首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined changes in cerebral circulation in 15 healthy men during exposure to mild +Gz hypergravity (1.5 Gz, head-to-foot) using a short-arm centrifuge. Continuous arterial pressure waveform (tonometry), cerebral blood flow (CBF) velocity in the middle cerebral artery (transcranial Doppler ultrasonography), and partial pressure of end-tidal carbon dioxide (ETco(2)) were measured in the sitting position (1 Gz) and during 21 min of exposure to mild hypergravity (1.5 Gz). Dynamic cerebral autoregulation was assessed by spectral and transfer function analysis between beat-to-beat mean arterial pressure (MAP) and mean CBF velocity (MCBFV). Steady-state MAP did not change, but MCBFV was significantly reduced with 1.5 Gz (-7%). ETco(2) was also reduced (-12%). Variability of MAP increased significantly with 1.5 Gz in low (53%)- and high-frequency ranges (88%), but variability of MCBFV did not change in these frequency ranges, resulting in significant decreases in transfer function gain between MAP and MCBFV (gain in low-frequency range, -17%; gain in high-frequency range, -13%). In contrast, all of these indexes in the very low-frequency range were unchanged. Transfer from arterial pressure oscillations to CBF fluctuations was thus suppressed in low- and high-frequency ranges. These results suggest that steady-state global CBF was reduced, but dynamic cerebral autoregulation in low- and high-frequency ranges was improved with stabilization of CBF fluctuations despite increases in arterial pressure oscillations during mild +Gz hypergravity. We speculate that this improvement in dynamic cerebral autoregulation within these frequency ranges may have been due to compensatory effects against the reduction in steady-state global CBF.  相似文献   

2.
We studied cerebral blood flow (CBF) autoregulation and intracranial pressure (ICP) during normo- and hyperventilation in a rat model of Streptococcus pneumoniae meningitis. Meningitis was induced by intracisternal injection of S. pneumoniae. Mean arterial blood pressure (MAP), ICP, cerebral perfusion pressure (CPP, defined as MAP - ICP), and laser-Doppler CBF were measured in anesthetized infected rats (n = 30) and saline-inoculated controls (n = 30). CPP was either incrementally reduced by controlled hemorrhage or increased by intravenous norepinephrine infusion. Twelve hours postinoculation, rats were studied solely during normocapnia, whereas rats studied after 24 h were exposed to either normocapnia or to acute hypocapnia. In infected rats compared with control rats, ICP was unchanged at 12 h but increased at 24 h postinoculation (not significant and P < 0.01, respectively); hypocapnia did not lower ICP compared with normocapnia. Twelve hours postinoculation, CBF autoregulation was lost in all infected rats but preserved in all control rats (P < 0.01). Twenty-four hours after inoculation, 10% of infected rats had preserved CBF autoregulation during normocapnia compared with 80% of control rats (P < 0.01). In contrast, 60% of the infected rats and 100% of the control rats showed an intact CBF autoregulation during hypocapnia (P < 0.05 for the comparison of infected rats at normocapnia vs. hypocapnia). In conclusion, CBF autoregulation is lost both at 12 and at 24 h after intracisternal inoculation of S. pneumoniae in rats. Impairment of CBF autoregulation precedes the increase in ICP, and acute hypocapnia may restore autoregulation without changing the ICP.  相似文献   

3.
4.
The amyloid-beta (A beta) peptide, which is derived from the amyloid precursor protein (APP), is involved in the pathogenesis of Alzheimer's dementia and impairs endothelium-dependent vasodilation in cerebral vessels. We investigated whether cerebrovascular autoregulation, i.e., the ability of the cerebral circulation to maintain flow in the face of changes in mean arterial pressure (MAP), is impaired in transgenic mice that overexpress APP and A beta. Neocortical cerebral blood flow (CBF) was monitored by laser-Doppler flowmetry in anesthetized APP(+) and APP(-) mice. MAP was elevated by intravenous infusion of phenylephrine and reduced by controlled exsanguination. In APP(-) mice, autoregulation was preserved. However, in APP(+) mice, autoregulation was markedly disrupted. The magnitude of the disruption was linearly related to brain A beta concentration. The failure of autoregulation was paralleled by impairment of the CBF response to endothelium-dependent vasodilators. Thus A beta disrupts a critical homeostatic mechanism of the cerebral circulation and renders CBF highly dependent on MAP. The resulting alterations in cerebral perfusion may play a role in the brain dysfunction and periventricular white-matter changes associated with Alzheimer's dementia.  相似文献   

5.
This study aimed to identify brain regions with the least decreased cerebral blood flow (CBF) and their relationship to physiological parameters during human non-rapid eye movement (NREM) sleep. Using [(15)O]H(2)O positron emission tomography, CBF was measured for nine normal young adults during nighttime. As NREM sleep progressed, mean arterial blood pressure and whole brain mean CBF decreased significantly; arterial partial pressure of CO(2) and, selectively, relative CBF of the cerebral white matter increased significantly. Absolute CBF remained constant in the cerebral white matter, registering 25.9 +/- 3.8 during wakefulness, 25.8 +/- 3.3 during light NREM sleep, and 26.9 +/- 3.0 (ml.100 g(-1).min(-1)) during deep NREM sleep (P = 0.592), and in the occipital cortex (P = 0.611). The regression slope of the absolute CBF significantly differed with respect to arterial partial pressure of CO(2) between the cerebral white matter (slope 0.054, R = - 0.04) and frontoparietal association cortex (slope - 0.776, R = - 0.31) (P = 0.005) or thalamus (slope - 1.933, R = - 0.47) (P = 0.004) and between the occipital cortex (slope 0.084, R = 0.06) and frontoparietal association cortex (P = 0.021) or thalamus (P < 0.001), and, with respect to mean arterial blood pressure, between the cerebral white matter (slope - 0.067, R = - 0.10) and thalamus (slope 0.637, R = 0.31) (P = 0.044). The cerebral white matter CBF keeps constant during NREM sleep as well as the occipital cortical CBF, and may be specifically regulated by both CO(2) vasoreactivity and pressure autoregulation.  相似文献   

6.
In this paper a model is proposed that predicts the response of the cerebral vasculature to changes in arterial blood pressure, arterial CO2 concentration and neural stimulation. Cerebral blood flow (CBF) is assumed to be controlled through changes in arterial compliance, and hence arterial resistance and volume, through three feedback mechanisms, which act in a linear additive manner, based on CBF, arterial CO2 and neural stimulus. Together with arterial, capillary and venous compartments, a tissue compartment is included, which contributes partly to the initial rise found in the deoxyhaemoglobin response to neural activation. Dynamic simulations of the model under different conditions show that there is significant interaction between the autoregulation and activation processes, and that the level of autoregulation has a strong influence on the CBF and deoxyhaemoglobin responses to neural activation. Overshoot in the deoxyhaemoglobin response is eliminated completely in the absence of this regulation. The feedback mechanism time constants significantly affect the CBF and deoxyhaemoglobin responses. Changes in arterial blood pressure (ABP) are found to have a strong influence on the neural activation response, with the amplitude of the response decreasing significantly at high baseline ABP. Dynamic changes in ABP also have a significant and potentially confounding impact on the measured deoxyhaemoglobin response to neural activation.  相似文献   

7.
The aim of this study was to determine whether inhibition of nitric oxide synthase (NOS) alters dynamic cerebral autoregulation in humans. Beat-to-beat blood pressure (BP) and cerebral blood flow (CBF) velocity (transcranial Doppler) were measured in eight healthy subjects in the supine position and during 60 degrees head-up tilt (HUT). NOS was inhibited by intravenous NG-monomethyl-L-arginine (L-NMMA) infusion. Dynamic cerebral autoregulation was quantified by transfer function analysis of beat-to-beat changes in BP and CBF velocity. Pressor effects of L-NMMA on cerebral hemodynamics were compared with those of phenylephrine infusion. In the supine position, L-NMMA increased mean BP from 83+/-3 to 94+/-3 mmHg (P < 0.01). However, CBF velocity remained unchanged. Consequently, cerebrovascular resistance index (CVRI) increased by 15% (P < 0.05). BP and CBF velocity variability and transfer function gain at the low frequencies of 0.07-0.20 Hz did not change with L-NMMA infusion. Similar changes in mean BP, CBF velocity, and CVRI were observed after phenylephrine infusion, suggesting that increase in CVRI after L-NMMA was mediated myogenically by increase in arterial pressure rather than a direct effect of cerebrovascular NOS inhibition. During baseline tilt without L-NMMA, steady-state BP increased and CBF velocity decreased. BP and CBF velocity variability at low frequencies increased in parallel by 277% and 217%, respectively (P < 0.05). However, transfer function gain remained unchanged. During tilt with L-NMMA, changes in steady-state hemodynamics and BP and CBF velocity variability as well as transfer gain and phase were similar to those without L-NMMA. These data suggest that inhibition of tonic production of NO does not appear to alter dynamic cerebral autoregulation in humans.  相似文献   

8.
It has been proposed that the reduction of nitrite by red cells producing NO plays a role in the regulation of vascular tone. This hypothesis was investigated in rats by measuring the effect of nitrite infusion on mean arterial blood pressure (MAP), cerebral blood flow (CBF) and cerebrovascular resistance (CVR) in conjunction with the accumulation of red cell NO. The relative magnitude of the effects on MAP and CBF as well as the time dependent changes during nitrite infusion are used to distinguish between the effects on the peripheral circulation and the effects on the cerebral circulation undergoing cerebral autoregulation. The nitrite infusion was found to reverse the 96% increase in MAP and the 13% decrease in CBF produced by L-NAME inhibition of e-NOS. At the same time there was a 20-fold increase in oxygen stable red cell NO. Correlations of the red cell NO for individual rats support a role for red cell nitrite reduction in regulating vascular tone in both the peripheral and the cerebral circulation. Furthermore, data obtained prior to treatment is consistent with a contribution of red cell reduced nitrite in regulating vascular tone even under normal conditions.  相似文献   

9.
Short-term cardiovascular responses to postural change from sitting to standing involve complex interactions between the autonomic nervous system, which regulates blood pressure, and cerebral autoregulation, which maintains cerebral perfusion. We present a mathematical model that can predict dynamic changes in beat-to-beat arterial blood pressure and middle cerebral artery blood flow velocity during postural change from sitting to standing. Our cardiovascular model utilizes 11 compartments to describe blood pressure, blood flow, compliance, and resistance in the heart and systemic circulation. To include dynamics due to the pulsatile nature of blood pressure and blood flow, resistances in the large systemic arteries are modeled using nonlinear functions of pressure. A physiologically based submodel is used to describe effects of gravity on venous blood pooling during postural change. Two types of control mechanisms are included: 1) autonomic regulation mediated by sympathetic and parasympathetic responses, which affect heart rate, cardiac contractility, resistance, and compliance, and 2) autoregulation mediated by responses to local changes in myogenic tone, metabolic demand, and CO(2) concentration, which affect cerebrovascular resistance. Finally, we formulate an inverse least-squares problem to estimate parameters and demonstrate that our mathematical model is in agreement with physiological data from a young subject during postural change from sitting to standing.  相似文献   

10.
Impaired autoregulation of cerebral blood flow (CBF) contributes to CNS damage during neonatal meningitis. We tested (i) the hypothesis that cerebrovascular autoregulation is impaired during early onset group B streptococcal (GBS) meningitis, (ii) whether this impairment is regulated by vasoactive mediators such as prostaglandins and (or) nitric oxide (NO), and (iii) whether this impairment is preventable by specific and (or) nonspecific inhibitors: dexamethasone, ibuprofen, and Nomega-nitro-L-arginine, a NO inhibitor. Sterile saline or 10(9) colony-forming units (cfu) of heat-killed GBS was injected into the cerebral ventricle of newborn piglets. CBF autoregulation was determined by altering cerebral perfusion pressure (CPP) with balloon-tipped catheters placed in the aorta. GBS produced a narrow range of CBF autoregulation due to an impairment at the upper limit of CPP. We report that in vivo in the early stages (first 2 h) of induced GBS inflammation (i) GBS impairs the upper limit of cerebrovascular autoregulation; (ii) ibuprofen, dexamethasone, and Nomega-nitro-L-arginine not only prevent this GBS-induced autoregulatory impairment but improve the range of cerebrovascular autoregulation; (iii) these autoregulatory changes do not involve circulating cerebral prostanoids; and (iv) the observed changes correlate with the induction of NO synthase gene expression. Thus, acute early onset GBS-induced impairment of the upper limit of CBF autoregulation can be correlated with increases of NO synthase production, suggesting that NO is a vasoactive mediator of CBF.  相似文献   

11.
12.
Neurological complication often occurs during cardiopulmonary bypass (CPB). One of the main causes is hypoperfusion of the cerebral tissue affected by the position of the cannula tip and diminished cerebral autoregulation (CA). Recently, a lumped parameter approach could describe the baroreflex, one of the main mechanisms of cerebral autoregulation, in a computational fluid dynamics (CFD) study of CPB. However, the cerebral blood flow (CBF) was overestimated and the physiological meaning of the variables and their impact on the model was unknown. In this study, we use a 0-D control circuit representation of the Baroreflex mechanism, to assess the parameters with respect to their physiological meaning and their influence on CBF. Afterwards the parameters are transferred to 3D-CFD and the static and dynamic behavior of cerebral autoregulation is investigated.  相似文献   

13.
To determine the dependence of cerebral blood flow (CBF) on arterial pressure over prolonged time periods, we measured beat-to-beat changes in mean CBF velocity in the middle cerebral artery (transcranial Doppler) and mean arterial pressure (Finapres) continuously for 2 h in six healthy subjects (5 men and 1 woman, 18-40 yr old) during supine rest. Fluctuations in velocity and pressure were quantified by the range [(peak - trough)/mean] and coefficients of variation (SD/mean) in the time domain and by spectral analysis in the frequency domain. Mean velocity and pressure over the 2-h recordings were 60 +/- 7 cm/s and 83 +/- 8 mmHg, associated with ranges of 77 +/- 8 and 89 +/- 10% and coefficients of variation of 9.3 +/- 2.2 and 7.9 +/- 2.3%, respectively. Spectral power of the velocity and pressure was predominantly distributed in the frequency range of 0.00014-0.1 Hz and increased inversely with frequency, indicating characteristics of an inverse power law (1/f(alpha)). However, linear regression on a log-log scale revealed that the slope of spectral power of pressure and velocity was steeper in the high-frequency (0.02-0.5 Hz) than in the low-frequency range (0.002-0.02 Hz), suggesting different regulatory mechanisms in these two frequency ranges. Furthermore, the spectral slope of pressure was significantly steeper than that of velocity in the low-frequency range, consistent with the low transfer function gain and low coherence estimated at these frequencies. We conclude that 1) long-term fluctuations in CBF velocity are prominent and similar to those observed in arterial pressure, 2) spectral power of CBF velocity reveals characteristics of 1/f(alpha), and 3) cerebral attenuation of oscillations in CBF velocity in response to changes in pressure may be more effective at low than that at high frequencies, emphasizing the frequency dependence of cerebral autoregulation.  相似文献   

14.
Cerebral artery vasospasm is a major cause of death and disability in patients experiencing subarachnoid hemorrhage (SAH). Currently, little is known regarding the impact of SAH on small diameter (100-200 microm) cerebral arteries, which play an important role in the autoregulation of cerebral blood flow. With the use of a rabbit SAH model and in vitro video microscopy, cerebral artery diameter was measured in response to elevations in intravascular pressure. Cerebral arteries from SAH animals constricted more (approximately twofold) to pressure within the physiological range of 60-100 mmHg compared with control or sham-operated animals. Pressure-induced constriction (myogenic tone) was also enhanced in arteries from control animals organ cultured in the presence of oxyhemoglobin, an effect independent of the vascular endothelium or nitric oxide synthesis. Finally, arteries from both control and SAH animals dilated as intravascular pressure was elevated above 140 mmHg. This study provides evidence for a role of oxyhemoglobin in impaired autoregulation (i.e., enhanced myogenic tone) in small diameter cerebral arteries during SAH. Furthermore, therapeutic strategies that improve clinical outcome in SAH patients (e.g., supraphysiological intravascular pressure) are effective in dilating small diameter cerebral arteries isolated from SAH animals.  相似文献   

15.
The Circle of Willis is a ring-like structure of blood vessels found beneath the hypothalamus at the base of the brain. Its main function is to distribute oxygen-rich arterial blood to the cerebral mass. One-dimensional (1D) and three-dimensional (3D) computational fluid dynamics (CFD) models of the Circle of Willis have been created to provide a simulation tool which can potentially be used to identify at-risk cerebral arterial geometries and conditions and replicate clinical scenarios, such as occlusions in afferent arteries and absent circulus vessels. Both models capture cerebral haemodynamic autoregulation using a proportional-integral (PI) controller to modify efferent artery resistances to maintain optimal efferent flow rates for a given circle geometry and afferent blood pressure. The models can be used to identify at-risk cerebral arterial geometries and conditions prior to surgery or other clinical procedures. The 1D model is particularly relevant in this instance, with its fast solution time suitable for real-time clinical decisions. Results show the excellent correlation between models for the transient efferent flux profile. The assumption of strictly Poiseuille flow in the 1D model allows more flow through the geometrically extreme communicating arteries than the 3D model. This discrepancy was overcome by increasing the resistance to flow in the anterior communicating artery in the 1D model to better match the resistance seen in the 3D results.  相似文献   

16.
The Valsalvamaneuver (VM), a voluntary increase in intrathoracic pressure of ~40mmHg, has been used to examine cerebral autoregulation (CA). Duringphase IV of the VM there are pronounced changes in mean arterial bloodpressure (MABP), pulse interval, and cerebral blood flow (CBF), but thechanges in CBF are of a much greater magnitude than those seen in MABP,a finding to date attributed to either a delay in activation of the CAmechanism or the inability of this mechanism to cope with the size andspeed of the blood pressure changes involved. These changes in CBF also precede those in MABP, a pattern of events not explained by the physiological process of CA. Measurements of CBF velocity (transcranial Doppler) and MABP (Finapres) were performed in 53 healthy volunteers (aged 31-80 yr). By calculating beat-to-beat values of critical closing pressure (CCP) during the VM, we have found that this parametersuddenly drops at the start of phase IV, providing a coherentexplanation for the large increase in CBF. If CCP is included in theestimation of cerebrovascular resistance, a temporal pattern moreconsistent with an autoregulatory response to the MABP overshoot isalso found. CCP is intricately involved in the control of CBF duringthe VM and should be considered in the assessment of CA.  相似文献   

17.
Shin HK  Park SN  Hong KW 《Life sciences》2000,67(12):1435-1445
This study aimed to evaluate the role for adenosine A2A receptors in the autoregulatory vasodilation to hypotension in relation with cerebral blood flow (CBF) autoregulation in rat pial arteries. Changes in pial artery diameters were observed directly through a closed cranial window. Vasodilation induced by adenosine was markedly suppressed by ZM 241385 (1 micromol/l, A2A antagonist) and alloxazine (1 micromol/l, A2B antagonist), but not by 8-cyclopentyltheophylline (CPT, 1 micromol/l, A1 antagonist). CGS-21680-induced vasodilation was more strongly inhibited by ZM 241385 (25.3-fold; P<0.05) than by alloxazine. In contrast, 5'-N-ethylcarboxamido-adenosine (NECA)-induced vasodilation was more prominently suppressed by alloxazine (12.0-fold; P<0.001) than by ZM 241385. The autoregulatory vasodilation in response to acute hypotension of the pial arteries was significantly suppressed by ZM 241385, but not by CPT and alloxazine. Consistent with this finding, the lower limit of CBF autoregulation significantly shifted to a higher blood pressure by 1 micromol/l of ZM 241385 (53.0+/-3.9 mm Hg to 69.2+/-2.9 mm Hg, P<0.01) and 10 micromol/l of glibenclamide (54.7+/-6.5 mm Hg to 77.9+/-4.2 mm Hg, P<0.001), but not by CPT and alloxazine. Thus, it is suggested that adenosine-induced vasodilation of the rat pial artery is mediated via activation of adenosine A2A and A2B receptors, but not by A1 subtype, and activation of adenosine A2A receptor preferentially contributes to the autoregulatory vasodilation via activation of ATP-sensitive K+ channels in response to hypotension and maintenance of CBF autoregulation.  相似文献   

18.
Cerebral and peripheral circulation in 200 five- to seven-year-old children was studied with focused and tetrapolar impedance plethysmography. The strongest changes in the cerebral blood flow (CBF) were found to occur during the sixth year, whereas an increase in the tonic tension in large cerebral arteries takes place by the end of the ninth year. Significant alterations in the arterial tone and in volumetric velocity of the blood flow (VVBF) in the forearm were observed at the age of six, seven, and nine years. In five- to nine-year-old children, a local static workload significantly decreased CBF, increased the tone of large cerebral arteries, and caused a long-lasting increase in the antebrachial vascular tone accompanied by an exercise hyperemia which was more intense in nine-year-old children, whereas cerebral circulation reactivity was stronger in the younger group.  相似文献   

19.
Ursino, Mauro, and Carlo Alberto Lodi. A simplemathematical model of the interaction between intracranial pressure andcerebral hemodynamics. J. Appl.Physiol. 82(4): 1256-1269, 1997.A simplemathematical model of intracranial pressure (ICP) dynamics oriented toclinical practice is presented. It includes the hemodynamics of thearterial-arteriolar cerebrovascular bed, cerebrospinal fluid (CSF)production and reabsorption processes, the nonlinear pressure-volumerelationship of the craniospinal compartment, and a Starling resistormechanism for the cerebral veins. Moreover, arterioles are controlledby cerebral autoregulation mechanisms, which are simulated by means ofa time constant and a sigmoidal static characteristic. The model isused to simulate interactions between ICP, cerebral blood volume, andautoregulation. Three different related phenomena are analyzed: thegeneration of plateau waves, the effect of acute arterial hypotensionon ICP, and the role of cerebral hemodynamics during pressure-volume index (PVI) tests. Simulation results suggest the following:1) ICP dynamics may become unstablein patients with elevated CSF outflow resistance and decreasedintracranial compliance, provided cerebral autoregulation is efficient.Instability manifests itself with the occurrence of self-sustainedplateau waves. 2) Moderate acutearterial hypotension may have completely different effects on ICP,depending on the value of model parameters. If physiological compensatory mechanisms (CSF circulation and intracranial storage capacity) are efficient, acute hypotension has only negligible effectson ICP and cerebral blood flow (CBF). If these compensatory mechanismsare poor, even modest hypotension may induce a large transient increasein ICP and a significant transient reduction in CBF, with risks ofsecondary brain damage. 3) The ICPresponse to a bolus injection (PVI test) is sharply affected, viacerebral blood volume changes, by cerebral hemodynamics andautoregulation. We suggest that PVI tests may be used to extractinformation not only on intracranial compliance and CSF circulation,but also on the status of mechanisms controlling CBF.

  相似文献   

20.
Changes in pial arteries diameter and the condition of blood flow "dead point" in arterial anastomoses were established using the brain window during an acute increase of mean arterial pressure (MAP) induced by intravenous injection of norepinephrine (NE) with microcineangiography and the analysis of films and frames on a montage table and TAS ("Leitz"). During an acute increase of MAP the movement of blood flow "dead point" in anastomoses and the expansion of plasma segments occurred much more frequently than in normotension. The stabilization of blood flow "dead point" was observed at high constant MAP. Pronounced dilation of both pial arteries and veins first occurred in anastomoses, then spread to arterial branches. It is assumed that high vulnerability of the brain vessels of the borderline zones is due to breakthrough in autoregulation of cerebral blood flow on its upper limit and depends on the repeatedly changing directions of the blood flow and its moving "dead point", as the peripheral resistance of arterial anastomoses-forming branches under these circumstances changes in an irregular manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号