首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the bacterial periplasm the co-existence of a catalyst of disulfide bond formation (DsbA) that is maintained in an oxidized state and of a reduced enzyme that catalyzes the rearrangement of mispaired cysteine residues (DsbC) is important for the folding of proteins containing multiple disulfide bonds. The kinetic partitioning of the DsbA/DsbB and DsbC/DsbD pathways partly depends on the ability of DsbB to oxidize DsbA at rates >1000 times greater than DsbC. We show that the resistance of DsbC to oxidation by DsbB is abolished by deletions of one or more amino acids within the alpha-helix that connects the N-terminal dimerization domain with the C-terminal thioredoxin domain. As a result, mutant DsbC carrying alpha-helix deletions could catalyze disulfide bond formation and complemented the phenotypes of dsbA cells. Examination of DsbC homologues from Haemophilus influenzae, Pseudomonas aeruginosa, Erwinia chrysanthemi, Yersinia pseudotuberculosis, Vibrio cholerae (30-70% sequence identity with the Escherichia coli enzyme) revealed that the mechanism responsible for avoiding oxidation by DsbB is a general property of DsbC family enzymes. In addition we found that deletions in the linker region reduced, but did not abolish, the ability of DsbC to assist the formation of active vtPA and phytase in vivo, in a DsbD-dependent manner, revealing that interactions between DsbD and DsbC are also conserved.  相似文献   

2.
Escherichia coli uses the DsbA/DsbB system for introducing disulphide bonds into proteins in the cell envelope. Deleting either dsbA or dsbB or both reduces disulphide bond formation but does not entirely eliminate it. Whether such background disulphide bond forming activity is enzyme-catalysed is not known. To identify possible cellular factors that might contribute to the background activity, we studied the effects of overexpressing endogenous proteins on disulphide bond formation in the periplasm. We find that overexpressing PspE, a periplasmic rhodanese, partially restores substantial disulphide bond formation to a dsbA strain. This activity depends on DsbC, the bacterial disulphide bond isomerase, but not on DsbB. We show that overexpressed PspE is oxidized to the sulphenic acid form and reacts with substrate proteins to form mixed disulphide adducts. DsbC either prevents the formation of these mixed disulphides or resolves these adducts subsequently. In the process, DsbC itself gets oxidized and proceeds to catalyse disulphide bond formation. Although this PspE/DsbC system is not responsible for the background disulphide bond forming activity, we suggest that it might be utilized in other organisms lacking the DsbA/DsbB system.  相似文献   

3.
Current dogma dictates that bacterial proteins with misoxidized disulfide bonds are shuffled into correctly oxidized states by DsbC. There are two proposed mechanisms for DsbC activity. The first involves a DsbC-only model of substrate disulfide rearrangement. The second invokes cycles of reduction and oxidation of substrate disulfide bonds by DsbC and DsbA respectively. Here, we addressed whether the second mechanism is important in vivo by identifying whether a periplasmic reductase could complement DsbC. We screened for naturally occurring periplasmic reductases in Bacteroides fragilis , a bacterium chosen because we predicted it encodes reductases and has a reducing periplasm. We found that the B. fragilis periplasmic protein TrxP has a thioredoxin fold with an extended N-terminal region; that it is a very active reductase but a poor isomerase; and that it fully complements dsbC . These results provide direct in vivo evidence that correctly folded protein is achievable via cycles of oxidation and reduction.  相似文献   

4.
In Escherichia coli, DsbA introduces disulphide bonds into secreted proteins. DsbA is recycled by DsbB, which generates disulphides from quinone reduction. DsbA is not known to have any proofreading activity and can form incorrect disulphides in proteins with multiple cysteines. These incorrect disulphides are thought to be corrected by a protein disulphide isomerase, DsbC, which is kept in the reduced and active configuration by DsbD. The DsbC/DsbD isomerization pathway is considered to be isolated from the DsbA/DsbB pathway. We show that the DsbC and DsbA pathways are more intimately connected than previously thought. dsbA(-)dsbC(-) mutants have a number of phenotypes not exhibited by either dsbA(-), dsbC(-) or dsbA(-)dsbD(-) mutations: they exhibit an increased permeability of the outer membrane, are resistant to the lambdoid phage Phi80, and are unable to assemble the maltoporin LamB. Using differential two-dimensional liquid chromatographic tandem mass spectrometry/mass spectrometry analysis, we estimated the abundance of about 130 secreted proteins in various dsb(-) strains. dsbA(-)dsbC(-) mutants exhibit unique changes at the protein level that are not exhibited by dsbA(-)dsbD(-) mutants. Our data indicate that DsbC can assist DsbA in a DsbD-independent manner to oxidatively fold envelope proteins. The view that DsbC's function is limited to the disulphide isomerization pathway should therefore be reinterpreted.  相似文献   

5.
Oxidative protein folding in the periplasm of Escherichia coli is catalyzed by the thiol-disulfide oxidoreductases DsbA and DsbC. We investigated the catalytic efficiency of these enzymes during folding of proteins with a very complex disulfide pattern in vivo and in vitro, using the Ragi bifunctional inhibitor (RBI) as model substrate. RBI is a 13.1 kDa protein with five overlapping disulfide bonds. We show that reduced RBI can be refolded quantitatively in glutathione redox buffers in vitro and spontaneously adopts the single correct conformation out of 750 possible species with five disulfide bonds. Under oxidizing redox conditions, however, RBI folding is hampered by accumulation of a large number of intermediates with non-native disulfide bonds, while a surprisingly low number of intermediates accumulates under optimal or reducing redox conditions. DsbC catalyzes folding of RBI under all redox conditions in vitro, but is particularly efficient in rearranging buried, non-native disulfide bonds formed under oxidizing conditions. In contrast, the influence of DsbA on the refolding reaction is essentially restricted to reducing redox conditions where disulfide formation is rate limiting. The effects of DsbA and DsbC on folding of RBI in E.coli are very similar to those observed in vitro. Whereas overexpression of DsbA has no effect on the amount of correctly folded RBI, co-expression of DsbC enhanced the efficiency of RBI folding in the periplasm of E.coli about 14-fold. Addition of reduced glutathione to the growth medium together with DsbC overexpression further increased the folding yield of RBI in vivo to 26-fold. This shows that DsbC is the bacterial enzyme of choice for improving the periplasmic folding yields of proteins with very complex disulfide bond patterns.  相似文献   

6.
An Erwinia chrysanthemi gene able to complement an Escherichia coli dsbA mutation has been cloned and sequenced. This gene codes for a periplasmic protein with disulphide isomerase activity that has 69% identity and 94% similarity with the E. coli DsbA protein. An E. chrysanthemi dsbA-uidA fusion mutant has been constructed. dsbA expression seems to be constitutive. This mutant has multiple phenotypes resulting from the absence of disulphide bond formation in periplasmic and secreted proteins. Pectate lyases and the cellulase EGZ are rapidly degraded in the periplasm of the dsbA mutant. E. chrysanthemi synthesizes another periplasmic protein with disulphide isomerase activity, namely DsbC. The dsbC gene introduced on a multicopy plasmid in a dsbA mutant was only partially able to restore EGZ secretion, indicating that even if DsbA and DsbC possess disulphide oxydoreductase activity, they are not completely interchangeable. Moreover, pectate lyases expressed in an E. coli dsbA mutant were very instable but their stability was unaffected in a dsbC mutant. These results indicate that DsbA and DsbC could have different substrate specificities.  相似文献   

7.
大肠杆菌分泌蛋白二硫键的形成是一系列蛋白协同作用的结果,主要是Dsb家族蛋白,迄今为止共发现了DsbA、DsbB、DsbC、DsbD、DsbE和DsbG。在体内,DsbA负责氧化两个巯基形成二硫键,DsbB则负责DsbA的再氧化。DsbC和DsbG负责校正DsbA导入的异常二硫键,DsbD则负责对DsbC和DsbG进行再还原,DsbE的功能与DsbD类似。除了直接和二硫键的形成相关外,DsbA、DsbC和DsbG都有分子伴侣功能。它们的分子伴侣功能独立于二硫键形成酶的活性并且对二硫键形成酶活性具有明显的促进作用。基于Dsb蛋白的功能特性,利用它们以大肠杆菌为宿主表达外源蛋白,特别是含有二硫键的蛋白,取得了很多成功的例子。本文简要介绍了这方面的进展,显示Dsb蛋白在促进外源蛋白在大肠杆菌中以可溶形式表达方面具有广阔的应用前景。  相似文献   

8.
Bacterial conjugation: a two-step mechanism for DNA transport   总被引:7,自引:0,他引:7  
Ten years ago it was thought that disulphide bond formation in prokaryotes occurred spontaneously. Now two pathways involved in disulphide bond formation have been well characterized, the oxidative pathway, which is responsible for the formation of disulphides, and the isomerization pathway, which shuffles incorrectly formed disulphides. Disulphide bonds are donated directly to unfolded polypeptides by the DsbA protein; DsbA is reoxidized by DsbB. DsbB generates disulphides de novo from oxidized quinones. These quinones are reoxidized by the electron transport chain, showing that disulphide bond formation is actually driven by electron transport. Disulphide isomerization requires that incorrect disulphides be attacked using a reduced catalyst, followed by the redonation of the disulphide, allowing alternative disulphide pairing. Two isomerases exist in Escherichia coli, DsbC and DsbG. The membrane protein DsbD maintains these disulphide isomerases in their reduced and thereby active form. DsbD is kept reduced by cytosolic thioredoxin in an NADPH-dependent reaction.  相似文献   

9.
In Escherichia coli, a family of periplasmic disulfide oxidoreductases catalyzes correct disulfide bond formation in periplasmic and secreted proteins. Despite the importance of native disulfide bonds in the folding and function of many proteins, a systematic investigation of the in vivo substrates of E. coli periplasmic disulfide oxidoreductases, including the well characterized oxidase DsbA, has not yet been performed. We combined a modified osmotic shock periplasmic extract and two-dimensional gel electrophoresis to identify substrates of the periplasmic oxidoreductases DsbA, DsbC, and DsbG. We found 10 cysteine-containing periplasmic proteins that are substrates of the disulfide oxidase DsbA, including PhoA and FlgI, previously established DsbA substrates. This technique did not detect any in vivo substrates of DsbG, but did identify two substrates of DsbC, RNase I and MepA. We confirmed that RNase I is a substrate of DsbC both in vivo and in vitro. This is the first time that DsbC has been shown to affect the in vivo function of a native E. coli protein, and the results strongly suggest that DsbC acts as a disulfide isomerase in vivo. We also demonstrate that DsbC, but not DsbG, is critical for the in vivo activity of RNase I, indicating that DsbC and DsbG do not function identically in vivo. The absence of substrates for DsbG suggests either that the in vivo substrate specificity of DsbG is more limited than that of DsbC or that DsbG is not active under the growth conditions tested. Our work represents one of the first times the in vivo substrate specificity of a folding catalyst system has been systematically investigated. Because our methodology is based on the simple assumption that the absence of a folding catalyst should cause its substrates to be present at decreased steady-state levels, this technique should be useful in analyzing the substrate specificity of any folding catalyst or chaperone for which mutations are available.  相似文献   

10.
The formation of disulfide is essential for the folding, activity, and stability of many proteins secreted by Gram-negative bacteria. The disulfide oxidoreductase, DsbA, introduces disulfide bonds into proteins exported from the cytoplasm to periplasm. In pathogenic bacteria, DsbA is required to process virulence determinants for their folding and assembly. In this study, we examined the role of the Dsb enzymes in Salmonella pathogenesis, and we demonstrated that DsbA, but not DsbC, is required for the full expression of virulence in a mouse infection model of Salmonella enterica serovar Typhimurium. Salmonella strains carrying a dsbA mutation showed reduced function mediated by type III secretion systems (TTSSs) encoded on Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2). To obtain a more detailed understanding of the contribution of DsbA to both SPI-1 and SPI-2 TTSS function, we identified a protein component of the SPI-2 TTSS apparatus affected by DsbA. Although we found no substrate protein for DsbA in the SPI-1 TTSS apparatus, we identified SpiA (SsaC), an outer membrane protein of SPI-2 TTSS, as a DsbA substrate. Site-directed mutagenesis of the two cysteine residues present in the SpiA protein resulted in the loss of SPI-2 function in vitro and in vivo. Furthermore, we provided evidence that a second disulfide oxidoreductase, SrgA, also oxidizes SpiA. Analysis of in vivo mixed infections demonstrated that a Salmonella dsbA srgA double mutant strain was more attenuated than either single mutant, suggesting that DsbA acts in concert with SrgA in vivo.  相似文献   

11.
In Escherichia coli, the periplasmic disulfide oxidoreductase DsbA is thought to be a powerful but nonspecific oxidant, joining cysteines together the moment they enter the periplasm. DsbC, the primary disulfide isomerase, likely resolves incorrect disulfides. Given the reliance of protein function on correct disulfide bonds, it is surprising that no phenotype has been established for null mutations in dsbC. Here we demonstrate that mutations in the entire DsbC disulfide isomerization pathway cause an increased sensitivity to the redox-active metal copper. We find that copper catalyzes periplasmic disulfide bond formation under aerobic conditions and that copper catalyzes the formation of disulfide-bonded oligomers in vitro, which DsbC can resolve. Our data suggest that the copper sensitivity of dsbC- strains arises from the inability of the cell to rearrange copper-catalyzed non-native disulfides in the absence of functional DsbC. Absence of functional DsbA augments the deleterious effects of copper on a dsbC- strain, even though the dsbA- single mutant is unaffected by copper. This may indicate that DsbA successfully competes with copper and forms disulfide bonds more accurately than copper does. These findings lead us to a model in which DsbA may be significantly more accurate in disulfide oxidation than previously thought, and in which the primary role of DsbC may be to rearrange incorrect disulfide bonds that are formed during certain oxidative stresses.  相似文献   

12.
In the Escherichia coli system catalysing oxidative protein folding, disulphide bonds are generated by the cooperation of DsbB and ubiquinone and transferred to substrate proteins through DsbA. The structures solved so far for different forms of DsbB lack the Cys104–Cys130 initial‐state disulphide that is directly donated to DsbA. Here, we report the 3.4 Å crystal structure of a DsbB–Fab complex, in which DsbB has this principal disulphide. Its comparison with the updated structure of the DsbB–DsbA complex as well as with the recently reported NMR structure of a DsbB variant having the rearranged Cys41–Cys130 disulphide illuminated conformational transitions of DsbB induced by the binding and release of DsbA. Mutational studies revealed that the membrane‐parallel short α‐helix of DsbB has a key function in physiological electron flow, presumably by controlling the positioning of the Cys130‐containing loop. These findings demonstrate that DsbB has developed the elaborate conformational dynamism to oxidize DsbA for continuous protein disulphide bond formation in the cell.  相似文献   

13.
In Gram-negative bacteria in the periplasmic space, the dimeric thioredoxin-fold protein DsbC isomerizes and reduces incorrect disulfide bonds of unfolded proteins, while the monomeric thioredoxin-fold protein DsbA introduces disulfide bonds in folding proteins. In the Gram-negative bacteria Salmonella enterica serovar Typhimurium, the reduced form of CueP scavenges the production of hydroxyl radicals in the copper-mediated Fenton reaction, and DsbC is responsible for keeping CueP in the reduced, active form. Some DsbA proteins fulfill the functions of DsbCs, which are not present in Gram-positive bacteria. In this study, we identified a DsbA homologous protein (CdDsbA) in the Corynebacterium diphtheriae genome and determined its crystal structure in the reduced condition at 1.5 Å resolution. CdDsbA consists of a monomeric thioredoxin-like fold with an inserted helical domain and unique N-terminal extended region. We confirmed that CdDsbA has disulfide bond isomerase/reductase activity, and we present evidence that the N-terminal extended region is not required for this activity and folding of the core DsbA-like domain. Furthermore, we found that CdDsbA could reduce CueP from C. diphtheriae.  相似文献   

14.
Oxidative protein folding in Gram-negative bacteria results in the formation of disulfide bonds between pairs of cysteine residues. This is a multistep process in which the dithiol-disulfide oxidoreductase enzyme, DsbA, plays a central role. The structure of DsbA comprises an all helical domain of unknown function and a thioredoxin domain, where active site cysteines shuttle between an oxidized, substrate-bound, reduced form and a DsbB-bound form, where DsbB is a membrane protein that reoxidizes DsbA. Most DsbA enzymes interact with a wide variety of reduced substrates and show little specificity. However, a number of DsbA enzymes have now been identified that have narrow substrate repertoires and appear to interact specifically with a smaller number of substrates. The transient nature of the DsbA-substrate complex has hampered our understanding of the factors that govern the interaction of DsbA enzymes with their substrates. Here we report the crystal structure of a complex between Escherichia coli DsbA and a peptide with a sequence derived from a substrate. The binding site identified in the DsbA-peptide complex was distinct from that observed for DsbB in the DsbA-DsbB complex. The structure revealed details of the DsbA-peptide interaction and suggested a mechanism by which DsbA can simultaneously show broad specificity for substrates yet exhibit specificity for DsbB. This mode of binding was supported by solution nuclear magnetic resonance data as well as functional data, which demonstrated that the substrate specificity of DsbA could be modified via changes at the binding interface identified in the structure of the complex.  相似文献   

15.
We have examined the role of the active-site CXXC central dipeptides of DsbA and DsbC in disulfide bond formation and isomerization in the Escherichia coli periplasm. DsbA active-site mutants with a wide range of redox potentials were expressed either from the trc promoter on a multicopy plasmid or from the endogenous dsbA promoter by integration of the respective alleles into the bacterial chromosome. The dsbA alleles gave significant differences in the yield of active murine urokinase, a protein containing 12 disulfides, including some that significantly enhanced urokinase expression over that allowed by wild-type DsbA. No direct correlation between the in vitro redox potential of dsbA variants and the urokinase yield was observed. These results suggest that the active-site CXXC motif of DsbA can play an important role in determining the folding of multidisulfide proteins, in a way that is independent from DsbA's redox potential. However, under aerobic conditions, there was no significant difference among the DsbA mutants with respect to phenotypes depending on the oxidation of proteins with few disulfide bonds. The effect of active-site mutations in the CXXC motif of DsbC on disulfide isomerization in vivo was also examined. A library of DsbC expression plasmids with the active-site dipeptide randomized was screened for mutants that have increased disulfide isomerization activity. A number of DsbC mutants that showed enhanced expression of a variant of human tissue plasminogen activator as well as mouse urokinase were obtained. These DsbC mutants overwhelmingly contained an aromatic residue at the C-terminal position of the dipeptide, whereas the N-terminal residue was more diverse. Collectively, these data indicate that the active sites of the soluble thiol- disulfide oxidoreductases can be modulated to enhance disulfide isomerization and protein folding in the bacterial periplasmic space.  相似文献   

16.
Functional expression of heterologous Pseudozyma antarctica lipase B (PalB) in the periplasm of Escherichia coli was explored using four fusion tags, i.e. DsbC, DsbA, maltose-binding protein (MBP), and FLAG in the sequence of increasing expression efficacy. Amongst these fusion tags, FLAG and MBP appear to be the most effective ones in terms of boosting enzyme activity and enhancing solubility of PalB, respectively. Overexpression of these PalB fusions often resulted in concomitant formation of insoluble inclusion bodies. Coexpression of a selection of periplasmic folding factors, including DegP (and its mutant variant of DegPS210A), FkpA, DsbA, DsbC, and a cocktail of SurA, FkpA, DsbA, and DsbC, could improve the expression performance. Coexpression of DsbA appeared to be the most effective in reducing the formation of inclusion bodies for all the four PalB fusions, implying that functional expression of PalB could be limited by initial bridging of disulfide bonds. Culture performance was optimized by overexpressing FLAG-PalB with DsbA coexpression, resulting in a high volumetric PalB activity of 360 U/L.  相似文献   

17.
The formation of protein disulfide bonds in the Escherichia coli periplasm by the enzyme DsbA is an inaccurate process. Many eukaryotic proteins with nonconsecutive disulfide bonds expressed in E. coli require an additional protein for proper folding, the disulfide bond isomerase DsbC. Here we report studies on a native E. coli periplasmic acid phosphatase, phytase (AppA), which contains three consecutive and one nonconsecutive disulfide bonds. We show that AppA requires DsbC for its folding. However, the activity of an AppA mutant lacking its nonconsecutive disulfide bond is DsbC-independent. An AppA homolog, Agp, a periplasmic acid phosphatase with similar structure, lacks the nonconsecutive disulfide bond but has the three consecutive disulfide bonds found in AppA. The consecutively disulfide-bonded Agp is not dependent on DsbC but is rendered dependent by engineering into it the conserved nonconsecutive disulfide bond of AppA. Taken together, these results provide support for the proposal that proteins with nonconsecutive disulfide bonds require DsbC for full activity and that disulfide bonds are formed predominantly during translocation across the cytoplasmic membrane.  相似文献   

18.
 The assembly of anaerobically induced electron transfer chains in Escherichia coli strains defective in periplasmic disulphide bond formation was investigated. Strains deficient in DsbA, DsbB or DipZ (DsbD) were unable to catalyse formate-dependent nitrite reduction (Nrf activity) or synthesize any of the known c-type cytochromes. The Nrf+ activity and cytochrome c content of mutants defective in DsbC, DsbE or DsbF were similar to those of the parental, wild-type strain. Neither DsbC expressed from a multicopy plasmid nor a second mutation in dipZ (dsbD) was able to compensate for a dsbA mutation by restoring nitrite reductase activity and cytochrome c synthesis. In contrast, only the dsbB and dipZ (dsbD) strains were defective in periplasmic nitrate reductase activity, suggesting that DsbB might fulfil an additional role in anaerobic electron transport. Mutants defective in dipZ (dsbD) were only slightly more sensitive to Cu++ ions at concentrations above 5 mM than the parental strain, but strains defective in DsbA, DsbB, DsbC, DsbE or DsbF were unaffected. These results are consistent with our earlier proposals that DsbA, DsbB and DipZ (DsbD) are part of the same pathway for ensuring that haem groups are attached to the correct pairs of cysteine residues of apocytochromes c in the E. coli periplasm. However, neither DsbE nor DsbF are essential for the reduction of DipZ (DsbD). Received: 28 February 1996 / Accepted: 5 June 1996  相似文献   

19.
Building bridges: disulphide bond formation in the cell   总被引:26,自引:1,他引:25  
Disulphides are often vital for the folding and stability of proteins. Dedicated enzymatic systems have been discovered that catalyse the formation of disulphides in the periplasm of prokaryotes. These discoveries provide compelling evidence for the actual catalysis of protein folding in vivo. Disulphide bond formation in Escherichia coli is catalysed by at least three ‘Dsb’ proteins; DsbA, -B and -C. The DsbA protein has an extremely reactive, oxidizing disulphide which it simply donates directly to other proteins. DsbB is required for the reoxidation of DsbA. DsbC is active in disulphide rearrangements and appears to work synergistically with DsbA. The relative rarity of disulphides in cytoplasmic proteins appears to be dependent upon a disulphide-destruction machine. One pivotal cog in this machine is thioredoxin reductase.  相似文献   

20.
The assembly of anaerobically induced electron transfer chains in Escherichia coli strains defective in periplasmic disulphide bond formation was investigated. Strains deficient in DsbA, DsbB or DipZ (DsbD) were unable to catalyse formate-dependent nitrite reduction (Nrf activity) or synthesize any of the known c-type cytochromes. The Nrf+ activity and cytochrome c content of mutants defective in DsbC, DsbE or DsbF were similar to those of the parental, wild-type strain. Neither DsbC expressed from a multicopy plasmid nor a second mutation in dipZ (dsbD) was able to compensate for a dsbA mutation by restoring nitrite reductase activity and cytochrome c synthesis. In contrast, only the dsbB and dipZ (dsbD) strains were defective in periplasmic nitrate reductase activity, suggesting that DsbB might fulfil an additional role in anaerobic electron transport. Mutants defective in dipZ (dsbD) were only slightly more sensitive to Cu++ ions at concentrations above 5?mM than the parental strain, but strains defective in DsbA, DsbB, DsbC, DsbE or DsbF were unaffected. These results are consistent with our earlier proposals that DsbA, DsbB and DipZ (DsbD) are part of the same pathway for ensuring that haem groups are attached to the correct pairs of cysteine residues of apocytochromes c in the E. coli periplasm. However, neither DsbE nor DsbF are essential for the reduction of DipZ (DsbD).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号