共查询到20条相似文献,搜索用时 0 毫秒
1.
S Kh Degtiarev A A Kolykhalov N I Rechkunova V S Dedkov P A Zhilkin 《Molekuliarnaia biologiia》1990,24(1):244-247
The restriction endonuclease BsiI from Bacillus sphaericus was isolated. The recognition sequence and cleavage point of enzyme BsiI have been determined as (sequence: see text). This restriction endonuclease is not an isoschizomer of any known restriction endonucleases and differs from other enzymes: it hydrolyses DNA into unsymmetrical recognition sequence. 相似文献
2.
B Milavetz 《Nucleic acids research》1989,17(8):3322
3.
The recognition sequence and cleavage site C decreases TRYAG of a new restriction endonuclease SfeI have been determined. 相似文献
4.
S Kh Degtiarev V E Repin N I Rechkunova V E Chizhikov E G Malygin 《Bioorganicheskaia khimiia》1987,13(3):420-421
The recognition sequence and cleavage point of restriction endonuclease VspI have been determined as 5'-AT decreases TAAT. This enzyme is not isoschizomer of any known restriction endonucleases. DNA pBR322 contains a single VspI recognition sequence in position 3539. Therefore this enzyme may be used for cloning DNA in the VspI site in AmpR-gene of pBR322. 相似文献
5.
Dahai T Ando S Takasaki Y Tadano J 《Bioscience, biotechnology, and biochemistry》1999,63(10):1703-1707
Site-directed mutagenesis by inverse PCR was done on the HindIII gene. Target residues to be mutated were chosen according to (i) the fact that a mutant obtained by sodium nitrite treatment showed almost no HindIII activity, where Asp-123 was replaced with Asn, and (ii) the model proposed by Stahl et al. (Stahl, F., Wende, W., Jeltsch, A. and Pingoud, A. Biol. Chem. 379, 467-473 (1998)). Seven kinds of mutants were obtained by the PCR, and their enzymatic and biochemical properties were examined. Three mutants, P50S, D108L, and D123N, showed fairly low HindIII activity. On the other hand, the other four, P84Q, E86K, V106E, and K125N, retained the activity. In particular, E86K showed higher activity than the wild enzyme. This fact was confirmed when activities of the purified wild and E86K enzymes were assayed. These results coincided fairly well with data using E. coli strains that carry the respective mutant plasmids, on their resistance to phage T7 and on growth rate. We conclude that the PE motif at residues 50 and 51, and DXK motif at residues 108-110, are responsible for the enzymic reaction of HindIII. 相似文献
6.
A difficulty that is encountered when attempting to insert a PCR-amplified product or DNA fragment of interest into a particular vector is the presence within the insert of one or more internal restriction endonuclease (RE) sites identical to those selected for the flanks of the insert. Our method circumvents this problem by partially protecting internal RE sites while flanking sites for the same RE are cleaved. The amplified product is first heat denatured in the presence of excess amounts of perfectly complementary oligonucleotides that can anneal to the flanks of the insert. The mixture is allowed to anneal and is subsequently digested with the appropriate endonucleases. This results in the cleavage of the flanking RE sites while digestion at the internal RE site is not efficient. The mixture is subsequently heat denatured and column purified to remove the oligonucleotides. The product is then allowed to anneal and can be used directly in a ligation reaction with the plasmid vector. This method facilitates the construction of recombinant molecules by creating desired flanks while preserving internal RE sites. 相似文献
7.
SruI restriction endonuclease from Selenomonas ruminantium 总被引:1,自引:0,他引:1
Ivan Vanat Peter Prista Elena Ryboovál rej Godány Peter Javorský 《FEMS microbiology letters》1993,113(2):129-132
Abstract Sru I, specific restriction endonuclease, has been characterized from Selenomonas ruminantium isolated from the rumen of fallow deer. Results from the study demonstrate that S. ruminantium 18D possesses a type II restriction endonuclease, which recognizes the sequence 5'-TTT↓AAA-3'. The recognition sequence of Sru I was identified using digestions on pBR322, pBR328, pUC18, M13mp18RF, pACYC184 and λDNA. The cleavage patterns obtained were compared with computer-derived data. Sru I recognises the palindromic hexanucleotide sequence and cleaves DNA after the third T in the sequence, producing blunt ends. The purification and characterization of restriction endonuclease Sru I presented here is the first described for Selenomonas ruminantium spp. and demonstrates that this microorganism pocesses a DNA-cleaving enzyme with the same specificity as Dra I or Aha III. 相似文献
8.
Szeberényi J 《生物化学与分子生物教育》2011,39(5):393-395
9.
Cabrera León N 《BioTechniques》1999,27(6):1228-1231
This paper describes a Microsoft Word 97 macro designed for restriction endonuclease analysis. Selected DNA fragments in the active Word document can be analyzed through a dynamic dialog box that formats the enzyme restriction lists for further analysis. The results can be obtained in a new Word document with the name of the enzymes, number of cuts and positions. This macro has several advantages: the results can be printed in a format suitable for record keeping, no additional programs are required and it is simple to use. 相似文献
10.
Preferential cleavage by restriction endonuclease HinfIII 总被引:1,自引:0,他引:1
A Piekarowicz 《Acta biochimica Polonica》1984,31(4):453-464
The efficiency of endonucleolytic scission by restriction endonuclease HinfIII varies markedly for different recognition sites. The relative frequencies of cleavage at these sites have been determined on the basis of analysis of specific unit length linear molecules formed. The efficiency of restriction reaction depends also on the number of recognition sites in the DNA substrate. Cleavage by HinfIII in the absence or presence of S-adenosylmethionine is observed only when at least three recognition sites are present. HinfIII also shows preferential methylation of certain sites observable even for a substrate with one recognition site. The nucleotide sequences at sites cleaved or methylated at high frequency have been compared. 相似文献
11.
I. Vanat P. Prista E. Kutejová J. Jüdová A. Godány P. Javorský 《Letters in applied microbiology》1993,17(6):297-299
Restriction endonuclease Sbv I, an isoschizomer of Hae III, has been isolated from rumen amylolytic bacterium Streptococcus bovis II/1. Sbv I was purified from cell extract by phosphocellulose chromatography and heparin-Sepharose chromatography. The recognition sequence of Sbv I was identified by digestion of pBR322, pUC9 and Λ-DNA and comparing the cleavage patterns obtained with computer-derived data. Sbv I recognizes the 4-bp palindrome, 5'-GGCC-3' and cleaves DNA after the second G in the sequence, producing blunt ends. 相似文献
12.
Cation dependence of restriction endonuclease EcoRI activity 总被引:3,自引:0,他引:3
Restriction endonuclease EcoRI cleaves the DNA sequence 5'd(-G-A-A-T-T-C-) under optimum digestion conditions. A variation in pH and ionic strength can result in EcoRI activity when 5'd(-A-A-T-T-) is cut. A divalent cation, usually Mg2+, is required for enzyme activity, though Mn2+ can also be used. Eight different cations with ionic radius/charge ratios similar to Mg2+ were tested and Co2+ and Zn2+ were also found to act as cofactors for EcoRI. A comprehensive study has been made of the effect of NaCl and pH on the EcoRI/EcoRI transition in the presence of the above four cations. Generally, a decrease in NaCl and/or an increase in pH caused a decrease in enzyme specificity. The changeover depended on the cation. They may be placed in order of their ability to increase EcoRI specificity thus: Co2+ greater than Zn2+ greater than Mg2+ greater than Mn2+. The Km of EcoRI for ColE1 DNA, in the presence of Co2+, was found to be 0.4 nM, compared to 3 nM with Mg2+, whereas the turnover was only one double-stranded scission/min with Co2+ compared to eight/min with Mg2+. The implications of all these findings on the enzyme's mechanism are discussed. 相似文献
13.
Relaxed specificity of the EcoRV restriction endonuclease 总被引:6,自引:0,他引:6
The EcoRV restriction endonuclease normally shows a high specificity for its recognition site on DNA, GATATC. In standard reactions, it cleaves DNA at this site several orders of magnitude more readily than at any alternative sequence. But in the presence of dimethyl sulphoxide and at high pH, the EcoRV enzyme cleaves DNA at several sites that differ from its recognition site by one nucleotide. Of the 18 (3 X 6) possible sequences that differ from GATATC by one base, all were cleaved readily except for the following 4 sites: TATATC, CATATC, GATATA and GATATG. However, two of the sites that could be cleaved by EcoRV in the presence of dimethyl sulphoxide, GAGATC and GATCTC, were only cleaved on DNA that lacked dam methylation: both contain the sequence GATC, the recognition site for the dam methylase of Escherichia coli. 相似文献
14.
Catalytic properties of the HhaII restriction endonuclease 总被引:1,自引:0,他引:1
The catalytic properties of the HhaII restriction endonuclease were studied using plasmid pSK11 DNA containing a single 5'-G-A-N-T-C HhaII cleavage site as substrate. Reactions were followed by two methods: 1) gel electrophoretic analysis of nicked circular and linear DNA products, or 2) release of 32P-labeled inorganic phosphate from specifically labeled HhaII sites in a reaction coupled with bacterial alkaline phosphatase. The enzyme is optimally active at 37 degrees C in 10 mM Tris-HCl (pH 9.1) and 4-10 mM MgCl2 without added NaCl. Activity is stabilized by the presence of 2-mercaptoethanol and 0.2% Triton X-100 or 50 microgram/ml bovine serum albumin. At enzyme concentrations below 10 nM and using pSK11 as substrate, initial kinetic rates were dependent on the order of mixing of reactants. A lag of 3-4 min was observed if enzyme or substrate was added last. Preincubation of substrate and enzyme followed by initiation of the reaction with MgCl2 or preincubation of the enzyme with nonspecific DNA followed by initiation with substrate eliminated or reduced the lag, respectively, and speeded up the reactions. Under a wide range of reaction conditions, nicked pSK11 DNA accumulated early, while linear molecules appeared later, suggesting that HhaII cleaves one strand at a time in separate binding events. The apparent Km for covalently closed pSK11 DNA molecules was approximately 17 nM, and the turnover number for the conversion of covalent to nicked sites was 1.1 single strand scissions/min. Pre-steady state kinetic analysis indicated that cleavage of the first phosphodiester bond in a site is first order with a rate constant of about 0.8 min-1, while cleavage of the second phosphodiester bond is first order with a rate constant of about 0.2 min-1. 相似文献
15.
V Butkus R Kazlauskene R Gilvonauska?te M Piatrushite A Ianula?tis 《Bioorganicheskaia khimiia》1985,11(11):1572-1573
The recognition sequence and cleavage point of restriction endonuclease Eco781 have been determined as 5'-GGCGCC-. There are several known enzymes recognizing the same sequence, although the prototype NarI and isoschizomers NdaI and NunII cleave the substrate to produce 5'-protruding ends, whereas cleavage with isoschizomer BbeI results in 3'-protruding ends. Therefore, restrictase Eco78I, generating flush ends, may be regarded as an enzyme with new specificity among the restriction endonucleases recognizing the 5'-GGCGCC-sequence. 相似文献
16.
17.
18.
The specificity of the EcoRI restriction endonuclease 总被引:1,自引:0,他引:1
S E Halford 《Biochemical Society transactions》1980,8(3):399-400
19.
The restriction endonuclease PalI was purified from Providencia alcalifaciens 1650-fold with a yield of 33%. The purified protein moved as a single band upon polyacrylamide gel electrophoresis. When this was carried out in the presence of sodium dodecyl sulfate, a molecular weight of 31,000 was obtained for PalI. Gel filtration through Sephacryl S200 gave molecular weights ranging from 44,000 to 53,000 when 58 to 1870 ng/ml enzyme were used, respectively. Other properties of the enzyme are described. 相似文献
20.
Specificity of restriction endonucleases and methylases--a review 总被引:14,自引:0,他引:14
The properties and sources of all known restriction endonucleases and methylases are listed. The enzymes are cross-indexed (Table I), classified according to their recognition sequence homologies (Table II), and characterized within Table II by the cleavage and methylation positions, the number of recognition sites on the double-stranded DNA of the bacteriophages lambda, phi X174 and M13mp7, the viruses Ad2 and SV40, the plasmids pBR322 and pBR328, and the microorganisms from which they originate. Other tabulated properties of the restriction endonucleases include relaxed specificities (integrated into Table II), the structure of the generated fragment ends (Table III), and the sensitivity to different kinds of DNA methylation (Table V). In Table IV the conversion of two- and four-base 5'-protruding ends into new recognition sequences is compiled which is obtained by the fill-in reaction with Klenow fragment of the Escherichia coli DNA polymerase I or additional nuclease S1 treatment followed by ligation of the modified fragment termini [P3]. Interconversion of restriction sites generates novel cloning sites without the need of linkers. This should improve the flexibility of genetic engineering experiments. Table VI classifies the restriction methylases according to the nature of the methylated base(s) within their recognition sequences. This table also comprises restriction endonucleases which are known to be inhibited or activated by the modified nucleotides. The detailed sequences of those overlapping restriction sites are also included which become resistant to cleavage after the sequential action of corresponding restriction methylases and endonucleases [N11, M21]. By this approach large DNA fragments can be generated which is helpful in the construction of genomic libraries. The data given in both Tables IV and VI allow the design of novel sequence specificities. These procedures complement the creation of universal cleavage specificities applying class IIS enzymes and bivalent DNA adapter molecules [P17, S82]. 相似文献