, as well as the activities of diamine oxidases (DAO), polyamine oxidases (PAO), arginine decarboxylase (ADC), and ornithine decarboxylase (ODC) in P. crispus leaves were investigated. The result indicated that Pb treatment decreased the activity of DAO, whereas the proline content, MDA content, the generation rate of O2·− and the activity of ODC increased in different degrees. Meantime, Pb treatment significantly increased the free putrescine (Put) level and made other PAs levels dynamic changes. The activities of PAO and ADC were declined firstly and then enhanced with the increase in the Pb concentration.  相似文献   

3.
The influence of exogenous spermidine (Spd) on arginine decarboxylase (ADC), ornithine decarboxylase (ODC), polyamine oxidase (PAO) activities and polyamines (PAs), proline contents in water hyacinth leaves under Mercury (Hg) stress was investigated after 6 days treatment. The results showed that free putrescine (Put) content increased, the contents of free spermidine (Spd) and spermine (Spm) and the (Spd + Spm)/Put ratio in water hyacinth leaves decreased significantly with the increase of the Hg concentrations. Hg stress also disturbed the activities of ADC, ODC and PAO and caused changes on proline content. Compared to the Hg-treatment only, exogenous Spd (0.1 mM) significantly reduced the accumulation of free Put, increased the contents of free Spd and Spm and the ratio of (Spd + Spm)/Put in water hyacinth leaves. Furthermore, exogenous Spd enhanced the activities of ADC, ODC and PAO and significantly increased proline content. The PS-conjugated PAs and PIS-bound PAs changed in the same trend as free PAs. These results suggest that exogenous Spd can alleviate the metabolic disturbance of polyamines caused by Hg in water hyacinth leaves.  相似文献   

4.
γ-氨基丁酸对低氧胁迫下甜瓜幼苗多胺代谢的影响   总被引:1,自引:0,他引:1  
以‘西域一号’甜瓜为试验材料,采用营养液水培法,研究了低氧胁迫下外源添加γ-氨基丁酸(GABA)对甜瓜幼苗多胺代谢的影响.结果表明:与通气对照相比,低氧胁迫处理的甜瓜幼苗谷氨酸脱羧酶(GAD)活性和GABA含量显著提高,同时多胺合成酶活性提高诱导多胺含量显著增加,但二胺氧化酶(DAO)和多胺氧化酶(PAO)活性也显著提高;根系精氨酸脱羧酶(ADC)活性提高幅度较大,导致根系游离态腐胺含量较高,而叶片乌氨酸脱羧酶(ODC)和S-腺苷甲硫氨酸脱羧酶(SAMDC)活性提高幅度较大,导致叶片游离态亚精胺(Spd)含量较高;根系游离态DAO和PAO活性显著低于叶片,其细胞壁结合态PAO活性显著高于叶片.与低氧胁迫处理相比,低氧胁迫下外源添加GABA处理的甜瓜幼苗叶片和根系中GABA和谷氨酸含量均显著提高,而GAD活性显著降低;精氨酸、鸟氨酸、甲硫氨酸含量的提高促使多胺合成酶活性显著提高,从而诱导多胺含量显著增加,DAO和PAO活性显著降低.  相似文献   

5.
以‘西域一号’甜瓜为试验材料,采用营养液水培法,研究了低氧胁迫下外源添加γ-氨基丁酸(GABA)对甜瓜幼苗多胺代谢的影响.结果表明:与通气对照相比,低氧胁迫处理的甜瓜幼苗谷氨酸脱羧酶(GAD)活性和GABA含量显著提高,同时多胺合成酶活性提高诱导多胺含量显著增加,但二胺氧化酶(DAO)和多胺氧化酶(PAO)活性也显著提高;根系精氨酸脱羧酶(ADC)活性提高幅度较大,导致根系游离态腐胺含量较高,而叶片鸟氨酸脱羧酶(ODC)和S-腺苷甲硫氨酸脱羧酶(SAMDC)活性提高幅度较大,导致叶片游离态亚精胺(Spd)含量较高;根系游离态DAO和PAO活性显著低于叶片,其细胞壁结合态PAO活性显著高于叶片.与低氧胁迫处理相比,低氧胁迫下外源添加GABA处理的甜瓜幼苗叶片和根系中GABA和谷氨酸含量均显著提高,而GAD活性显著降低;精氨酸、鸟氨酸、甲硫氨酸含量的提高促使多胺合成酶活性显著提高,从而诱导多胺含量显著增加,DAO和PAO活性显著降低.  相似文献   

6.
Protective effects of exogenous spermidine (Spd), activity of antioxygenic enzymes, and levels of free radicals in a well-known medicinal plant, Panax ginseng was examined. Seedlings grown in salinized nutrient solution (150 mM NaCl) for 7 d exhibited reduced relative water content, plant growth, increased free radicals, and showing elevated lipid peroxidation. Application of Spd (0.01, 0.1, and 1 mM) to the salinized nutrient solution showed increased plant growth by preventing chlorophyll degradation and increasing PA levels, as well as antioxidant enzymes such as CAT, APX, and GPX activity in the seedlings of ginseng. During salinity stress, Spd was effective for lowering the accumulation of putrescine (Put), with a significant increase in the spermidine (Spd) and spermine (Spm) levels in the ginseng seedlings. A decline in the Put level ran parallel to the higher accumulation of proline (Pro), and exogenous Spd also resulted in the alleviation of Pro content under salinity. Hydrogen peroxide (H2O2) and superoxide (O2) production rates were also reduced in stressed plants after Spd treatment. Furthermore, the combined effect of Spd and salt led to a significant increase in diamine oxidase (DAO), and subsequent decline in polyamine oxidase (PAO). These positive effects were observed in 0.1 and 1 mM Spd concentrations, but a lower concentration (0.01 mM) had a very limited effect. In summary, application of exogenous Spd could enhance salt tolerance of P. ginseng by enhancing the activities of enzyme scavenging system, which influence the intensity of oxidative stress.  相似文献   

7.
Polyamine levels and activities of enzymes of polyamine biosynthesis and catabolism were examined in the barley cultivar Delibes (Ml1al + Ml(Ab)) reacting hypersensitively to the powdery mildew fungus, Blumeria graminis f. sp. hordei (race CC220). Levels of free putrescine and spermine and of conjugated forms of putrescine, spermidine and spermine were greatly increased 1–4 d following inoculation of barley with the powdery mildew. These changes in polyamine levels were accompanied by elevated activities of the polyamine biosynthetic enzymes ornithine decarboxylase (ODC), arginine decarboxylase (ADC) and S‐adenosylmethionine decarboxylase (AdoMetDC) and the polyamine catabolic enzymes diamine oxidase (DAO) and polyamine oxidase (PAO). Activities of two enzymes involved in conjugating polyamines to hydroxycinnamic acids, putrescine hydroxycinnamoyl transferase (PHT) and tyramine feruloyl‐CoA transferase (TFT) were also examined and were found to increase significantly 1–4 d after inoculation. The possibility that the increased levels of free spermine, increased polyamine conjugates, and increased DAO and PAO activities are involved in development of the hypersensitive response of Delibes to powdery mildew infection is discussed.  相似文献   

8.
Manganese (Mn) is one of the essential microelements in all organisms. However, high level of Mn is deleterious to plants. In this study, the effects of exogenous manganese application on mineral element, polyamine (PA) and antioxidant accumulation, as well as polyamine metabolic and antioxidant enzyme activities, were investigated in Malus robusta Rehd., a widely grown apple rootstock. High level of Mn treatments decreased endogenous Mg, Na, K and Ca contents, but increased Zn content, in a Mn-concentration-dependent manner. Polyamine metabolic assays revealed that, except the content of perchloric acid insoluble bound (PIS-bound) spermine, which increased significantly, the contents of putrescine (Put), spermidine (Spd) and spermine (Spm) all decreased progressively, accompanied with the decreased activities of arginine decarboxylase (ADC, EC 4.1.1.19) and ornithine decarboxylase (ODC, EC 4.1.1.17), and the increased activities of diamine oxidase (DAO, EC 1.4.3.6) and polyamine oxidase (PAO, EC 1.5.3.3). Further antioxidant capacity analyses demonstrated that contents of anthocyanin, non-protein thiols (NPT) and soluble sugar, and the activities of guaiacol peroxidase (POD, EC 1.11.1.7), catalase (CAT, EC 1.11.1.6) and superoxide dismutase (SOD, EC 1.15.1.1), also increased upon different concentrations of Mn treatments. Our results suggest that endogenous ion homeostasis is affected by high level of Mn application, and polyamine and antioxidant metabolism is involved in the responses of M. robusta Rehd. plants to high level of Mn stress.  相似文献   

9.
Rooting of wild-type tobacco (Nicotiana tabacum cv. Xanthi) shoots raised in vitro was promoted by polyamines in the absence of any other growth regulator and was inhibited by two inhibitors of polyamine metabolism. The auxin insensitive and recalcitrant to rooting rac mutant shoots did not respond to the same treatments. The activities of arginine decarboxylase (ADC), ornithine decarboxylase (ODC), diamine oxidase (DAO), polyamine oxidase (PAO) and transglutaminases (TGases), and the titres of free and conjugated polyamines were estimated in the whole shoots and the basal parts of the stems of both tobaccos in the course of multiplication in vitro. The rac shoots grew at a lower rate. The wild-type rooted from the 7th day without special treatment. During the second week of culture, the shoots of both tobaccos were actively growing and showed an increase in ADC, ODC, DAO, PAO and TGase activities. Afterwards all these activities declined. These changes were concomitant with an increase in the polyamine contents (free and conjugated). Biosynthesis and oxidation of polyamines apparently occurred simultaneously and seemed directly correlated. In the basal part of the mutant stems however, the accumulation of free and conjugated putrescine as well as the transient increase in biosynthetic enzyme activities were delayed compared to the wild-type. These results are discussed in relation to growth behaviour and to root formation.  相似文献   

10.
A new assay for the evaluation of spermidine (Spd) synthase activity was developed. It involves a coupled reaction and avoids the use of decarboxylated S-adenosylmethionine, which is unstable and not easily available. This assay was applied to assess changes in enzyme activity in oat leaves subjected to osmotic stress in the dark. The results indicate that osmotically-induced putrescine (Put) accumulation in cereals results not only from the activation of the arginine decarboxylase pathway, but also from the inhibition of the activity of Spd synthase, the enzyme which catalyzes the transformation of Put to Spd. Other possibilities which could contribute to the decline of Spd and spermine levels under osmotic stress are also discussed.Abbreviations ADC arginine decarboxylase - Dap diaminopropane - DFMA -difluoromethylarginine - MGBG methylglyoxal-bis-guanylhydrazone - MTA 5-deoxy-5-methylthioadenosine - ODC ornithine decarboxylase - PA polyamines - PAO polyamine oxidase - PCA perchloric acid - PLP pyridoxal phosphate - Put putrescine - SAM S-adenosylmethionine - dSAM decarboxylated S-adenosylmethionine - SAMDC S-adenosylmethionine decarboxylase - Spd spermidine - Spm spermine  相似文献   

11.
Recently we showed that ABA is at least partly responsible for the induction of the polyamine exodus pathway in Vitis vinifera plants. Both sensitive and tolerant plants employ this pathway to orchestrate stress responses, differing between stress adaptation and programmed cell death. Herein we show that ABA is an upstream signal for the induction of the polyamine catabolic pathway in Vitis vinifera. Thus, amine oxidases are producing H2O2 which signals stomata closure. Moreover, the previously proposed model for the polyamine catabolic pathway is updated and discussed.Key words: plant growth, abscissic acid, polyamines, amine oxidases, signaling, oxidative stress, programmed cell deathWe have shown that tobacco salinity induces an exodus of the polyamine (PA) spermidine (Spd) into the apoplast where it is oxidized by polyamine oxidase (PAO) generating hydrogen peroxide (H2O2). Depending on the size of H2O2, it signals either tolerance-effector genes or the programmed cell death syndrome1 (PCD). PAs are ubiquitous and biologically active molecules. In the recent years remarkable progress has been accomplished regarding the regulation of PAs biosynthesis and catalysis, not only under normal physiological but also under stress conditions.1 The most studied PAs are the diamine Putrescine (Put) and its derivatives the triamine Spd and the tetramine spermine (Spm). They are present in the cells in soluble form (S), or conjugated either to low molecular weight compounds (soluble hydrolyzed form, SH) or to “macro” molecules or cell walls (pellet hydrolyzed form, PH). In higher plants, Put is synthesized either directly from ornithine via ornithine decarboxylase (ODC; EC 4.1.1.17) or indirectly from arginine via arginine decarboxylase (ADC; EC 4.1.1.19). Spd and Spm are synthesized via Spd synthase (EC 2.5.1.16, SPDS) and Spm synthase (EC 2.5.1.22, SPMS), respectively, by sequential addition of aminopropyl groups to Put, catalyzed by S-adenosyl-L-methionine decarboxylase (SAMDC; EC 4.1.1.50).2,3 In plants, PAs are present in the cytoplasm, as well as in cellular organelles.4 Recently it was shown that during stress, they are secreted into the apoplast where they are oxidized by amine oxidases (AOs), such as diamine oxidase for Put (DAO, E.C. 1.4.3.6) and polyamine oxidase (PAO, E.C. 1.4.3.4) for Spd and Spm.1,5,6 Oxidation of PAs generates, amongst other products, H2O21,7,8 which is involved in cell signaling processes coordinated by abscissic acid (ABA),9 but also acts as efficient oxidant and, at high concentration, orchestrates the PCD syndrome.6,10 Two types of PA catabolism by PAO are known in plants: the terminal and the back-conversion pathways. The terminal one takes place in the apoplast, produces except H2O2, 1,3-diaminopropane and an aldehyde depending on the species. On the other hand, the back-conversion pathway is intracellular (cytoplasm and peroxisomes) resulting to the production of H2O2 and the sequential production of Put by Spm via Spd.1,7 Now we have shown that PA exodus also occurs in Vitis vinifera and this phenomenon is at least partially induced by abscissic acid (ABA).11 Thus, exogenous application of ABA results to PA exodus into the apoplast of grapevine. PA is oxidized by an AO resulting to production of H2O2. When the titer of H2O2 is below a threshold, expression of tolerance-effector genes is induced, while when it exceeds this threshold the programmed cell death (PCD) syndrome is induced.  相似文献   

12.
The short-term polyamine response to inoculation, with tobacco mosaic virus (TMV), of TMV-inoculated NN (hypersensitive) and nn (susceptible) plants of Nicotiana tabacum (L.) cv. Samsun was investigated. Free and conjugated polyamine concentrations, putrescine biosynthesis, evaluated through arginine decarboxylase (ADC) and ornithine decarboxylase (ODC) activities, and putrescine oxidation, via diamine oxidase (DAO) activity, were analysed during the first 24 h from inoculation. Results were compared with those of mock-inoculated control plants. In NN TMV-inoculated plants undergoing the hypersensitive response (HR), free putrescine and spermidine concentrations had increased after 5 h compared with controls; polyamine conjugates also tended to increase compared with controls. In both virus- and mock-inoculated plants, ADC and ODC activities generally increased whereas DAO activity, which was present in controls, was detectable only in traces in inoculated tissues.
In TMV-infected susceptible plants, free putrescine and spermidine concentrations were lower at 5 h relative to controls, as were polyamine conjugates. No differences were revealed in ADC and ODC activities whereas DAO activity was not detectable. These results further support the hypothesis that polyamines are involved in the response of tobacco to TMV and that, only a few hours after inoculation, the response of hypersensitive plants is distinct from that of susceptible ones.  相似文献   

13.
Nitric oxide (NO), polyamines (PAs), diamine oxidases (DAO) and polyamine oxidases (PAO) play important roles in wide spectrum of physiological processes such as germination, root development, flowering and senescence and in defence responses against abiotic and biotic stress conditions. This functional overlapping suggests interaction of NO and PA in signalling cascades. Exogenous application of PAs putrescine, spermidine and spermine to Arabidopsis seedlings induced NO production as observed by fluorimetry and fluorescence microscopy using the NO-binding fluorophores DAF-2 and DAR-4M. The observed NO release induced by 1 mM spermine treatment in the Arabidopsis seedlings was very rapid without apparent lag phase. These observations pave a new insight into PA-mediated signalling and NO as a potential mediator of PA actions. When comparing the functions of NO and PA in plant development and abiotic and biotic stresses common to both signalling components it can be speculated that NO may be a link between PA-mediated stress responses filing a gap between many known physiological effects of PAs and amelioration of stresses. NO production indicated by PAs could be mediated either by H2O2, one reaction product of oxidation of PAs by DAO and PAO, or by unknown mechanisms involving PAs, DAO and PAO.  相似文献   

14.
To investigate the effect of exogenous Spermidine (Spd) and Spermine (Spm) on drought-induced damage to seedlings of Cerasus humili, relative water content (RWC), malondialdehyde content, relative electrolyte leakage, superoxide (O2 ?, SOD) generation rate, hydrogen peroxide (H2O2), endogenous polyamines (PAs), antioxidant enzymes [SOD and peroxidase (POD)] activities, PA-biosynthetic enzymes [arginine decarboxylase (ADC), ornithine decarboxylase (ODC), S-adenosylmethionine decarboxylase (SAMDC)] activities, as well as photosynthetic parameters, were measured in greenhouse cultured seedlings of C. humili. The results showed that either exogenous Spd or Spm (0.2 mM) significantly enhanced the level of RWC and prevented drought-induced lipid peroxidation. They also significantly enhanced photosynthetic capability and decreased O2 ? generation rate and H2O2 content. In addition, Spd and Spm helped to maintain SOD and POD activities in C. humili seedlings subjected to water stress, suggesting that they exerted a positive effect on antioxidant systems. The contents of endogenous free putrescine, Spd and Spm were increased to different extents in water-stressed C. humili seedlings. By the end of drought treatment (21 days) with exogenous Spd or Spm, the contents of free Spd increased by 30 and 38 %, respectively, and endogenous Spm increased by 41 and 26 %, respectively, compared with water-stressed plants. Furthermore, exogenous Spd or Spm enhanced the activities of ADC, ODC, and SAMDC. The pretreatment with Spd or Spm prevents oxidative damage induced by drought, and the protective effect of Spd was found to be greater than that of Spm.  相似文献   

15.
Previously we showed that dormancy break of spindle tree embryos after gibberellic acid (GA3) treatment was followed by an increase in arginine decarboxylase (ADC) activity (Béranger-Novat N. et al., Plant Sc. 102: 139–145, 1994). These results indicated that arginine decarboxylase pathway mediate hormone-induced growth responses in spindle tree embryos. In the present investigation we show that in GA3-treated embryos diamine oxidase (DAO) increases immediately after putrescine content and the increase in DAO activity paralleles the accumulation of putrescine at the beginning of the culture (before the visible appearance of the radicle). In this system polyamine oxidase (PAO) increases immediately after DAO activity and follows closely the increase in spermidine content. These results demonstrate a direct correlation between the biosynthesis and oxidation of putrescine and spermidine. At every stage of development DAO and putrescine levels are lower than spermidine and PAO levels. Dormant embryos can be distinguished from GA3-treated embryos by a complete lack of putrescine accumulation. In dormant embryos compared to GA3-treated embryos DAO changed more or less in parallel and on the whole seemed to follow the same content and distribution, but the kinetics of the activation of DAOs were different in dormant embryos with a delay of 1.5 day for the first and 1 day for the second peak. During the first days of culture at least up to 4 days the distribution of spermidine and PAO in GA3-treated embryos followed the same pattern observed in dormant embryos, but the levels of spermidine and PAO were greatly reduced in dormant embryos. On the other hand the kinetics of the activation of PAOs were different in dormant embryos with a delay of 1 day. The results suggest that dormant embryos are deficient in their ability to synthesize polyamines efficiently and support the view that spermidine catabolism (via PAO pool) is limiting in untreated embryos during the first days of culture.  相似文献   

16.
17.
18.
The effect of salt stress on proline (Pro) accumulation and its relationship with the changes occurring at the level of polyamine (PA) metabolism and tyramine were investigated in leaf discs of tomato (Lycopersicon esculentum). The rate of accumulation of Pro, PA and tyramine was higher in the salt-sensitive than in the salt-tolerant cultivar. In the salt-sensitive cultivar, Pro started to accumulate 4 h after the onset of the NaCl treatment, its maximum level being reached 27 h later. The lag phase was associated with a rapid decrease in putrescine (Put) and spermidine (Spd) and some increase in 1,3-diaminopropane (Dap), a product of Spd and/or spermine (Spm) oxidation. This was followed by an increase in agmatine (Agm), cadaverine (Cad), Spm and tyramine. α-DL-difluoromethylarginine (DFMA), an inhibitor of arginine decarboxylase (ADC, EC 4.1.1.19), induced a decrease in the Put level in both control and stressed discs, while α-DL-difluoromethylomithine (DFMO), an inhibitor of ornithine decarboxylase (ODC, EC 4.1.1.17), caused a decrease in Spd and Spm levels only in salinized discs. These data suggest that ADC is operating under both control and stress conditions, whereas ODC activity is promoted only in response to salt stress. DFMA also depressed the salt-induced Pro accumulation while DFMO did not inhibit this response. In salt-stressed leaf discs, the decrease in Spd level in response to methylglyoxal-bis-(guanylhydrazone) (MGBG) or cyclohexylammonium (CHA) treatment suggests that salt stress did not block SAM decarboxylase or Spd synthase activities. However, the increased level of Dap reflected a salt stress-promoted oxidation of PA. CHA and MGBG had no effect on Pro accumulation. Putrescine, Dap and especially tyramine supplied at low concentrations stimulated the Pro response which was, however, suppressed by application of Spm. Treatment with aminoguanidine, an inhibitor of diamine oxidases, also strongly inhibited Pro accumulation. These data suggest that salt-induced Pro accumulation in tomato leaf discs is closely related to changes in their PA metabolism, either via substrate-product relationships or regulatory effects at target(s) which remain to be characterized.  相似文献   

19.
Slocum RD  Furey MJ 《Planta》1991,183(3):443-450
An electron-microscopic cytochemical method was used to localize diamine oxidase (DAO) in pea and polyamine oxidase (PAO) in maize (Zea mays L.). The method, based on the precipitation of amine-oxidase-generated H2O2 by CeCl3, was shown to be specific for DAO and PAO and permitted their localization in plant tissues with a high degree of resolution. Both enzymes are localized exclusively in the cell wall. Both DAO- and PAO-activity staining is most intense in the middle lamellar region of the wall and in cells exhibiting highly lignified walls. The oxidases could provide H2O2 for peroxidase-mediated cross-linking reactions in the cell wall and may, in this capacity, play a role in the regulation of plant growth.Abbreviations AG 1-aminoguanidine - AT 3-amino-1,2,4-triazole - -HEH -hydroxyethylhydrazine - DAO(s) diamine oxidase(s) - PAO(s) polyamine oxidase(s) - Put putrescine - Spd spermidine - Spm spermine The authors wish to thank Nancy Piatczyc for the technical assistance with electron-microscopy studies. We are grateful to Dr. Stanley J. Roux, University of Texas at Austin, for providing us with samples of maize cell-wall exudates. This work was supported by grants to R.D.S from the National Aeronautics and Space Administration (NAGW-1049 and NAGW-1382).  相似文献   

20.
Arginine decarboxylase (ADC), ornithine decarboxylase (ODC), diamine oxydase (DAO) free amine and conjugated amine titers were estimated in leaf explants of Chrysanthemum morifolium Ramat. var. Spinder cultivated in vitro in relation to hormone treatment. Addition of benzyladenine (BA) to a basal medium caused the formation of buds on the explants. BA plus 2,4 dichlorophenoxyacetic acid (2,4 D) caused callus formation and proliferation. Formation of roots was obtained by addition of indolylacetic acid (IAA). Arginine decarboxylase (ADC) ornithine decarboxylase (ODC) and diamine oxidase (DAO) activities increased during the first days of culture when cell multiplication was rapid, followed by a sharp decline as the rate of cell division decreased and differentiation took place. DAO activities increased rapidly in proliferating and growing organs and decreased during maturity. This increase was concomitant with ADC and ODC activities and polyamine content (free and conjugated polyamines). The biosynthesis and oxidation of polyamines which occurred simultaneously in physiological states of intense metabolism such as cell division or organ formation were directly correlated. In callus cultures DAO activity was blocked throughout development and regulated neither the cellular levels of polyamines nor polyamine conjugates. Levels of polyamine conjugates were high in callus cultures throughout development. In foliar explants cultivated on a medium promoting callus, inhibition of ODC activity by DFMO (-DL-difluoromethylornithine, a specific enzyme-activated ODC inhibitor) resulting in an amide deficiency facilated the expression of differentiated cell function; substantial activation of DAO was observed until the emergence of the buds. On a medium promoting bud formation, -OH ethylhydrazine (DAO inhibitor) promoted callus formation without differentiation. In this system DAO activity was blocked and there were high levels of polyamines, especially polyamine conjugates, throughout the culture period. The relationship among free and conjugated polyamines related biosynthetic enzyme activities, DAO activities, cell division and organ formation is discussed.Abbreviations ADC = arginine decarboxylase - ODC = ornithine decarboxylase - DOA = diamine oxidase - DFMA = -DL-difluoromethylarginine - DFMO = -DL-difluoromethylornithine - Put = putrescine  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号