首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim Colliguaja odorifera Mol., a Euphorbiaceous shrub of central Chile, inhabits the matorral formation, growing at low altitudes on both Andean and coastal mountain range slopes. In the recent geological past, this region was subjected to climatic changes and geological disturbances that most probably caused population shrinkages on the Andean mountain slopes. This study tested the hypothesis that under such a scenario, existing populations should show lower genetic diversity in the Andean than in the coastal areas; these coastal populations being the potential source populations for recolonization. Location The study was carried out in central Chile by comparing the genetic diversity between the Andean and coastal areas, each represented by five localities distributed from 32°30′ S to 34° S. Methods Genetic diversity was estimated by DNA analysis using 18 dominant multilocus Random Amplified Polymorphic DNA (RAPD) loci, characterizing 73 genetic phenotypes. Results The comparison of the two matorral areas showed that Andean populations of C. odorifera have a subset of the genetic diversity found in the coastal populations. Andean populations also show a consistently lower genetic diversity, lower genetic distances and higher genetic structure, coincident with expectations based on the Pleisto‐Holocenic perturbation regime. Main conclusions This first genetic analysis for South American mediterranean populations confirms the findings of previous floristic and palynological studies that identified refuge zones in the coastal mountain range of central Chile, a situation analogous with that occurring during periods of inter‐glacial northward migration in Southern Europe.  相似文献   

2.
Species classification may not reflect the underlying/cryptic genetic diversity which should otherwise be conserved as it represents the potential of populations to evolve and adapt. The identification of evolutionarily significant units (ESUs) allows cryptic genetic diversity to be taken into account when designating conservation priorities. Here, we used mitochondrial and nuclear DNA sequences integrated with ecological niche models (ENM) to identify ESUs in Hypolestes trinitatis, a threatened Cuban endemic damselfly species. We found that this species comprises two distinct genetic groups in Central and Eastern Cuba respectively, which are also geographically isolated, as shown by ENM. Therefore, we propose these groups to be considered as different ESUs. According with their extent of occurrence, number of locations and inferred decline of habitat extent and quality, Central and Eastern ESUs qualify as Endangered [EN B1b(iii)] and Vulnerable [VU B1b(iii)], respectively.  相似文献   

3.
Pacific salmon (Oncorhynchus spp.) have been central to the development of management concepts associated with evolutionarily significant units (ESUs), yet there are still relatively few studies of genetic diversity within threatened and endangered ESUs for salmon or other species. We analyzed genetic variation at 10 microsatellite loci to evaluate spatial population structure and genetic variability in indigenous Chinook salmon (Oncorhynchus tshawytscha) across a large wilderness basin within a Snake River ESU. Despite dramatic 20th century declines in abundance, these populations retained robust levels of genetic variability. No significant genetic bottlenecks were found, although the bottleneck metric (M ratio) was significantly correlated with average population size and variability. Weak but significant genetic structure existed among tributaries despite evidence of high levels of gene flow, with the strongest genetic differentiation mirroring the physical segregation of fish from two sub-basins. Despite the more recent colonization of one sub-basin and differences between sub-basins in the natural level of fragmentation, gene diversity and genetic differentiation were similar between sub-basins. Various factors, such as the (unknown) genetic contribution of precocial males, genetic compensation, lack of hatchery influence, and high levels of current gene flow may have contributed to the persistence of genetic variability in this system in spite of historical declines. This unique study of indigenous Chinook salmon underscores the importance of maintaining natural populations in interconnected and complex habitats to minimize losses of genetic diversity within ESUs.  相似文献   

4.
Revealing cryptic biodiversity and understanding the processes that promote lineage diversification will provide valuable insights into management and protection of exploitable species. Neverita didyma is one of the most common marine species along the coast of China and possesses highly economic and nutritional value. Despite being heavily harvested each year, the genetic diversity of this species has never been assessed in the coastal areas of China. Here, we analyzed the diversity of this species based on the barcode region of the mitochondrial gene Cytochrome Oxidase subunit I (COI) and utilized different species delineation approaches to infer evolutionarily significant units (ESUs). Three distinct ESUs, with high genetic distance among each, were identified. Divergence time estimates suggested that the high genetic distances were probably associated with historical isolation of the marginal seas during Pleistocene low sea level periods. The three ESUs did not map to distinct geographical distribution, possibly attributing to the repeated isolation in different refugia and random postglacial recolonization. Moreover, N. didyma in Haizhou Bay deserves priority protection due to its unique ESU. To improve management regulations in the marine realm, our research also stresses the need for more empirical studies on genetic diversity of commercially exploited species in coastal environments of China.  相似文献   

5.
ABSTRACT.   To investigate the possible effect of elevation on the prevalence of hematozoa infection, we collected blood smears from a population of Winter Wrens ( Troglogytes troglodytes ) in the Coast Mountains of southwestern British Columbia, Canada. We sampled 119 Winter Wrens, including 88 at low elevation (0–500 m) and 31 at high elevation (900–1100 m) sites. In addition, five other species, including Swainson's Thrush ( Catharus ustulatus ; N = 12), Dark-eyed Junco ( Junco hyemalis ; N = 11), Hermit Thrush ( Catharus guttatus ; N = 8), Varied Thrush ( Ixoreus naevius ; N = 4), and American Robin ( Turdus migratorius ; N = 4), were sampled. No Winter Wrens were infected by blood parasites. Among the other species, Haemoproteus infection was detected in one Varied Thrush (25%) and five Swainson's Thrushes (42%). Thus, despite the occurrence of infection in sympatrically breeding species, blood parasites are apparently absent or occur at extremely low prevalence in Winter Wrens in our study area. The presence of hematozoa in European populations of Winter Wrens, combined with an abundance of vector species in our study area, suggest population-level resistance to infection. Further study is needed to determine the specific mechanisms involved in the apparent lack of infection in our study population.  相似文献   

6.
? Premise of the study: The temperate forests of southern South America were greatly affected by glaciations. Previous studies have indicated that some cold-tolerant tree species were able to survive glacial periods in small, ice-free patches within glaciated areas in the Andes and in southern Patagonia. Here we asked whether populations of the mesothermic species Eucryphia cordifolia also were able to survive glaciations in these areas or only in unglaciated coastal areas. ? Methods: The chloroplast intergenic spacer trnV-ndhC was sequenced for 150 individuals from 22 locations. Genetic data were analyzed (standard indexes of genetic diversity, a haplotype network, and genetic differentiation) in a geographical context. ? Key results: Two of the nine haplotypes detected were widespread in high frequency across the entire range of the species. The highest levels of genetic diversity were found around 40°S, decreasing sharply northward and more moderately southward. No differences in genetic diversity were found between Andean and coastal populations. Notably, seven haplotypes were found in a small area of the Coast Range known as the Cordillera Pelada (40°S). The differentiation coefficients G(ST) and N(ST) revealed that most of the genetic variation detected was due to variation within populations. ? Conclusions: The low levels of population differentiation and the high genetic diversity found in the Cordillera Pelada suggest that this area was the main refugium for E. cordifolia during glaciations. Nevertheless, given the high levels of genetic diversity found in some Andean populations, we cannot discount that some local populations also survived the glaciation in the Andes.  相似文献   

7.
The importance of protecting genetic diversity within a species is increasingly being recognised by conservation management authorities. However, discrepancies in conservation policy between authorities, such as state versus national bodies, can have significant implications for species management when they cross state boundaries. We conducted a phylogeographic study of the south-eastern Australian lizard Rankinia diemensis to identify evolutionary significant units (ESUs), including the endangered population from the Grampians National Park in western Victoria. Phylogenetic analyses of two gene regions (mtDNA: ND2; nuclear: RAG1) revealed high levels of genetic divergence between populations, indicating isolation over long evolutionary time frames. Based on criteria of genetic divergence and isolation, R. diemensis contains at least two ESUs that require specific management. We found that R. diemensis from the Grampians are closely related to Tasmanian populations, but that the divergence between these regions is great enough (3.7 % mtDNA) that they should be considered separate ESUs. However, we believe the close evolutionary ties between these two regions needs to be taken into account; yet under current practises, conservation management of subspecific ESUs relies on state-level efforts. We argue that another population that occurs on the Victorian coast also qualifies as an ESU and requires targeted conservation action. Rankinia diemensis provides a case-in-point of the discrepancy between the state-level approach of maintaining genetic variation within a species and the more conservative Commonwealth focus on conserving biodiversity at the species level.  相似文献   

8.
Intraspecific genetic diversity governs the potential of species to prevail in the face of environmental or ecological challenges; therefore, its protection is critical. The Indo-Australian Archipelago (IAA) is a significant reservoir of the world's marine biodiversity and a region of high conservation priority. Yet, despite indications that the IAA may harbour greater intraspecific variation, multiple-locus genetic diversity data are limited. We investigated microsatellite DNA variation in Pinctada maxima populations from the IAA to elucidate potential factors influencing levels of genetic diversity in the region. Results indicate that genetic diversity decreases as the geographical distance away from central Indonesia increases, and that populations located towards the centre of P. maxima 's range are more genetically diverse than those located peripherally ( P <  0.01). Significant partitioning of genetic variation was identified ( F ST = 0.027; R ST = 0.023, P  < 0.001) and indicates that historical biogeographical episodes or oceanographic factors have shaped present population genetic structure. We propose that the genetic diversity peak in P. maxima populations may be due to (i) an abundance of suitable habitat within the IAA, meaning larger, more temporally stable populations can be maintained and are less likely to encounter genetic bottlenecks; and/or (ii) the close proximity of biogeographical barriers around central Indonesia results in increased genetic diversity in the region because of admixture of genetically divergent populations. We encourage further genetic diversity studies of IAA marine biota to confirm whether this region has a significant role in maintaining intraspecific diversity, which will greatly assist the planning and efficacy of future conservation efforts.  相似文献   

9.
Malus sieversii, a wild progenitor of the domesticated apple, is an endangered species and is assigned second conservation priority by the China Plant Red Data Book. It is urgent to carry out in situ conservation of this species, but previous studies have not identified evolutionarily significant units (ESUs) for conservation management. In this study, we investigated the genetic diversity and relationships of six M. sieversii populations from China using integrated analysis of microsatellite (nSSR) data, genome‐wide SNPs and previous results in order to propose a reasonable conservation management. The results showed that levels of genetic diversity were inconsistently reflected by our nSSR and previous studies, suggesting that indices of genetic diversity are not effective to identify priority conservation areas for M. sieversii. Based on the selection criteria of ESUs for endangered species conservation, ESUs should reflect lineage divergence, geographical separation and different adaptive variation. Our phylogenetic tree based on genome‐wide SNPs yielded a clear relationship of divergent lineages among M. sieversii populations, leading to new different from those of previous studies. Three independent lineages, including the pairs of populations Huocheng‐Yining, Gongliu‐Xinyuan and Tuoli‐Emin, were identified. The geographic distances between populations among the different phylogenetic lineages were much greater than those within the same phylogenetic lineage. A cluster analysis on environmental variables showed that the three independent lineages inhabit different environmental conditions, suggesting that they may have adapted to different environments. Based on the results, we propose that three independent ESUs should be recognized as conservation units for M. sieversii in China.  相似文献   

10.
The brown algal genus Padina (Dictyotales, Phaeophyceae) is distributed worldwide in tropical and temperate seas. Global species diversity and distribution ranges, however, remain largely unknown. Species‐level diversity was reassessed using DNA‐based, algorithmic species delineation techniques based on cox3 and rbcL sequence data from 221 specimens collected worldwide. This resulted in estimates ranging from 39 to 61 putative species (ESUs), depending on the technique as well as the locus. We discuss the merits, potential pitfalls, and evolutionary and biogeographic significance of algorithmic species delineation. We unveil patterns whereby ESUs are in all but one case restricted to either the Atlantic or Indo‐Pacific Ocean. Within ocean basins we find evidence for the vast majority of ESUs to be confined to a single marine realm. Exceptions, whereby ESUs span up to three realms, are located in the Indo‐Pacific Ocean. Patterns of range‐restricted species likely arise by repeated founder events and subsequent peripatric speciation, hypothesized to dominate speciation mechanisms for coastal marine organisms in the Indo‐Pacific. Using a three‐gene (cox3, psaA and rbcL), relaxed molecular clock phylogenetic analysis we estimated divergence times, providing a historical framework to interpret biogeographic patterns.  相似文献   

11.
Several methods based on population biology, biogeography, ecology, and genetics have been traditionally used for the identification of units for conservation below the species level. We use a combination of two methods based on population genetic structure estimators and on probabilities of loss of rare alleles to identify the Relevant Genetic Units for Conservation (RGUCs). The aims were to assess the genetic diversity and population structure of the endemic steppe plant Boleum asperum (Brassicaceae), and to determine how many and which populations significantly represent the total genetic diversity and the rarest allelic variation. Despite the high amplified fragment length polymorphism genetic diversity values detected in B. asperum ( h T = 0.744), caused probably by its hexaploidy and allogamy, moderate spatial genetic differentiation was detected among populations (< 20%) and geographical ranges (> 13%), suggesting the existence of an ancestral continuous distribution range that was fragmented into separate 'islands' in more recent historical times. Five RGUCs, accounting for the 85.10% of the total genetic variation and representative of the entire geographical distribution of the species, were selected for in situ conservation. Ex situ conservation is proposed to complement the preservation of B. asperum . This method of objective selection of populations may be applied to other candidate taxa for conservation with prior adjustment of the threshold values of diversity required for effective protection of each particular species.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 341–354.  相似文献   

12.
Araucaria araucana (Monkey Puzzle), a southern South American tree species of exceptional cultural and economic importance, is of conservation concern owing to extensive historical clearance and current human pressures. Random amplified polymorphic DNA (RAPD) markers were used to characterise genetic heterogeneity within and among 13 populations of this species from throughout its natural range. Extensive genetic variability was detected and partitioned by analysis of molecular variance, with the majority of variation existing within populations (87.2%), but significant differentiation was recorded among populations (12.8%). Estimates of Shannon's genetic diversity and percent polymorphism were relatively high for all populations and provide no evidence for a major reduction in genetic diversity from historical events, such as glaciation. All pairwise genetic distance values derived from analysis of molecular variance (Phi(ST)) were significant when individual pairs of populations were compared. Although populations are geographically divided into Chilean Coastal, Chilean Andes and Argentinean regions, this grouping explained only 1.77% of the total variation. Within Andean groups there was evidence of a trend of genetic distance with increasing latitude, and clustering of populations across the Andes, suggesting postglacial migration routes from multiple refugia. Implications of these results for the conservation and use of the genetic resource of this species are discussed.  相似文献   

13.
Population fragmentation is threatening biodiversity worldwide. Species that once roamed vast areas are increasingly being conserved in small, isolated areas. Modern management approaches must adapt to ensure the continued survival and conservation value of these populations. In South Africa, a managed metapopulation approach has been adopted for several large carnivore species, all protected in isolated, relatively small, reserves that are fenced. As far as possible these approaches are based on natural metapopulation structures. In this network, over the past 25 years, African lions (Panthera leo) were reintroduced into 44 fenced reserves with little attention given to maintaining genetic diversity. To examine the situation, we investigated the current genetic provenance and diversity of these lions. We found that overall genetic diversity was similar to that in a large national park, and included a mixture of four different southern African evolutionarily significant units (ESUs). This mixing of ESUs, while not ideal, provides a unique opportunity to study the impact of mixing ESUs over the long term. We propose a strategic managed metapopulation plan to ensure the maintenance of genetic diversity and improve the long-term conservation value of these lions. This managed metapopulation approach could be applied to other species under similar ecological constraints around the globe.  相似文献   

14.
Hypochaeris palustris (Phil.) De Wild. is a species growing in the southern Andean chain. To elucidate potential Pleistocene refugia and recolonization routes in the southern Andes, we analysed amplified fragment length polymorphisms (AFLPs) in 206 individuals in 21 populations of H. palustris from the coastal Cordillera, the central, northern, and eastern ranges of the southern Andes, and Patagonia. Populations from the coastal Cordillera harboured more private AFLP fragments, and exhibited a higher frequency of polymorphic fragments as well as higher Shannon diversity than all other areas investigated. The comparison among pooled AFLP profiles of each region revealed that the central Andean ranges shared most fragments with populations from the margins of the distributional area in the Andes, in the N, E, and S (Patagonia). Phenetic analysis indicated close relationships among populations of the central ranges. Populations of the coastal Cordillera were shown to be highly differentiated from the Andean populations. It is very likely therefore that (1) H. palustris recolonized the central ranges of the southern Andes from nearby refugia, possibly unglaciated areas N, E, and/or S of its present distributional area; (2) the postglacial spread of H. palustris in the central ranges of the southern Andes occurred rapidly; and (3) the coastal Cordillera served as a refugium for H. palustris, but these populations did not contribute to the recolonization of the central Andean ranges.  相似文献   

15.
Increasing pressure for water in the Australian arid zone is placing enormous stress on the diverse endemic communities inhabiting desert springs. Detailed information about the evolutionary processes occurring within and between individual endemic species will help to develop effective and biologically relevant management strategies this fragile ecosystem. To help determine conservation priorities, we documented the genetic structure of the endemic freshwater amphipod populations in springs fed by the Great Artesian Basin in central Australia. Phylogenetic and phylogeographic history and genetic diversity measures were examined using nuclear and mitochondrial DNA from approximately 500 chiltoniid amphipods across an entire group of springs. Pronounced genetic diversity was identified, demonstrating that levels of endemism have been grossly underestimated in these amphipods. Using the GMYC model, 13 genetically divergent lineages were recognized as Evolutionarily Significant Units (ESUs), all of which could be considered as separate species. The results show that due to the highly fragmented ecosystem, these taxa have highly restricted distributions. Many of the identified ESUs are endemic to a very small number of already degraded springs, with the rarest existing in single springs. Despite their extraordinarily small ranges, most ESUs showed relative demographic stability and high levels of genetic diversity, and genetic diversity was not directly linked to habitat extent. The relatively robust genetic health of ESUs does not preclude them from endangerment, as their limited distributions ensure they will be highly vulnerable to future water extraction.  相似文献   

16.
Genetic diversity of 50 Phaeoisariopsis griseola isolates collected from different agroecological zones in Kenya was studied using group‐specific primers and amplified fragment length polymorphism (AFLP) markers. Group‐specific primers differentiated the isolates into Andean and Mesoamerican groups, corresponding to the two common‐bean gene pools. Significant polymorphisms were observed with all the AFLP primer combinations used, reflecting a wide genetic diversity in the P. griseola population. A total of 207 fingerprints was generated, of which 178 were polymorphic. Cluster analysis of the polymorphic bands also separated the isolates into the two groups defined by group‐specific primers. All the isolates examined were grouped into three virulence populations; Andean, Afro‐Andean and Mesoamerican, and their genetic diversity measured. On average, greater diversity (91%) was detected within populations than between populations (9%). The genetic distance between Andean and Mesoamerican populations was higher (D = 0.0269) than between Andean and Afro‐Andean (D = 0.0095). The wide genetic diversity reported here has significant implications in breeding for resistance to angular leaf spot and should be taken into consideration when screening and deploying resistant bean genotypes.  相似文献   

17.
线粒体DNA(mtDNA)多态性在动物保护生物学中的应用   总被引:9,自引:1,他引:9  
本文从两个方面论述了mtDNA在动物保护生物学中的应用:一是对物种进行遗传多样性的检 测与管理,二是进行与种群统计学数据相关的遗传分析。前者与保护的长期效益(如进化) 密切相关,而后者则主要用于指导短期管理措施的制定。同时,本文重点论述了mtDNA在进 化显著单位(ESUs)和管理单位(MUs)的认定方面的作用。认定ESUs的目的是隔离管理遗传多 样性,它是一系列系统进化史独特的种群,这种独特性同时表现在mtDNA和核DNA上;MUs是 种群统计意义上的生殖隔离单位,具有独特的等位基因频率,与系统发生结构和遗传分歧水 平无关。ESUs与MUs都是保护生物学中保护与管理的重要基本单位。  相似文献   

18.
Calvertius tuberosus (Curculionidae) lives exclusively on Araucaria araucana trees (commonly known as pehuen) in southern Chile. In this study, morphometric and molecular genetic analyses of Andean and coastal populations of C. tuberosus were performed to evaluate evolutionary divergence associated with the discontinuity of the Araucaria forest between the coastal and Andean regions. Specimens of C. tuberosus were collected in Nahuelbuta National Park, Villa Las Araucarias, and Malalcahuello National Reserve and were classified and stored at the Animal Biotechnology Researching Laboratory (LINBA), University of La Frontera, Temuco, Chile. Thirteen morphometric parameters and the expression patterns of ISSR (inter-simple sequence repeat) markers were analyzed. Morphometric data revealed high phenotypic similarity between coastal populations. The genetic analysis revealed a high similarity between coastal populations (genetic identity, 93%), which were differentiated from the Andean population (genetic identity, 84%). This study contributes new genotypic and phenotypic data for the C. tuberosus populations in forest ecosystems of A. araucana, and clarifies the associations between these characteristics and the geographic distributions of populations.  相似文献   

19.
Wilson AB 《Molecular ecology》2006,15(7):1857-1871
Continental glaciation has played a major role in shaping the present-day phylogeography of freshwater and terrestrial species in the Northern Hemisphere. Recent work suggests that coastal glaciation during ice ages may have also had a significant impact on marine species. The bay pipefish, Syngnathus leptorhynchus , is a near-shore Pacific coast fish species with an exceptionally wide latitudinal distribution, ranging from Bahia Santa Maria, Baja California to Prince William Sound, Alaska. Survey data indicate that S. leptorhynchus is experiencing a range expansion at the northern limit of its range, consistent with colonization from southern populations. The present study uses six novel microsatellite markers and mitochondrial DNA (mtDNA) sequence data to study the present-day population genetic structure of four coastal populations of S. leptorhynchus . Deficits in mtDNA and nuclear DNA diversity in northern populations from regions glaciated during the last glacial maximum (LGM) [ c . 18 000 years before present ( bp )] suggest that these populations were effected by glacial events. Direct estimates of population divergence times derived from both isolation and isolation-with-migration models of evolution are also consistent with a postglacial phylogenetic history of populations north of the LGM. Sequence data further indicate that a population at the southern end of the species range has been separated from the three northern populations since long before the last interglacial event ( c . 130 000 years bp ), suggesting that topographical features along the Pacific coast may maintain population separation in regions unimpacted by coastal glaciation.  相似文献   

20.
Stipa purpurea is among constructive endemic species in alpine meadow and steppe on the Qinghai–Tibet Plateau. To reveal the genetic diversity of this species and its relationship with geographic distribution pattern, we sampled eight populations across a northward transect with an increasing aridity gradient in the hinterland of Qinghai–Tibet Plateau. Their genetic diversity was quantified using eight intersimple sequence repeat (ISSR) primers. We found that S. purpurea had relatively low genetic diversity ( H e = 0.135) but significant genetic differentiation among populations ( G st = 0.391), indicating relatively more genetic diversity retained within populations. A Mantel test revealed a significant relationship between genetic and geographic distance in the S. purpurea populations. The genetic diversity tended to decrease with increasing latitude and longitude, while no significant relationship was found between genetic diversity and altitude, suggesting the possible influences of humidity and temperature on genetic diversity of alpine plant. We propose conservation measures for this plant on the plateau.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号