首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently discovered Craniofacial fossils of the middle Miocene cercopithecoid Victoriapithecus are described. The frontal, zygomatic, maxilla, and premaxilla anatomy differ from the previously proposed colobine-like ancestral cercopithecoid morphotype in several significant respects. This morphotype was based on the assumption that features held in common by subordinate hominoid and cercopithecoid morphotypes (Colobinae and Hylobatidae) are primitive for Old World monkeys. Cranial similarities between Victoriapithecus, which represents the sister-group of both colobine and cercopithecone monkeys, and the shorter-snouted Cercopithecinae (Macaca and Cercopithecus) indicate that the last common ancestor of Old World monkeys possessed the following features: a narrow interorbital septum, moderately long snout, moderately long and anteriorly tapering premaxilla, large procumbent upper central incisors set anterior to and with longer roots than lateral incisors, moderately tall face below the orbits, teardrop-shaped nasal aperture of low height and moderate width, and probably long and narrow nasal bones. The Victoriapithecus cranium is also characterized by features not present in modern cercopithecids. These include a deep malar region of the zygomatic and the presence of a frontal trigon due to the occurrence of temporal lines that merge with supraorbital costae close to the midline of each orbit and converge anterior to bregma. These features are interpreted as primitive retentions from the basal catarrhine condition as indicated by the occurrence of these features among primitive catarrhines (Aegyptopithecus) and Miocene hominoids (Afropithecus). © 1993 Wiley-Liss, Inc.  相似文献   

2.
This paper presents a reassessment of the taxonomic and phylogenetic affinities of the fossil catarrhine primates from the important middle Miocene site of Fort Ternan in Kenya. Although the sample of specimens is rather small, the material can be attributed to at least five different species, identified here asKenyapithecus wickeri, Proconsul sp., a large species of oreopithecid,Simiolus sp., and a small species of catarrhine of indeterminate status.Kenyapithecus wickeri probably represents a conservative sister-taxon of the extant large hominoids. It is more derived than“Sivapithecus” africanus from Maboko Island, from which it can be distinguished at the generic level. A small species of catarrhine from Fort Ternan can be attributed toSimiolus. It is probably a different species fromSimiolus enjiessi from the early Miocene of East Africa, but additional material is needed to confirm its taxonomic distinctiveness. The occurrence of at least five species of catarrhine primates at Fort Ternan confirms that species diversity levels were as high during the middle Miocene as they had been during the early Miocene. However, the overall taxonomic and ecological composition of the middle Miocene catarrhine community was quite different, evidently due to a significant change in the local ecological setting. Taxonomic differences between the catarrhine faunas at Fort Ternan and Maboko Island can probably be explained as a consequence of a chronological separation between the two sites, and, to a lesser degree, to paleoecological differences.  相似文献   

3.
New material of the early anthropoid primate Qatrania wingi and a new species of that genus are described. Several features of the dental anatomy show that Qatrania, while quite primitive relative to other anthropoids in many ways, is most likely a parapithecid primate. The new material suggests that several dental features previously thought to ally parapithecids with the catarrhine primates were actually evolved in parallel in catarrhines and some parapithecids. Furthermore, all nonparapithecid anthropoids (including platyrrhines and catarrhines) share a suite of derived dental and postcranial features not found in parapithecids. Therefore, parapithecid origins may predate the platyrrhine/catarrhine split.  相似文献   

4.
The palatofacial morphology of Proconsul africanus, P. nyanzae, P. major and Sivapithecus meteai is compared to extant catarrhines. The early Miocene hominoids (Proconsul) are unlike modern great apes, but retain a primitive catarrhine pattern more similar to some extant cercopthecoids. By middle Miocene times the typical hominoid palatofacial morphology can be recognized in at least one species (S. meteai) and this corresponds to the evolution of the postcranium in which the hominoid pattern is also only recognizable by the middle Miocene.  相似文献   

5.
Rudabánya, a rich late Miocene fossil site in northern central Hungary, has yielded an abundant record of fossil primates, including the primitive catarrhine Anapithecus and the early great ape Dryopithecus. While the affinities of Anapithecus are not clear, Dryopithecus is clearly a great ape sharing numerous characteristics of its dental, cranial and postcranial anatomy with living great apes. Like all Miocene hominids (great apes and humans), Dryopithecus is more primitive in a number of ways than any living hominid, which is probably related to the passage of time since the divergence of the various lineages of living hominids, allowing for similar refinements in morphology and adaptation to take place independently. On the other hand, Dryopithecus (and Ouranopithecus) share derived characters with hominines (African apes and humans), and Sivapithecus (and Ankarapithecus) share derived characters with orangutans, thus dating the split between pongines and hominines to a time before the evolution of these fossil great apes. Pongines and hominines follow similar fates in the late Miocene, the pongines moving south into Southeast Asia from southern or eastern Asia and the hominines moving south into East Africa from the Mediterranean region, between 6 to 9 Ma.  相似文献   

6.
Three recently discovered faces of Aegyptopithecus zeuxis from the Oligocene Jebel Qatrani Formation of Egypt provide new information about the shape and variation of the facial cranium, the earliest preserved for a presumed forerunner of apes and humans. Although varying considerably in details of shape and proportion, the new finds and a skull found in 1966 all appear to be of males, a conclusion based in part on the development of temporal and sagittal crests and on the large size of upper canines or their sockets (female canines are much smaller). The snouts of the three new faces all are shorter and broader than that of the earlier found skull as reconstructed. As in most later species of Anthropoidea, variation between these specimens is high.Aegyptopithecus helps define the nature of the oldest Anthropoidea and generally most resembles later-occurring apes. Many features, both derived and shared primitive, link Aegyptopithecus, the large Miocene great apes of the Proconsul group, and modern great apes. That these shared features and proportions are not direct allometric consequences of body size is indicated by Aegyptopithecus' resemblance to the large apes and its many distinctions from similar-sized Hylobates.In Aegyptopithecus brain volume scales smaller than in later catarrhines relative to facial size, the ectotympanic tube is less developed and the premaxilla is more primitive than in later higher primates. In closure of orbits and conformation of forehead, face and dentition, Aegyptopithecus closely resembles higher primates and not prosimians. Taken together, its overall cranial and dental anatomy constitutes one of the most important connecting links in primate evolutionary history.  相似文献   

7.
The earliest record of fossil apes outside Africa is in the latest early Miocene of Turkey and eastern Europe. There were at least 2, and perhaps 4, species of ape, which were found associated with subtropical mixed environments of forest and more open woodland. Postcranial morphology is similar to that of early Miocene primates and indicates mainly generalized arboreal quadrupedal behaviours similar to those of less specialized New World monkeys such as Cebus. Robust jaws and thick enamelled teeth indicate a hard fruit diet. The 2 best known species of fossil ape are known from the site of Pa?alar in Turkey. They have almost identical molar and jaw morphology. Molar morphology is also similar to that of specimens from Germany and Slovakia, but there are significant differences in the anterior teeth of the 2 Pa?alar species. The more common species, Griphopithecus alpani, shares mainly primitive characters with early and middle Miocene apes in Africa, and it is most similar phenetically to Equatorius africanus from Maboko Island and Kipsaramon. The second species is assigned to a new species of Kenyapithecus, an African genus from Fort Ternan in Kenya, on the basis of a number of shared derived characters of the anterior dentition, and it is considered likely that there is a phylogenetic link between them. The African sites all date from the middle Miocene, similar in age to the Turkish and European ones, and the earliest emigration of apes from Africa coincides with the closure of the Tethys Sea preceding the Langhian transgression. Environments indicated for the African sites are mixtures of seasonal woodlands with some forest vegetation. The postcrania of both African taxa again indicate generalized arboreal adaptation but lacking specialized arboreal function. This middle Miocene radiation of both African and non-African apes was preceded by a radiation of arboreal catarrhine primates in the early Miocene, among which were the earliest apes. The earliest Miocene apes in the genus Proconsul and Rangwapithecus were arboreal, and because of their association with the fruits of evergreen rain forest plants at Mfwangano Island, it would appear that they were forest adapted, i.e. were living in multi-storied evergreen forest. The same or similar species of the same genera from Rusinga Island, together with other genera such as Nyanzapithecus and the small ape Limnopithecus, were associated with plants and animals indicating seasonal woodland environments, probably with gallery forest forming corridors alongside rivers. While the stem ancestors of the Hominoidea were almost certainly forest adapted, the evidence of environments associated with apes in the later part of the early Miocene and the middle Miocene of East Africa indicates more seasonal woodlands, similar to those reconstructed for the middle Miocene of Pa?alar in Turkey. This environmental shift was probably a requisite for the successful emigration of apes out of Africa and made possible later movement between the continents for much of the middle Miocene, including possible re-entry of at least one ape lineage back into Africa.  相似文献   

8.
Using a new approach to study muscle anatomy in vertebrates, the fully differentiated jaw musculature of 42 turtle species was studied and character mappings were performed. Soft tissue arrangements were correlated to the temporal openings (emarginations) of the skull and the trochlearis system of the jaw apparatus among turtle taxa. When compared to the cranial anatomy of stem Testudines, most characters detected as diagnostic of particular extant groups have to be considered as being evolved first within Testudines. Hence, jaw muscle anatomy of extant turtles is difficult to compare to that of other reptilian taxa. Moreover, the high number of apomorphic character changes speaks for a divergating turtle and saurian morphotype of jaw musculature, which could indicate either a position of turtles outside of Sauria or a highly derived, undetectable origin within that group. In general, a low direct correlation of most soft and hard tissue characters was detected. This finding could imply that both character complexes are more integrated to each other driven by functional morphology; i.e., the composition of muscle fibre types. That condition highlights the difficulty in using gross anatomy of jaw muscle characters to interpret temporal bone arrangements among amniotes in general.  相似文献   

9.
10.
Despite the large and growing number of Miocene fossil catarrhine taxa, suitable common ancestors of great apes and humans have yet to be agreed upon. Considering a) the conservative and primitive nature of the hominoid molar cusp pattern, and b) the variability of secondary dental features, it is difficult to discern whether a hominoid dentition is primitive, secondarily simplified to the primitive condition or too far derived to be ancestral to any of the living forms. Nonetheless, the inability to recognize a common ancestor is primarly due to the absence of a model of hominoid differentiation that provides a basis for its recognition. Vertical climbing as the limiting component of cautious climbing, explains all of the locomotor anatomy shared by living hominoids. Comparison of the shared derived characters of hominoids to those of forms which have converged on hominoidsi.e colobines, atelines, lorisines, paleopropithecines and sloths suggest that early hominoids were probably folivores. In arboreal forms there is a strong link between a large body size, folivory and cautious climbing. Comparison of craniodental characters of committed folivores to committed frugivores from among each of the compared groups with the exception of lorisines, indicates that many of the distinguishing craniodental characters of humans and great apes are adaptations to folivory. Many of these characters, however, are also present in Jolly's seed eating complex. As such folivory may be the heritage factor which Jolly hypothesized to account for differential reduction of canines in fossilTheropithecus and hominids.  相似文献   

11.
The evolutionary history of the living hominoids has remained elusive despite years of exploration and the discovery of numerous Miocene fossil ape species. Part of the difficulty can be attributed to the changing nature of our views about the course of hominoid evolution. In the 1950s and 1960s, individual Miocene taxa were commonly viewed as the direct ancestors of specific living ape species, suggesting an early divergence of the modern lineages.1–5 However, in most cases, the Miocene forms were essentially “dental apes,” resembling extant species in dental and a few cranial features, but possessing more primitive postcranial features that suggested arboreal quadrupedalism rather than suspensory habits. With the introduction of molecular methods of phylogenetic reconstruction and the increasing use of cladistic analysis, it has become apparent that the radiation leading to the modern hominoids was somewhat more recent than had been believed, and that most of the Miocene hominoid species had little to do with the evolutionary history of the living apes. © 1998 Wiley-Liss, Inc.  相似文献   

12.
The phylogenetic relationships of the late Eocene anthropoids Catopithecus browni and Proteopithecus sylviae are currently a matter of debate, with opinion divided as to whether these taxa are stem or crown anthropoids. The phylogenetic position of Catopithecus is of particular interest, for, unlike the highly generalized genus Proteopithecus, this taxon shares apomorphic dental and postcranial features with more derived undoubted catarrhines that appear in the same region 1-2 Ma later. If these apomorphies are homologous and Catopithecus is a stem catarrhine, the unique combination of plesiomorphic and apomorphic features preserved in this anthropoid would have important implications for our understanding of the crown anthropoid morphotype and the pattern of morphological character transformations that occurred during the early phases of stem catarrhine evolution.Well-preserved astragali referrable to Proteopithecus, Catopithecus, and the undoubted early Oligocene stem catarrhine Aegyptopithecus have provided additional morphological evidence that allows us to further evaluate competing hypotheses of interrelationships among Eocene-Oligocene Afro-Arabian anthropoids. Qualitative observations and multivariate morphometric analyses reveal that the astragalar morphology of Proteopithecus is very similar to that of early Oligocene parapithecids and living and extinct small-bodied platyrrhines, and strengthens the hypothesis that the morphological pattern shared by these taxa is primitive within crown Anthropoidea. In contrast, Catopithecus departs markedly from the predicted crown anthropoid astragalar morphotype and shares a number of apomorphic features (e.g., deep cotylar fossa, laterally projecting fibular facet, trochlear asymmetry, mediolaterally wide astragalar head) with Aegyptopithecus and Miocene-Recent catarrhines. The evidence from the astragalus complements other independent data from the dentition, humerus and femur of Catopithecus that support this taxon's stem catarrhine status, and we continue to maintain that oligopithecines are stem catarrhines that constitute the sister group of a clade containing propliopithecines and Miocene-Recent catarrhines.  相似文献   

13.
A partial skeleton attributed to Proconsul nyanzae (KNM-MW 13142) is described. The fossils were found at a site on Mfangano Island, Kenya, which dates to 17.9 ± .1 million years ago. KNM-MW 13142 consists of six partial vertebrae (T12-S1), a nearly complete hipbone, most of the right femur and left femoral shaft, a fragmentary tibia and fibula, and a nearly complete talus and calcaneus. This skeleton provides the first pelvic fossil known for any East African Miocene hominoid. The new Proconsul specimen is compared to a large sample of extant anthropoids to determine its functional and phylogenetic affinities. In most aspects of its anatomy, KNM-MW 13142 closely resembles nonhominoid anthropoids. This individual had a long, flexible spine, narrow torso, and habitually pronograde posture, features characteristic of most extant monkeys. Evidence of spinal musculature suggests a generalized condition intermediate between that of cercopithecoids and hylobatids. The hindlimb of KNM-MW 13142 exhibits relatively mobile hip and ankle joints, with structural properties of the femur like those of hominoids. This mix of features implies a pattern of posture and locomotion that is unlike that of any extant primate. Many aspects of the Proconsul nyanzae locomotor skeleton may represent the primitive catarrhine condition. © 1993 Wiley-Liss, Inc.  相似文献   

14.
Neontological comparisons suggest that paranasal sinus anatomy is diagnostic of several catarrhine clades such as Cercopithecoidea, Hominoidea, Homininae, and Ponginae. However, while the loss of sinuses in cercopithecoids is generally recognized as a derived condition, determining the polarity of character-state changes within noncercopithecoid catarrhines requires knowledge of the primitive catarrhine condition. To address this problem, the paranasal sinus anatomy of Aegyptopithecus and several early Miocene catarrhines was investigated. Two partial facial skeletons of Aegyptopithecus were subjected to computed tomography in order to reveal their internal anatomy. These data were compared with facial and palatal specimens of Proconsul, Limnopithecus, Dendropithecus, Rangwapithecus, and Kalepithecus in the National Museums of Kenya in Nairobi, and to wet and dry specimens of living taxa. Results confirm that cercopithecoid paranasal anatomy is derived, and reveal that the sinus anatomy of stem catarrhines included a hominoid-like maxillary sinus as well as an ethmofrontal system like that of hominines. Accordingly, these two features do not constitute evidence for the hominoid, hominid, or hominine status of any fossil species. Conversely, the absence of the ethmofrontal sinus system in Sivapithecus and Pongo is synapomorphic. In addition, features of the nasal cavity of Limnopithecus and Kalepithecus support previous suggestions that these taxa are stem catarrhines rather than hominoids.  相似文献   

15.
The postcranial axial skeleton exhibits considerable morphological and functional diversity among living primates. Particularly striking are the derived features in hominoids that distinguish them from most other primates and mammals. In contrast to the primitive catarrhine morphotype, which presumably possessed an external (protruding) tail and emphasized more pronograde trunk posture, all living hominoids are characterized by the absence of an external tail and adaptations to orthograde trunk posture. Moreover, modern humans evolved unique vertebral features that satisfy the demands of balancing an upright torso over the hind limbs during habitual terrestrial bipedalism. Our ability to identify the evolutionary timing and understand the functional and phylogenetic significance of these fundamental changes in postcranial axial skeletal anatomy in the hominoid fossil record is key to reconstructing ancestral hominoid patterns and retracing the evolutionary pathways that led to living apes and modern humans. Here, we provide an overview of what is known about evolution of the hominoid vertebral column, focusing on the currently available anatomical evidence of three major transitions: tail loss and adaptations to orthograde posture and bipedal locomotion.  相似文献   

16.
Relationships of the catarrhine primates based on morphological similarity are presented and then combined with habitat data to determine polarity of ecological change in the catarrhines. The ancestral habitat of two sister-groups is estimated by combining that of the sister groups, so that if they share one habitat type the ancestral condition is taken to be that type, or if they differ the ancestral condition is taken to be both alternatives. Analysed in this way the ancestral habitat preference of the Catarrhini is tropical lowland forest, and while the Hominoidea retain this primitive condition, the Cercopithecoidea are derived with a savanna habitat preference. Most hominoids retain the primitive forest habitat condition, and those groups that are associated with woodland-savanna habitats, notably the ramapitbecines and hominines, therefore share a derived habitat preference. There is no evidence, however, that this arose through common ancestry, and it is concluded that the functional similarities between the two groups could have arisen through parallel adaptation to the same habitat type. Similarly, many of the extant cercopithecoid groups that are now forest living may have re-entered forest independently. The derived savanna habitat preference of the cercopithecoids is linked with a number of morphological characters that also are derived with respect to catarrhine ancestry, and these include their terrestrial and/or their above-branch adaptations, and their specialized digestive, dietary and dental adaptations. In contrast, the hominoids that retain the primitive catarrhine habitat preference also retain the primitive condition in all these characters.  相似文献   

17.
We describe a new species of gundi (Rodentia: Ctenodactylidae: Ctenodactylinae), Sayimys negevensis, on the basis of cheek teeth from the Early Miocene of the Rotem Basin, southern Israel. The Rotem ctenodactylid differs from all known ctenodactylid species, including Sayimys intermedius, which was first described from the Middle Miocene of Saudi Arabia. Instead, it most resembles Sayimys baskini from the Early Miocene of Pakistan in characters of the m1-2 (e.g., the mesoflexid shorter than the metaflexid, the obliquely orientated hypolophid, and the presence of a strong posterolabial ledge) and the upper molars (e.g., the paraflexus that is longer than the metaflexus). However, morphological (e.g., presence of a well-developed paraflexus on unworn upper molars) and dimensional (regarding, in particular, the DP4 and M1 or M2) differences between the Rotem gundi and Sayimys baskini distinguish them and testify to the novelty and endemicity of the former. In its dental morphology, Sayimys negevensis sp. nov. shows a combination of both the ultimate apparition of key-characters and incipient features that would be maintained and strengthened in latter ctenodactylines. Thus, it is a pivotal species that bridges the gap between an array of primitive ctenodactylines and the most derived, Early Miocene and later, gundis.  相似文献   

18.
Almost 50 years after its discovery, a cranium from the early Miocene of Rusinga Island, Kenya, is designated the type specimen for a new lorisid species in the genusMioeuoticus. This new species differs fromMioeuoticus bishopi in a number of dental attributes. Several cranial features place this species in Lorisidae, where it may represent the sister group to living lorises.  相似文献   

19.
Recent paleontological collections at the middle Miocene locality of Maboko Island in Kenya, dated at 15-16 million years, have yielded numerous new specimens belonging to at least five species of fossil anthropoids. The most common species of ape at the site, a medium-sized primate with a very distinctive dental morphology, clearly represents a previously undescribed taxon. When compared with other Miocene anthropoids from East Africa, it has its closest affinities with the poorly known species Rangwapithecus vancouveringi from the early Miocene locality of Rusinga Island. The species from Maboko Island is described here as belonging to a new genus of fossil anthropoid, to which "Rangwapithecus" vancouveringi is also referred. The new genus has a highly distinctive suite of derived characters of its molars and premolars, which it shares with Oreopithecus bambolii from the late Miocene of Europe. These synapomorphies indicate a close phyletic relationship between the East African species and Oreopithecus and form the basis for the inclusion of these taxa in a single family, the Oreopithecidae Schwalbe, 1915. In many respects, however, the East African forms are more conservative than Oreopithecus, and in a general sense they can be regarded as an intermediate grade between Oreopithecus and the more generalized early Miocene catarrhines, the proconsuloids. There is, therefore, good fossil evidence to indicate that the origins of the Oreopithecidae can be traced back to the early Miocene of Africa.  相似文献   

20.
Eleven proximal and ten intermediate partial or complete hominoid phalanges have been recovered from the middle Miocene site of Pa?alar in Turkey. Based on species representation at Pa?alar, it is likely that most or all of the phalanges belong to Griphopithecus alpani rather than Kenyapithecus kizili, but both species may be represented. All of the complete or nearly complete phalanges appear to be manual, so comparisons to extant and other fossil primate species were limited to manual phalanges. Comparisons were made to extant hominoid and cercopithecoid primate genera expressing a variety of positional repertoires and varying degrees of arboreality and terrestriality. The comparisons consisted of a series of bivariate indices derived from previous publications on Miocene catarrhine phalangeal morphology. The proximal phalanges have dorsally expanded proximal articular surfaces, which is characteristic of cercopithecoids and most other Miocene hominoids, and indicates that the predominant positional behaviors involved pronograde quadrupedalism. Among the extant primates, many of the proximal and intermediate phalangeal indices clearly distinguish more habitually terrestrial taxa from those that are predominantly arboreal, and especially from taxa that commonly engage in suspensory activities. For nearly every index, the values of the Pa?alar phalanges occupy an intermediate position-most similar to values for Pan and, to a lesser extent, Macaca-indicating a generalized morphology and probably the use of both arboreal and terrestrial substrates. At least some terrestrial activity is also compatible with reconstructions of the Pa?alar habitat. Most proximal and intermediate phalanges of other middle and late Miocene hominoids have similar index values to those of the Pa?alar specimens, revealing broadly similar manual phalangeal morphology among many Miocene hominoids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号