首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
l-Serine is a nonessential amino acid, but plays a crucial role as a building block for cell growth. Currently, l-serine production is mainly dependent on enzymatic or cellular conversion. In this study, we constructed a recombinant Escherichia coli that can fermentatively produce l-serine from glucose. To accumulate l-serine, sdaA encoding the l-serine dehydratase, iclR encoding the isocitrate lyase regulator, and arcA encoding the aerobic respiration control protein were deleted in turn. In batch fermentation, the engineered E. coli strain YF-5 exhibited obvious l-serine accumulation but poor cell growth. To restore cell growth, aceB encoding the malate synthase was knocked out, and the engineered strain was then transformed with plasmid that overexpressed serA FR , serB, and serC genes. The resulting strain YF-7 produced 4.5 g/L l-serine in batch cultivation and 8.34 g/L l-serine in fed-batch cultivation.  相似文献   

2.
Astrocytic excitatory amino acid transporters (EAATs) regulate excitatory transmission and limit excitotoxicity. Evidence for a functional interface between EAATs and glial fibrillary acidic protein (GFAP) relevant to astrocytic morphology led to investigations of actions of transportable (d-Aspartate (d-Asp) and (2S,3S,4R)-2-(carboxycyclopropyl)glycine (l-CCG-III)) and non-transportable (dl-threo-β-benzyloxyaspartate (dl-TBOA)) inhibitors of Glu uptake in murine astrocytes. d-Asp (1 mM), l-CCG-III (0.5 mM) and dl-TBOA (0.5 mM) produced time-dependent (24–72 h) reductions in 3[H]d-Asp uptake (approximately 30–70%) with little or no gliotoxicity. All drugs induced a profound change in phenotype from cobblestone to stellate morphology and image analysis revealed increases in the intensity of GFAP immunolabelling for l-CCG-III and dl-TBOA. Cytochemistry indicated localized changes in F-actin distribution. Cell surface expression of EAAT2, but not EAAT1, was elevated at 72 h. Blockade of Glu uptake by both types of EAAT inhibitor exerts longer-term effects on astrocytic morphology and a compensatory homeostatic rise in EAAT2 abundance.  相似文献   

3.
The demand for d-2-phenylglycine used to synthesize semisynthetic antibiotics and pesticides is increasing. We have isolated a Chryseobacterium sp. that selectively transformed the l-form of racemic d,l-2-phenylglycine to (2S)-2-acetylamide-2-phenylacetic acid with a molar yield of 50 % and an enantiomer excess of >99.5 % under optimal culture conditions, consequently resulting in 99 % pure d-2-phenylglycine remaining in the culture. The enantioselective N-acetylation was catalyzed by an acetyl-CoA-dependent N-acetyltransferase whose synthesis was induced by l-2-phenylglycine. The enzyme differed from previously reported bacterial arylamine N-acetyltransferases in molecular mass and substrate specificity. The relative activity ratio of the enzyme with the substrates l-2-phenylglycine, d-2-phenylglycine, 2-(2-chlorophenyl)glycine, and 5-aminosalicylic acid (a good substrate of arylamine N-acetyltransferase) was 100:0:56.9:5.49, respectively. The biotransformation by the N-acetyltransferase-producing bacterium reported here could constitute a new preparative route for the enzymatic resolution of d,l-2-phenylglycine.  相似文献   

4.
A recombinant l-fucose isomerase from Caldicellulosiruptor saccharolyticus was purified as a single 68 kDa band with an activity of 76 U mg?1. The molecular mass of the native enzyme was 204 kDa as a trimer. The maximum activity for l-fucose isomerization was at pH 7 and 75°C in the presence of 1 mM Mn2+. Its half-life at 70°C was 6.1 h. For aldose substrates, the enzyme displayed activity in decreasing order for l-fucose, with a k cat of 11,910 min?1 and a K m of 140 mM, d-arabinose, d-altrose, and l-galactose. These aldoses were converted to the ketoses l-fuculose, d-ribulose, d-psicose, and l-tagatose, respectively, with 24, 24, 85, 55% conversion yields after 3 h.  相似文献   

5.
The discovery of large amounts of d-serine in the brain challenged the dogma that only l-amino acids are relevant for eukaryotes. The levels of d-serine in the brain are higher than many l-amino acids and account for as much as one-third of l-serine levels. Several studies in the last decades have demonstrated a role of d-serine as an endogenous agonist of N-methyl-d-aspartate receptors (NMDARs). d-Serine is required for NMDAR activity during normal neurotransmission as well as NMDAR overactivation that takes place in neurodegenerative conditions. Still, there are many unanswered questions about d-serine neurobiology, including regulation of its synthesis, release and metabolism. Here, we review the mechanisms of d-serine synthesis by serine racemase and discuss the lessons we can learn from serine racemase knockout mice, focusing on the roles attributed to d-serine and its cellular origin.  相似文献   

6.
In this study, the d-serine ammonia lyase (dsdA) gene from Escherichia coli was evaluated as a selectable marker for maize transformation. Plants are incapable of utilizing the D-form of most amino acids, and d-serine has recently been demonstrated to be phytoinhibitory to plant growth. d-Serine ammonia lyase detoxifies d-serine via a substrate-specific reaction to pyruvate, ammonia, and water. d-Serine inhibits germination of isolated maize immature embryos and growth of embryogenic callus from wild-type plants at concentrations about approx. 2?C15 mM. Transgenic plants were recovered in the presence of d-serine in tissue culture media with dsdA as the selection marker at efficiencies comparable to using a mutated acetohydroxy acid synthase selection marker gene and selection in the presence of imidazolinone herbicides. Immature embryos infected with an Agrobacterium strain containing an acetohydroxy acid synthase gene construct without dsdA did not yield any transgenic events on the selection medium with 10 mM d-serine, indicating that d-serine provided selection tight enough to prevent escapes. Molecular analysis confirmed the integration of the dsdA gene into the genome of the transgenic plants. No adverse phenotypes were observed in the greenhouse, and expression of the dsdA marker had no affect on agronomic characteristics or grain yield in multi-location field trials. Seed compositional analysis demonstrated no significant differences in the contents of seed protein, starch, fatty acids, fiber, phytic acid, and free amino acids between transgenic and non-transgenic control plants. These data indicate that the dsdA gene is properly expressed in maize and the d-serine ammonia lyase (DSDA) enzyme functions appropriately to metabolize d-serine during in vitro selection. Preliminary safety assessments indicated that no adverse affects would be expected if humans were exposed to the DSDA protein in the diet from an allergenicity or toxicity perspective. The dsdA gene in combination with phytoinhibitory levels of d-serine represents a new and effective selectable marker system for maize transformation.  相似文献   

7.
d-Serine, a co-agonist at the NMDA receptor (NMDAR), is synthesized from l-serine by the enzyme serine racemase (SR), which is heavily expressed in the forebrain. Although SR was originally reported to be localized exclusively to astrocytes, recent conditional knock out results demonstrate that little SR is expressed in forebrain astrocytes. As a consequence, the cellular location of its product, d-serine, in the brain is also uncertain. Immunocytochemistry now indicates that SR is expressed primarily in forebrain glutamatergic neurons with the remainder in GABAergic interneurons. We utilized SR deficient (SR?/?) mice, which have <15 % of normal d-serine levels, to validate and optimize a d-serine immunohistochemical method. Nearly all of the d-serine in neocortex and hippocampus (HP) is found in neurons, with virtually no d-serine co-localizing with two astrocyte markers. Interestingly, only a subset of the d-serine positive neurons contained SR in the neocortex and HP. Greater than half of the d-serine positive neurons were GABAergic interneurons, with a majority of these neurons containing parvalbumin and/or somatostatin. Only ~25–40 % of interneurons expressed SR in the neocortex and HP. Finally, we demonstrate in human post-mortem neocortex that SR is found in both excitatory and inhibitory neurons, but not in S100β-containing astrocytes. In sum, these findings conclusively demonstrate that the majority of d-serine is both synthesized and stored in neurons. It will be important to determine the functional significance for the separation of synthesis and storage of d-serine in neurons, as well as the presence of this NMDAR co-agonist in GABAergic interneurons.  相似文献   

8.
Cystinuria is an autosomal recessive disease that causes l-cystine precipitation in urine and nephrolithiasis. Disease severity is highly variable; it is known, however, that cystinuria has a more severe course in males. The aim of this study was to compare l-cystine metastability in first-morning urine collected from 24 normal female and 24 normal male subjects. Samples were buffered at pH 5 and loaded with l-cystine (0.4 and 4 mM final concentration) to calculate the amount remaining in solution after overnight incubation at 4 °C; results were expressed as Z scores reflecting the l-cystine solubility in each sample. In addition, metabolomic analyses were performed to identify candidate compounds that influence l-cystine solubility. l-cystine solubility Z score was +0.44 ± 1.1 and ?0.44 ± 0.70 in female and male samples, respectively (p < 0.001). Further analyses showed that the l-cystine solubility was independent from urine concentration but was significantly associated with low urinary excretion of inosine (p = 0.010), vanillylmandelic acid (VMA) (p = 0.015), adenosine (p = 0.029), and guanosine (p = 0.032). In vitro l-cystine precipitation assays confirmed that these molecules induce higher rates of l-cystine precipitation in comparison with their corresponding dideoxy molecules, used as controls. In silico computational and modeling analyses confirmed higher binding energy of these compounds. These data indicate that urinary excretion of nucleosides and VMA may represent important factors that modulate l-cystine solubility and may represent new targets for therapy in cystinuria.  相似文献   

9.
The eukaryotic serine racemase from Dictyostelium discoideum is a fold-type II pyridoxal 5′-phosphate (PLP)-dependent enzyme that catalyzes racemization and dehydration of both isomers of serine. In the present study, the catalytic mechanism and role of the active site residues of the enzyme were examined by site-directed mutagenesis. Mutation of the PLP-binding lysine (K56) to alanine abolished both serine racemase and dehydrase activities. Incubation of d- and l-serine with the resultant mutant enzyme, K56A, resulted in the accumulation of PLP-serine external aldimine, while less amounts of pyruvate, α-aminoacrylate, antipodal serine and quinonoid intermediate were formed. An alanine mutation of Ser81 (S81) located on the opposite side of K56 against the PLP plane converted the enzyme from serine racemase to l-serine dehydrase; S81A showed no racemase activity and had significantly reduced d-serine dehydrase activity, but it completely retained its l-serine dehydrase activity. Water molecule(s) at the active site of the S81A mutant enzyme probably drove d-serine dehydration by abstracting the α-hydrogen in d-serine. Our data suggest that the abstraction and addition of α-hydrogen to l- and d-serine are conducted by K56 and S81 at the si- and re-sides, respectively, of PLP.  相似文献   

10.
Hepatopancreatic brush border membrane vesicles (BBMV), made from Atlantic White shrimp (Litopenaeus setiferus), were used to characterize the transport properties of 3H-l-leucine influx by these membrane systems and how other essential amino acids and the cations, sodium and potassium, interact with this transport system. 3H-l-leucine uptake by BBMV was pH-sensitive and occurred against transient transmembrane concentration gradients in both Na+- and K+-containing incubation media, suggesting that either cation was capable of providing a driving force for amino acid accumulation. 3H-l-leucine uptake in NaCl or KCl media were each three times greater in acidic pH (pH 5.5) than in alkaline pH (pH 8.5). The essential amino acid, l-methionine, at 20 mM significantly (p < 0.0001) inhibited the 2-min uptakes of 1 mM 3H-l-leucine in both Na+- and K+-containing incubation media. The residual 3H-l-leucine uptake in the two media were significantly greater than zero (p < 0.001), but not significantly different from each other (p > 0.05) and may represent an l-methionine- and cation-independent transport system. 3H-l-leucine influxes in both NaCl and KCl incubation media were hyperbolic functions of [l-leucine], following the carrier-mediated Michaelis–Menten equation. In NaCl, 3H-l-leucine influx displayed a low apparent K M (high affinity) and low apparent J max, while in KCl the transport exhibited a high apparent K M (low affinity) and high apparent J max. l-methionine or l-phenylalanine (7 and 20 mM) were competitive inhibitors of 3H-l-leucine influxes in both NaCl and KCl media, producing a significant (p < 0.01) increase in 3H-l-leucine influx K M, but no significant response in 3H-l-leucine influx J max. Potassium was a competitive inhibitor of sodium co-transport with 3H-l-leucine, significantly (p < 0.01) increasing 3H-l-leucine influx K M in the presence of sodium, but having negligible effect on 3H-l-leucine influx J max in the same medium. These results suggest that shrimp BBMV transport 3H-l-leucine by a single l-methionine- and l-phenylalanine-shared carrier system that is enhanced by acidic pH and can be stimulated by either Na+ or K+ acting as co-transport drivers binding to shared activator sites.  相似文献   

11.
3-O-β-d-Xylopyranosyl-l-serine (xylosylserine) was synthesized by the following three-step procedure: 1) 2,3,4-tri-O-benzoyl-α-d-xylopyranosyl bromide (benzobromoxylose) was condensed withN-carbobenzoxy-l-serine benzyl ester using the silver triflate-collidine complex as promoter; 2) theN-carbobenzoxy and benzyl ester groups in the resultant glycoside were cleaved by transfer hydrogenation with palladium black as catalyst and ammonium formate as hydrogen donor; and 3) the benzoyl groups were removed with methanolic ammonia. Xylosylserine was obtained in an overall yield of 70%. O-β-d-Galactopyranosyl-(1-4)-O-β-d-xylopyranosyl-(1-3)-l-serine (galactosylxylosylserine) was also synthesized by this methodology and was characterized by 2-dimensional (2D) NMR spectroscopy techniques. The two serine glycosides (xylosylserine and galactosylxylosylserine) were used in detection and partial purification of galactosyltransferase I (UDP-d-galactose:d-xylose galactosyltransferase) from adult rat liver.  相似文献   

12.
Enantiomerically pure l-homophenylalanine (l-HPA) is a key building block for the synthesis of angiotensin-converting enzyme inhibitors and other chiral pharmaceuticals. Among the processes developed for the l-HPA production, biocatalytic synthesis employing phenylalanine dehydrogenase has been proven as the most promising route. However, similar to other dehydrogenase-catalyzed reactions, the viability of this process is markedly affected by insufficient substrate loading and high costs of the indispensable cofactors. In the present work, a highly efficient and economic biocatalytic process for l-HPA was established by coupling genetically modified phenylalanine dehydrogenase and formate dehydrogenase. Combination of fed-batch substrate addition and a continuous product removal greatly increased substrate loading and cofactor utilization. After systemic optimization, 40 g (0.22 mol) of keto acid substrate was transformed to l-HPA within 24 h and a total of 0.2 mM NAD+ was reused effectively in eight cycles of fed-batch operation, consequently giving an average substrate concentration of 510 mM and a productivity of 84.1 g l?1 day?1 for l-HPA. The present study provides an efficient and feasible enzymatic process for the production of l-HPA and a general solution for the increase of substrate loading.  相似文献   

13.
A gene in Bradyrhizobium japonicum USDA 110, annotated as a ribitol dehydrogenase (RDH), had 87 % sequence identity (97 % positives) to the N-terminal 31 amino acids of an l-glucitol dehydrogenase from Stenotrophomonas maltophilia DSMZ 14322. The 729-bp long RDH gene coded for a protein consisting of 242 amino acids with a molecular mass of 26.1 kDa. The heterologously expressed protein not only exhibited the main enantio selective activity with d-glucitol oxidation to d-fructose but also converted l-glucitol to d-sorbose with enzymatic cofactor regeneration and a yield of 90 %. The temperature stability and the apparent K m value for l-glucitol oxidation let the enzyme appear as a promising subject for further improvement by enzyme evolution. We propose to rename the enzyme from the annotated RDH gene (locus tag bll6662) from B. japonicum USDA as a d-sorbitol dehydrogenase (EC 1.1.1.14).  相似文献   

14.
Yumi Takemoto 《Amino acids》2014,46(4):863-872
The endogenous sulfur-containing amino acid l-cysteine injected into the cerebrospinal fluid space of the cisterna magna increases arterial blood pressure (ABP) and heart rate (HR) in the freely moving rat. The present study examined (1) cardiovascular responses to l-cysteine microinjected into the rostral ventrolateral medulla (RVLM), where a group of neurons regulate activities of cardiovascular sympathetic neurons and (2) involvement of ionotropic excitatory amino acid (iEAA) receptors in response. In the RVLM of urethane-anesthetized rats accessed ventrally and identified with pressor responses to l-glutamate (10 mM, 34 nl), microinjections of l-cysteine increased ABP and HR dose dependently (3–100 mM, 34 nl). The cardiovascular responses to l-cysteine (30 mM) were not attenuated by a prior injection of either antagonist alone, MK801 (20 mM, 68 nl) for the NMDA type of iEAA receptors, or CNQX (2 mM) for the non-NMDA type. However, inhibition of both NMDA and non-NMDA receptors with additional prior injection of either antagonist completely blocked those responses to l-cysteine. The results indicate that l-cysteine has functional cardiovascular action in the RVLM of the anesthetized rat, and the responses to l-cysteine involve both NMDA and non-NMDA receptors albeit in a mutually exclusive parallel fashion. The findings may suggest endogenous roles of l-cysteine indirectly via iEAA receptors in the neuronal network of the RVLM for cardiovascular regulation in physiological and pathological situations.  相似文献   

15.
The experiments presented here were based on the conclusions of our previous results. In order to avoid introduction of expression plasmid and to balance the NADH/NAD ratio, the NADH biosynthetic enzyme, i.e., NAD-dependent glyceraldehyde-3-phosphate dehydrogenase (GADPH), was replaced by NADP-dependent GADPH, which was used to biosynthesize NADPH rather than NADH. The results indicated that the NADH/NAD ratio significantly decreased, and glucose consumption and l-lysine production drastically improved. Moreover, increasing the flux through l-lysine biosynthetic pathway and disruption of ilvN and hom, which involve in the branched amino acid and l-methionine biosynthesis, further improved l-lysine production by Corynebacterium glutamicum. Compared to the original strain C. glutamicum Lys5, the l-lysine production and glucose conversion efficiency (α) were enhanced to 81.0 ± 6.59 mM and 36.45 % by the resulting strain C. glutamicum Lys5-8 in shake flask. In addition, the by-products (i.e., l-threonine, l-methionine and l-valine) were significantly decreased as results of genetic modification in homoserine dehydrogenase (HSD) and acetohydroxyacid synthase (AHAS). In fed-batch fermentation, C. glutamicum Lys5-8 began to produce l-lysine at post-exponential growth phase and continuously increased over 36 h to a final titer of 896 ± 33.41 mM. The l-lysine productivity was 2.73 g l?1 h?1 and the α was 47.06 % after 48 h. However, the attenuation of MurE was not beneficial to increase the l-lysine production because of decreasing the cell growth. Based on the above-mentioned results, we get the following conclusions: cofactor NADPH, precursor, the flux through l-lysine biosynthetic pathway and DCW are beneficial to improve l-lysine production in C. glutamicum.  相似文献   

16.
This paper discusses the application of a reagentless, selective microbiosensor as a useful alternative tool for monitoring d-serine in neural samples. The main components of the 125-μm-diameter disk biosensor were d-amino acid oxidase for d-serine sensitivity (linear region slope, 61?±?7?μA?cm–2?mM–1; limit of detection, 20?nM), and poly-phenylenediamine for rejection of electroactive interference. The response time of the biosensor was of the order of 1?s, ideal for ‘real-time’ monitoring, and detection of systemically administered d-serine in brain extracellular fluid is demonstrated. Exploitation of this probe might resolve queries involving regulation of d-serine in excitotoxicity, and modulation of N-methyl-d-aspartate receptor function by d-serine and glycine in the central nervous system.  相似文献   

17.
l-DOPA (3,4-dihydroxyphenyl-l-alanine) is the most widely used drug for treatment of Parkinson’s disease. In this study Yarrowia lipolytica-NCIM 3472 biomass was used for transformation of l-tyrosine to l-DOPA. The process parameters were optimized using response surface methodology (RSM). The optimum values of the tested variables for the production of l-DOPA were: pH 7.31, temperature 42.9 °C, 2.31 g l?1 cell mass and 1.488 g l?1 l-tyrosine. The highest yield obtained with these optimum parameters along with recycling of the cells was 4.091 g l?1. This optimization of process parameters using RSM resulted in 4.609-fold increase in the l-DOPA production. The statistical analysis showed that the model was significant. Also coefficient of determination (R2) was 0.9758, indicating a good agreement between the experimental and predicted values of l-DOPA production. The highest tyrosinase activity observed was 7,028 U mg?1 tyrosine. l-DOPA production was confirmed by HPTLC and HPLC analysis. Thus, RSM approach effectively enhanced the potential of Y. lipolytica-NCIM 3472 as an alternative source to produce l-DOPA.  相似文献   

18.
The d,d-transpeptidase activity of Penicillin Binding Proteins (PBPs) is essential to maintain cell wall integrity. PBPs catalyze the final step of the peptidoglycan synthesis by forming 4 → 3 cross-links between two peptide stems. Recently, a novel β-lactam resistance mechanism involving l,d-transpeptidases has been identified in Enterococcus faecium and Mycobacterium tuberculosis. In this resistance pathway, the classical 4 → 3 cross-links are replaced by 3 → 3 cross-links, whose formation are catalyzed by the l,d-transpeptidases. To date, only one class of the entire β-lactam family, the carbapenems, is able to inhibit the l,d-transpeptidase activity. Nevertheless, the specificity of this inactivation is still not understood. Hence, the study of this new transpeptidase family is of considerable interest in order to understand the mechanism of the l,d-transpeptidases inhibition by carbapenems. In this context, we present herein the backbone and side-chain 1H, 15N and 13C NMR assignment of the l,d-transpeptidase from Bacillus subtilis (LdtBs) in the apo and in the acylated form with a carbapenem, the imipenem.  相似文献   

19.
During l-glutamate production, phosphoenolpyruvate carboxylase and pyruvate carboxylase (PCx) play important roles in supplying oxaloacetate to the tricarboxylic acid cycle. To explore the significance of PCx for l-glutamate overproduction, the pyc gene encoding PCx was amplified in Corynebacterium glutamicum GDK-9 triggered by biotin limitation and CN1021 triggered by a temperature shock, respectively. In the fed-batch cultures, GDK-9pXMJ19pyc exhibited 7.4 % lower l-alanine excretion and no improved l-glutamate production. In contrast, CN1021pXMJ19pyc finally exhibited 13 % lower l-alanine excretion and identical l-glutamate production, however, 8.5 % higher l-glutamate production was detected during a short period of the fermentation. It was indicated that pyc overexpression in l-glutamate producer strains, especially CN1021, increased the supply of oxaloacetate for l-glutamate synthesis and decreased byproduct excretion at the pyruvate node.  相似文献   

20.
Four potential dehydrogenases identified through literature and bioinformatic searches were tested for l-arabonate production from l-arabinose in the yeast Saccharomyces cerevisiae. The most efficient enzyme, annotated as a d-galactose 1-dehydrogenase from the pea root nodule bacterium Rhizobium leguminosarum bv. trifolii, was purified from S. cerevisiae as a homodimeric protein and characterised. We named the enzyme as a l-arabinose/d-galactose 1-dehydrogenase (EC 1.1.1.-), Rl AraDH. It belongs to the Gfo/Idh/MocA protein family, prefers NADP+ but uses also NAD+ as a cofactor, and showed highest catalytic efficiency (k cat/K m) towards l-arabinose, d-galactose and d-fucose. Based on nuclear magnetic resonance (NMR) and modelling studies, the enzyme prefers the α-pyranose form of l-arabinose, and the stable oxidation product detected is l-arabino-1,4-lactone which can, however, open slowly at neutral pH to a linear l-arabonate form. The pH optimum for the enzyme was pH 9, but use of a yeast-in-vivo-like buffer at pH 6.8 indicated that good catalytic efficiency could still be expected in vivo. Expression of the Rl AraDH dehydrogenase in S. cerevisiae, together with the galactose permease Gal2 for l-arabinose uptake, resulted in production of 18 g of l-arabonate per litre, at a rate of 248 mg of l-arabonate per litre per hour, with 86 % of the provided l-arabinose converted to l-arabonate. Expression of a lactonase-encoding gene from Caulobacter crescentus was not necessary for l-arabonate production in yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号