首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
X-ray structures of three different membrane proteins in complex with antibody fragments have been published. The binding of Fv or Fab fragments enlarges the hydrophilic part of integral membrane proteins, thereby providing additional surface for crystal contacts and space for the detergent micelle. In all reported cases, antibody binding was either essential for the crystallisation of the membrane protein or it substantially improved the diffraction quality of the crystals. Antibody-fragment-mediated crystallisation appears to be a valuable tool in particular for membrane proteins with very small hydrophilic or flexible domains.  相似文献   

2.
The availability of high-quality crystals is crucial to the structure determination of proteins by X-ray diffraction. With the advent of structural genomics the pressure to produce crystals is greater than ever before. Finding favourable conditions for crystallisation is usually achieved by screening of the protein solution with numerous crystallising agents. Optimisation of the crystallisation conditions involves the manipulation of the crystallisation phase diagram with the aim of leading crystal growth in the direction that will produce the desired results. This article highlights recent advances in experimental methods for improving crystal size and quality by separating the nucleation and growth phases of crystallisation using the vapour diffusion and microbatch techniques.  相似文献   

3.
Cross-linked enzyme crystals (CLECs®) are a novel form of immobilised biocatalyst designed for application in large-scale biotransformation processes. In this work we review the production and characterisation of CLECs® prepared from three enzymes (yeast alcohol dehydrogenase I (YADHI), Candida rugosa lipase and α-chymotrypsin) over a range of crystallisation and cross-linking conditions. Optimisation and control of the crystallisation process, with respect to crystal form and enzyme activity yield, was facilitated by the use of triangular crystallisation diagrams which allowed three parameters (e.g. protein concentration, precipitant concentration and pH) to be varied simultaneously. These diagrams showed regions, or 'crystallisation windows', in which particular crystal forms or optimal activity recoveries (up to 87%) could be obtained. They also identified conditions for reproducible scale-up of the lipase crystallisation from 0.5 to 500 mL scale.

In order to evaluate the suitability of a particular batch of CLECs® for large-scale use, a hierarchy of standard tests is proposed. This is designed to expose key properties of the CLECs® relative to each other, and the free enzyme, and to minimise the number of experiments necessary to evaluate each batch of biocatalyst. In general, the CLECs® of each enzyme were found to be more resistant to harsh environmental conditions, such as extremes of temperature and pH and the presence of solvents or proteases, than the free enzymes. Cross-linking of the crystals with glutaraldehyde also yielded mechanically robust catalysts that could withstand the various forces associated with shear in agitated vessels and particle compression in repeated dead-end filtration cycles. The hierarchy of tests proposed here clearly indicated that many of the above properties were also dependent on both the crystal form and size, and the concentration of cross-linking reagent used. Accurate control of the crystallisation conditions used for CLEC® production is therefore vital as this will influence the suitability of the CLECs® for their end use.  相似文献   

4.
High-throughput crystallisation requires the rapid and accurate dispensing of protein and precipitating agent solutions at nanovolumes, but does not end there. The choice of the initial screens is very important, especially with respect to the availability of protein material. Data from previous crystallisation experiments that are scattered in the literature and only partially available in databases have to be analysed in efficient ways that will maximise their utility for designing new screens. A larger portion of crystallisation parameter space should be made accessible to screening, through the use of nucleants and seeding. Observation, assessment and scaling up of the crystallisation trials should be efficiently performed and, finally yet importantly, optimisation of conditions must also be adapted to the high-throughput environment. The above requirements are briefly addressed in the following paper.  相似文献   

5.
In structure-based drug design, accurate crystal structure determination of protein-ligand complexes is of utmost importance in order to elucidate the binding characteristics of a putative lead to a given target. It is the starting point for further design hypotheses to predict novel leads with improved properties. Often, crystal structure determination is regarded as ultimate proof for ligand binding providing detailed insight into the specific binding mode of the ligand to the protein. This widely accepted practise relies on the assumption that the crystal structure of a given protein-ligand complex is unique and independent of the protocol applied to produce the crystals. We present two examples indicating that this assumption is not generally given, even though the composition of the mother liquid for crystallisation was kept unchanged: Multiple crystal structure determinations of aldose reductase complexes obtained under varying crystallisation protocols concerning soaking and crystallisation exposure times were performed resulting in a total of 17 complete data sets and ten refined crystal structures, eight in complex with zopolrestat and two complexed with tolrestat. In the first example, a flip of a peptide bond is observed, obviously depending on the crystallisation protocol with respect to soaking and co-crystallisation conditions. This peptide flip is accompanied by a rupture of an H-bond formed to the bound ligand zopolrestat. The indicated enhanced local mobility of the complex is in agreement with the results of molecular dynamics simulations. As a second example, the aldose reductase-tolrestat complex is studied. Unexpectedly, two structures could be obtained: one with one, and a second with four inhibitor molecules bound to the protein. They are located in and near the binding pocket facilitated by crystal packing effects. Accommodation of the four ligand molecules is accompanied by pronounced shifts concerning two helices interacting with the additional ligands.  相似文献   

6.

Background

Protein crystallisation screening involves the parallel testing of large numbers of candidate conditions with the aim of identifying conditions suitable as a starting point for the production of diffraction quality crystals. Generally, condition screening is performed in 96-well plates. While previous studies have examined the effects of protein construct, protein purity, or crystallisation condition ingredients on protein crystallisation, few have examined the effect of the crystallisation plate.

Methodology/Principal Findings

We performed a statistically rigorous examination of protein crystallisation, and evaluated interactions between crystallisation success and plate row/column, different plates of same make, different plate makes and different proteins. From our analysis of protein crystallisation, we found a significant interaction between plate make and the specific protein being crystallised.

Conclusions/Significance

Protein crystal structure determination is the principal method for determining protein structure but is limited by the need to produce crystals of the protein under study. Many important proteins are difficult to crystallise, so that identification of factors that assist crystallisation could open up the structure determination of these more challenging targets. Our findings suggest that protein crystallisation success may be improved by matching a protein with its optimal plate make.  相似文献   

7.
We present the results of in vitro DNA-binding assays for a mutant protein (Q44K) of the E. coli methionine repressor, MetJ, as well as the crystal structure at 2.2 A resolution of the apo-mutant bound to a 10-mer oligonucleotide encompassing an 8 bp met-box sequence. The wild-type protein binds natural operators co-operatively with respect to protein concentration forming at least a dimer of repressor dimers along operator DNAs. The minimum operator length is thus 16 bp, each MetJ dimer interacting with a single met-box site. In contrast, the Q44K mutant protein can also bind stably as a single dimer to 8 bp target sites, in part due to additional contacts made to the phosphodiester backbone outside the 8 bp target via the K44 side-chains. Protein-protein co-operativity in the mutant is reduced relative to the wild-type allowing the properties of an intermediate on the pathway to operator site saturation to be examined for the first time. The crystal structure of the decamer complex shows a unique conformation for the protein bound to the single met-box site, possibly explaining the reduced protein-protein co-operativity. In both the extended and minimal DNA complexes formed, the mutant protein makes slightly different contacts to the edges of DNA base-pairs than the wild-type, even though the site of amino acid substitution is distal from the DNA-binding motif. Quantitative binding assays suggest that this is not due to artefacts caused by the crystallisation conditions but is most likely due to the relatively small contribution of such direct contacts to the overall binding energy of DNA-protein complex formation, which is dominated by sequence-dependent distortions of the DNA duplex and by the protein-protein contact between dimers.  相似文献   

8.
Attenuated Total Reflection (ATR) Fourier Transform Infrared (FTIR) spectroscopy is a label-free, non-destructive analytical technique that can be used extensively to study a wide variety of different molecules in a range of different conditions. The aim of this review is to discuss and highlight the recent advances in the applications of ATR FTIR spectroscopic imaging to proteins. It briefly covers the basic principles of ATR FTIR spectroscopy and ATR FTIR spectroscopic imaging as well as their advantages to the study of proteins compared to other techniques and other forms of FTIR spectroscopy. It will then go on to examine the advances that have been made within the field over the last several years, particularly the use of ATR FTIR spectroscopy for the understanding and development of protein interaction with surfaces. Additionally, the growing potential of Surface Enhanced Infrared Spectroscopy (SEIRAS) within this area of applications will be discussed. The review includes the applications of ATR FTIR imaging to protein crystallisation and for high-throughput studies, highlighting the future potential of the technology within the field of protein structural studies and beyond.  相似文献   

9.
RNA is known to perform diverse roles in the cell, often as ribonucleoprotein (RNP) particles. While the crystal structure of these RNP particles could provide crucial insights into their functions, crystallographic work on RNP complexes is often hampered by difficulties in obtaining well-diffracting crystals. The small nuclear ribonucleoprotein (snRNP) core domain, acting as an assembly nucleus for the maturation of snRNPs, plays a crucial role in the biogenesis of four of the spliceosomal snRNPs. We have succeeded in crystallising the human U4 snRNP core domain containing seven Sm proteins and a truncated U4 snRNA variant. The most critical factor in our success in the crystallisation was the introduction of various tertiary interaction modules into the RNA that could promote crystal packing without altering the core structure. Here, we describe various strategies employed in our crystallisation effort that could be applied to crystallisation of other RNP particles.  相似文献   

10.
The molecular dynamics simulations in this work were aimed to provide a molecular insight into chain structure effects on non-isothermal crystallisation of polyethylene (PE) chains. The crystallisation behaviours were influenced by chain length and cooling rate in linear PE chain crystallisation: C100 and C150 were unable to fold into crystals. From C1000 to C3000, crystallisation abilities became stronger as chain length increased. From C5000 to C14000, chain length had no influence on crystallisation abilities. Final morphologies changed from rotator phase to single crystal domain, and to multi crystal domains as chain length increased. The formation of multi crystal domains with longer chain was easier than with the shorter chain in identical conditions. Branch content influenced not only the crystallisation kinetics but also final morphologies in non-isothermal crystallisation. The branches were defective in nucleation process, which was reflected in the crystal growth process. Crystallisation temperature, rate and crystallinity decreased, and the morphologies became disordered as branch content increased. Changes of final morphologies from single crystal domain to multi crystal domains were found under the influence of branch content and cooling rate. Trans-rich phenomenon was observed, and the trans-state population increment was prior to crystallinity increment. Crystallisation processes began at different crystallisation temperature when the trans-state populations reached a critical value which was independent of branch content.  相似文献   

11.
We have set up high-throughput robotic systems to screen and optimise crystallisation conditions of biological macromolecules with the aim to make difficult structural biology projects easier. The initial screening involves two robots. A Tecan Genesis liquid handler is used to transfer commercially available crystallisation reagents from 15 ml test tubes into the reservoirs of 96-well crystallisation plates. This step is fully automated and includes a carousel for intermediate plate storage, a Beckman plate sealer and a robotic arm, which transfers plates in between steps. For adding the sample, we use a second robot, a 17-tip Cartesian Technologies PixSys 4200 SynQuad liquid handler, which uses a syringe/solenoid valve combination to dispense small quantities of liquid (typically 100 nl) without touching the surface of the plate. Sixteen of the tips are used to transfer the reservoir solution to the crystallisation wells, while the 17th tip is used to dispense the protein. The screening of our standard set of 1440 conditions takes about 3 h and requires 300 microl of protein solution. Once crystallisation conditions have been found, they are optimised using a second Tecan Genesis liquid handler, which is programmed to pipette gradients from four different corner solutions into a wide range of crystallisation plate formats. For 96-well plates, the Cartesian robot can be used to add the sample. The methods described are now used almost exclusively for obtaining diffraction quality crystals in our laboratory with a throughput of several thousand plates per year. Our set-up has been copied in many institutions worldwide.  相似文献   

12.
The nucleation zone has to be reached for any crystal to grow, and the search for crystallization conditions of new proteins is a trial and error process. Here a convenient screening strategy is studied in detail that varies the volume ratio of protein sample to the reservoir solution in the drop to initiate crystallization that is named "composition modification". It is applied after the first screen and has been studied with twelve proteins. Statistical analysis shows a significant improvement in screening using this strategy. The average improvement of "hits" at different temperatures is between 32 and 42%, for examples, 41.8% ± 14.0% and 35.7% ± 12.4% (± standard deviation) at 288 K and 300 K, respectively. Remarkably, some new crystals were found by composition modification which increased the probability of reaching the nucleation zone to initiate crystallization. This was confirmed by a phase diagram study. It is also demonstrated that composition modification can further increase crystallisation success significantly (1.3 times) after the improvement of "hits" by temperature screening. The trajectories of different composition modifications during vapour diffusion were plotted, further demonstrating that protein crystallizability can be increased by hitting more parts of the nucleation zone. It was also found to facilitate the finding of initial crystals for proteins of low solubility. These proteins gradually become more concentrated during the vapour diffusion process starting from a larger protein solution ratio in the initial mixture.  相似文献   

13.
We took 28 fragments of DNA whose crystal structures were known and used CD spectroscopy to search for conditions stabilising the crystal structures in solution. All 28 fragments switched into their crystal structures in 60-80% aqueous trifluorethanol (TFE) to indicate that the crystals affected the conformation of DNA like the concentrated TFE. The fragments crystallising in the B-form also underwent cooperative TFE-induced changes that took place within the wide family of B-form structures, suggesting that the aqueous and crystal B-forms differed as well. Spermine and magnesium or calcium cations, which were contained in the crystallisation buffers, promoted or suppressed the TFE-induced changes of several fragments to indicate that the crystallisation agents can decide which of the possible structures is adopted by the DNA fragment in the crystal.  相似文献   

14.
Flexibility plot of proteins   总被引:3,自引:0,他引:3  
The flexibility plot of a protein lies on the observation that amino acid residues with the highest turn potential, i.e. located in highly mobile regions of protein surface, also possess the smallest volumes as well as the lowest hydrophobicities. The plot is generated by shifting a five residue window along the protein sequence and calculating the value of the hydrophobicity-volume product for consecutive quintuplets of amino acid residues. The concomitant occurrence of small volumes and low hydrophobicities results in very deep minima. A threshold value has also been introduced in order to discriminate significant minima. To substantiate the interpretation that the selected minima actually indicate very flexible segments of a protein (loops, turns, etc.), we have compared plots obtained for model proteins (lysozyme, myoglobin, ribonuclease, trypsin, thermolysin and T4 lysozyme) with X-ray thermal factors profiles available for the same proteins. When compared to thermal profiles, the majority of flexible segments evidenced by our plots have been found to be in agreement with regions characterized by high thermal factors. Results have also been discussed in the light of local organization possessed by examined proteins.  相似文献   

15.
苏云金杆菌是一类非常重要的昆虫病原体,它能产生特异性的杀虫结晶蛋白,对农业上和生物医学上的许多有害的昆虫有毒杀作用,这些害虫包括鳞翅目、双翅目、鞘翅目、膜翅目、螨类和线虫。近三十年来,以苏云金杆菌为基础的生物杀虫剂已在世界范围内商业化用于防治重要经济作物的害虫。近年来有关Bt基因的遗传、分子生物学和基因工程已取得显著进展。本文对苏云金杆菌杀虫晶体蛋白基因的分类和杀虫机理及用该类基因构建的工程转基因植物研究状况作一简要综述,同时对Bt基因工程存在的潜在问题和解决途径作了简单的探讨。  相似文献   

16.
Bt杀虫基因与Bt转基因抗虫植物研究进展   总被引:36,自引:0,他引:36  
苏云金杆菌是一类非常重要的昆虫病原体,它能产生特异性的杀虫结晶蛋白,对农业上和生物医学上的许多有害的昆虫有毒杀作用,这些害虫包括鳞翅目、双翅目、鞘翅目、膜翅目、螨类和线虫。近三十年来,以苏云金杆菌为基础的生物杀虫剂已在世界范围内商业化用于防治重要经济作物的害虫。近年来有关Bt基因的遗传、分子生物学和基因工程已取得显著进展。本文对苏云金杆菌杀虫晶体蛋白基因的分类和杀虫机理及用该类基因构建的工程转基因植物研究状况作一简要综述,同时对Bt基因工程存在的潜在问题和解决途径作了简单的探讨。  相似文献   

17.
P A Timmins  J Hauk  T Wacker  W Welte 《FEBS letters》1991,280(1):115-120
The presence of small amphiphiles has been found to be necessary in the crystallization of several membrane-protein/surfactant complexes. It has been suggested that the role of the small amphiphile may be to reduce the size of the surfactant belt around the protein, making the formation of crystals easier. Thus far it was not known if this would involve changes in micellar size in general or whether the small amphiphile would merely replace LDAO during crystal growth. In the present study we have used small angle neutron scattering to study mixed micelles of lauryldimethyl amine oxide (LDAO; hydrogenated and deuterated) and heptane-1,2,3-triol (HP). Our results show that with increasing overall HP concentrations mixed LDAO/HP micelles of decreasing mass and radius are formed. The composition of these micelles has been determined. HP thus may decrease the size of the surfactant belt around a protein before crystallisation by insertion into a host micelle. As HP is a 'small amphiphile' compared to the surfactants used for solubilization of membrane proteins, the curvature of the host micelle will be increased by its insertion.  相似文献   

18.
Standard volumes for atoms in double-stranded B-DNA are derived using high resolution crystal structures from the Nucleic Acid Database (NDB) and compared with corresponding values derived from crystal structures of small organic compounds in the Cambridge Structural Database (CSD). Two different methods are used to compute these volumes: the classical Voronoi method, which does not depend on the size of atoms, and the related Radical Planes method which does. Results show that atomic groups buried in the interior of double-stranded DNA are, on average, more tightly packed than in related small molecules in the CSD. The packing efficiency of DNA atoms at the interfaces of 25 high resolution protein-DNA complexes is determined by computing the ratios between the volumes of interfacial DNA atoms and the corresponding standard volumes. These ratios are found to be close to unity, indicating that the DNA atoms at protein-DNA interfaces are as closely packed as in crystals of B-DNA. Analogous volume ratios, computed for buried protein atoms, are also near unity, confirming our earlier conclusions that the packing efficiency of these atoms is similar to that in the protein interior. In addition, we examine the number, volume and solvent occupation of cavities located at the protein-DNA interfaces and compared them with those in the protein interior. Cavities are found to be ubiquitous in the interfaces as well as inside the protein moieties. The frequency of solvent occupation of cavities is however higher in the interfaces, indicating that those are more hydrated than protein interiors. Lastly, we compare our results with those obtained using two different measures of shape complementarity of the analysed interfaces, and find that the correlation between our volume ratios and these measures, as well as between the measures themselves, is weak. Our results indicate that a tightly packed environment made up of DNA, protein and solvent atoms plays a significant role in protein-DNA recognition.  相似文献   

19.
P Bayley  S Martin  G Jones 《FEBS letters》1988,238(1):61-66
The conformation of Ca4-calmodulin in solution, as assessed by far-UV peptide circular dichroism, contains significantly less alpha-helix than the proposed X-ray crystal structure. We now show that Ca4-calmodulin adopts significant additional helical structure in solution in the presence of a helicogenic solvent (50%, v/v, aqueous 2,2,2-trifluoroethanol or 50%, v/v, methylpentane-5,5-diol). We suggest that the long continuous helix (residues 66-92 of the crystal structure) is not necessarily a normal feature of the calmodulin structure in solution, and may be due in part to the conditions of crystallisation. This result is supported by time-resolved tyrosine fluorescence anisotropy studies indicating that Ca4-calmodulin in solution is an essentially compact globular structure which undergoes isotropic rotational motion. We conclude that, under appropriate ionic and apolar environmental conditions, Ca4-calmodulin undergoes a substantial helical transition, which may involve residues in the central region of the molecule. Such a transition could have an important function in determining specificity and affinity in interactions of calmodulin with different target sequences of Ca2+-dependent regulatory enzymes.  相似文献   

20.
Crystals of sarcoplasmic reticulum Ca(2+)-ATPase   总被引:1,自引:0,他引:1  
High-resolution structures of the Ca(2+)-ATPase have over the last 5 years added a structural dimension to our understanding of the function of this integral membrane protein. The Ca(2+)-ATPase is now by far the membrane protein where the most functionally different conformations have been described in precise structural detail. Here, we review our experience from solving Ca(2+)-ATPase structures: a purification scheme involving minimum handling of the protein to preserve natural and essential lipids, a rational approach to screening for crystals based on a limited number of polyethyleneglycols and many different salts, improving crystal quality using additives, collecting the data and finally solving the structures. We argue that certain of the lessons learned in the present study are very likely to be useful for crystallisation of eukaryotic membrane proteins in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号