首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Production of human prolyl 4-hydroxylase in Escherichia coli   总被引:1,自引:0,他引:1  
Prolyl 4-hydroxylase (P4H) catalyzes the post-translational hydroxylation of proline residues in collagen strands. The enzyme is an alpha2beta2 tetramer in which the alpha subunits contain the catalytic active sites and the beta subunits (protein disulfide isomerase) maintain the alpha subunits in a soluble and active conformation. Heterologous production of the native alpha2beta2 tetramer is challenging and had not been reported previously in a prokaryotic system. Here, we describe the production of active human P4H tetramer in Escherichia coli from a single bicistronic vector. P4H production requires the relatively oxidizing cytosol of Origami B(DE3) cells. Induction of the wild-type alpha(I) cDNA in these cells leads to the production of a truncated alpha subunit (residues 235-534), which assembles with the beta subunit. This truncated P4H is an active enzyme, but has a high Km value for long substrates. Replacing the Met235 codon with one for leucine removes an alternative start codon and enables production of full-length alpha subunit and assembly of the native alpha2beta2 tetramer in E. coli cells to yield 2 mg of purified P4H per liter of culture (0.2 mg/g of cell paste). We also report a direct, automated assay of proline hydroxylation using high-performance liquid chromatography. We anticipate that these advances will facilitate structure-function analyses of P4H.  相似文献   

3.
Collagen prolyl 4-hydroxylases (C-P4Hs) catalyze the formation of the 4-hydroxyproline residues that are essential for the generation of triple helical collagen molecules. The vertebrate C-P4Hs I, II, and III are [alpha(I)]2beta2, [alpha(II)]2beta2, and [alpha(III)]2beta2 tetramers with identical beta subunits. We generated mice with targeted inactivation of the P4ha1 gene encoding the catalytic alpha subunit of C-P4H I to analyze its specific functions. The null mice died after E10.5, showing an overall developmental delay and a dilated endoplasmic reticulum in their cells. The capillary walls were frequently ruptured, but the capillary density remained unchanged. The C-P4H activity level in the null embryos and fibroblasts cultured from them was 20% of that in the wild type, being evidently due to the other two isoenzymes. Collagen IV immunofluorescence was almost absent in the basement membranes of the null embryos, and electron microscopy revealed disrupted basement membranes, while immunoelectron microscopy showed a lack of collagen IV in them. The amount of soluble collagen IV was increased in the null embryos and cultured null fibroblasts, indicating a lack of assembly of collagen IV molecules into insoluble structures, probably due to their underhydroxylation and hence abnormal conformation. In contrast, the null embryos had collagen I and III fibrils with a typical cross-striation pattern but slightly increased diameters, and the null fibroblasts secreted fibril-forming collagens, although less efficiently than wild-type cells. The primary cause of death of the null embryos was thus most likely an abnormal assembly of collagen IV.  相似文献   

4.
The collagen prolyl 4-hydroxylases (C-P4Hs) catalyze the formation of 4-hydroxyproline by the hydroxylation of proline residues in -Xaa-Pro-Gly-sequences. The vertebrate enzymes are alpha 2 beta 2 tetramers in which protein-disulfide isomerase serves as the beta subunit. Two isoforms of the catalytic alpha subunit have been identified and shown to form [alpha(I)]2 beta 2 and [alpha(II)]2 beta 2 tetramers, the type I and type II C-P4Hs, respectively. The peptide-substrate-binding domain of type I C-P4H has been shown to be located between residues 138 and 244 in the 517-residue alpha(I) subunit and to be distinct from the catalytic domain that is located in the C-terminal region. We report here that a recombinant human C-P4H alpha(I) polypeptide Phe144-Ser244 forms a folded domain consisting of five alpha helices and one short beta strand. This structure is quite different from those of other proline-rich peptide-binding modules, which consist mainly of beta strands. Binding of the peptide (Pro-Pro-Gly)2 to this domain caused major chemical shifts in many backbone amide resonances, the residues showing the largest shifts being mainly hydrophobic, including three tyrosines. The Kd values determined by surface plasmon resonance and isothermal titration calorimetry for the binding of several synthetic peptides to the alpha(I) and the corresponding alpha(II) domain were very similar to the Km and Ki values for these peptides as substrates and inhibitors of the type I and type II C-P4H tetramers. The Kd values of the alpha(I) and alpha(II) domains for (Gly-Pro-4Hyp)5 were much higher than those for (Pro-Pro-Gly)5, indicating a marked decrease in the affinity of hydroxylated peptides for the domain. Many characteristic features of the binding of peptides to the type I and type II C-P4H tetramers can thus be explained by the properties of binding to this domain rather than the catalytic domain.  相似文献   

5.
Prolyl 4-hydroxylase catalyzes the formation of 4-hydroxyproline in collagens. The vertebrate enzymes are alpha2beta2 tetramers, whereas the Caenorhabditis elegans enzyme is an alphabeta dimer, the beta subunit being identical to protein-disulfide isomerase (PDI). We report here that the processed Drosophila melanogaster alpha subunit is 516 amino acid residues in length and shows 34 and 35% sequence identities to the two types of human alpha subunit and 31% identity to the C. elegans alpha subunit. Its coexpression in insect cells with the Drosophila PDI polypeptide produced an active enzyme tetramer, and small amounts of a hybrid tetramer were also obtained upon coexpression with human PDI. Four of the five recently identified critical residues at the catalytic site were conserved, but a histidine that probably helps the binding of 2-oxoglutarate to the Fe2+ and its decarboxylation was replaced by arginine 490. The enzyme had a higher Km for 2-oxoglutarate, a lower reaction velocity, and a higher percentage of uncoupled decarboxylation than the human enzymes. The mutation R490H reduced the percentage of uncoupled decarboxylation, whereas R490S increased the Km for 2-oxoglutarate, reduced the reaction velocity, and increased the percentage of uncoupled decarboxylation. The recently identified peptide-binding domain showed a relatively low identity to those from other species, and the Km of the Drosophila enzyme for (Pro-Pro-Gly)10 was higher than that of any other animal prolyl 4-hydroxylase studied. A 1. 9-kilobase mRNA coding for this alpha subunit was present in Drosophila larvae.  相似文献   

6.
7.
1. Hybrids of the tetrameric enzyme chloramphenicol acetyltransferase (EC 2.3.1.28) were formed in vivo in a strain of Escherichia coli which harbours two different plasmids, each of which normally confers chloramphenicol resistance and specifies an easily distinguished enzyme variant (type I or type III) which is composed of identical subunits. Cell-free extracts of the dual-plasmid strain were found to contain five species of active enzyme, two of which were the homomeric enzymes corresponding to the naturally occurring tetramers of the type-I (beta 4) and type-III (alpha 4) enzymes. The other three variants were judged to be the heteromeric hybrid variants (alpha 3 beta, alpha 2 beta 2, alpha beta 3). 2. The alpha 3 beta and alpha 2 beta 2 hybrids of chloramphenicol acetyltransferase were purified to homogeneity by combining the techniques of affinity and ion-exchange chromatography. The alpha beta 3 variant was not recovered and may be unstable in vitro. 3. The unique lysine residues that could not be modified with methyl acetimidate in each of the native homomeric enzymes were also investigated in the heteromeric tetramers. 4. Lysine-136 remains buried in each beta subunit of the parental (type I) enzyme and in each of the hybrid tetramers. Lysine-38 of each alpha subunit is similarly unreactive in the native type-III chloramphenicol acetyltransferase (alpha 4), but in the alpha 2 beta 2 hybird lysine-38 of each alpha subunit is fully exposed to solvent. Another lysine residue, fully reactive in the alpha 4 enzyme, was observed to be inaccessible to modification in the symmetrical hybrid. The results obtained for the alpha 3 beta enzyme suggest that lysine-38 in two subunits and a different lysine group (that identified in the alpha 2 beta 2 enzyme) in the third alpha subunit are buried. 5. A tentative model for the subunit interactions of chloramphenicol acetyltransferase is proposed on the basis of the results described.  相似文献   

8.
Prolyl 4-hydroxylase (EC 1.14.11.2) catalyzes the formation of 4-hydroxyproline in collagens by the hydroxylation of proline residues in X-Pro-Gly sequences. The reaction requires Fe2+, 2-oxoglutarate, O2, and ascorbate and involves an oxidative decarboxylation of 2-oxoglutarate. Ascorbate is not consumed during most catalytic cycles, but the enzyme also catalyzes decarboxylation of 2-oxoglutarate without subsequent hydroxylation, and ascorbate is required as a specific alternative oxygen acceptor in such uncoupled reaction cycles. A number of compounds inhibit prolyl 4-hydroxylase competitively with respect to some of its cosubstrates or the peptide substrate, and recently many suicide inactivators have also been described. Such inhibitors and inactivators are of considerable interest, because the prolyl 4-hydroxylase reaction would seem a particularly suitable target for chemical regulation of the excessive collagen formation found in patients with various fibrotic diseases. The active prolyl 4-hydroxylase is an alpha 2 beta 2 tetramer, consisting of two different types of inactive monomer and probably containing two catalytic sites per tetramer. The large catalytic site may be cooperatively built up of both the alpha and beta subunits, but the alpha subunit appears to contribute the major part. The beta subunit has been found to be identical to the enzyme protein disulfide isomerase and a major cellular thyroid hormone-binding protein and shows partial homology with a phosphoinositide-specific phospholipase C, thioredoxins, and the estrogen-binding domain of the estrogen receptor. The COOH-terminus of this beta subunit has the amino acid sequence Lys-Asp-Glu-Leu, which was recently suggested to be necessary for the retention of a polypeptide within the lumen of the endoplasmic reticulum. The alpha subunit does not have this COOH-terminal sequence, and thus one function of the beta subunit in the prolyl 4-hydroxylase tetramer appears to be to retain the enzyme within this cell organelle.  相似文献   

9.
Prolyl 4-hydroxylase (EC 1.14.11.2) catalyzes the hydroxylation of -X-Pro-Gly- sequences and plays a central role in the synthesis of all collagens. The [alpha(I)]2beta2 type I enzyme is effectively inhibited by poly(L-proline), whereas the [alpha(II)]2beta2 type II enzyme is not. We report here that the poly(L-proline) and (Pro-Pro-Gly)10 peptide substrate-binding domain of prolyl 4-hydroxylase is distinct from the catalytic domain and consists of approximately 100 amino acids. Peptides of 10-19 kDa beginning around residue 140 in the 517 residue alpha(I) subunit remained bound to poly(L-proline) agarose after limited proteolysis of the human type I enzyme tetramer. A recombinant polypeptide corresponding to the alpha(I) subunit residues 138-244 and expressed in Escherichia coli was soluble, became effectively bound to poly(L-proline) agarose and could be eluted with (Pro-Pro-Gly)10. This polypeptide is distinct from the SH3 and WW domains, and from profilin, and thus represents a new type of proline-rich peptide-binding module. Studies with enzyme tetramers containing mutated alpha subunits demonstrated that the presence of a glutamate and a glutamine in the alpha(II) subunit in the positions corresponding to Ile182 and Tyr233 in the alpha(I) subunit explains most of the lack of poly(L-proline) binding of the type II prolyl 4-hydroxylase. Keywords: collagen/dioxygenases/peptide-binding domain/ proline-rich/prolyl hydroxylase  相似文献   

10.
The collagen prolyl hydroxylases are enzymes that are required for proper collagen biosynthesis, folding, and assembly. They reside within the endoplasmic reticulum and belong to the group of 2-oxoglutarate and iron-dependent dioxygenases. Although prolyl 4-hydroxylase has been characterized as an alpha2beta2 tetramer in which protein disulfide isomerase is the beta subunit with two different alpha subunit isoforms, little is known about the enzyme prolyl 3-hydroxylase (P3H). It was initially characterized and shown to have an enzymatic activity distinct from that of prolyl 4-hydroxylase, but no amino acid sequences or genes were ever reported for the mammalian enzyme. Here we report the characterization of a novel prolyl 3-hydroxylase enzyme isolated from embryonic chicks. The primary structure of the enzyme, which we now call P3H1, demonstrates that P3H1 is a member of a family of prolyl 3-hydroxylases, which share the conserved residues present in the active site of prolyl 4-hydroxylase and lysyl hydroxylase. P3H1 is the chick homologue of mammalian leprecan or growth suppressor 1. Two other P3H family members are the genes previously called MLAT4 and GRCB. In this study we demonstrate prolyl 3-hydroxylase activity of the purified enzyme P3H1 on a full-length procollagen substrate. We also show it to specifically interact with denatured collagen and to exist in a tight complex with other endoplasmic reticulum-resident proteins. Immunohistochemistry with a monoclonal antibody specific for chick P3H1 localizes P3H1 specifically to tissues that express fibrillar collagens, suggesting that other P3H family members may be responsible for modifying basement membrane collagens.  相似文献   

11.
Protein-disulfide isomerase (PDI) is a modular polypeptide consisting of four domains, a, b, b', and a'. It is a ubiquitous protein folding catalyst that in addition functions as the beta-subunit in vertebrate collagen prolyl 4-hydroxylase (C-P4H) alpha(2)beta(2) tetramers. We report here that point mutations in the primary peptide substrate binding site in the b' domain of PDI did not inhibit C-P4H assembly. Based on sequence conservation, additional putative binding sites were identified in the a and a' domains. Mutations in these sites significantly reduced C-P4H tetramer assembly, with the a domain mutations generally having the greater effect. When the a or a' domain mutations were combined with the b' domain mutation I272W tetramer assembly was further reduced, and more than 95% of the assembly was abolished when mutations in the three domains were combined. The data indicate that binding sites in three PDI domains, a, b', and a', contribute to efficient C-P4H tetramer assembly. The relative contributions of these sites were found to differ between Caenorhabditis elegans C-P4H alphabeta dimer and human alpha(2)beta(2) tetramer formation.  相似文献   

12.
Mammalian NAD-dependent isocitrate dehydrogenase is an allosteric enzyme, activated by ADP and composed of 3 distinct subunits in the ratio 2alpha:1beta:1gamma. Based on the crystal structure of NADP-dependent isocitrate dehydrogenases from Escherichia coli, Bacillus subtilis, and pig heart, and a comparison of their amino acid sequences, alpha-Arg88, beta-Arg99, and gamma-Arg97 of human NAD-dependent isocitrate dehydrogenase were chosen as candidates for mutagenesis to test their roles in catalytic activity and ADP activation. A plasmid harboring cDNA that encodes alpha, beta, and gamma subunits of the human isocitrate dehydrogenase (Kim, Y. O., Koh, H. J., Kim, S. H., Jo, S. H., Huh, J. W., Jeong, K. S., Lee, I. J., Song, B. J., and Huh, T. L. (1999) J. Biol. Chem. 274, 36866-36875) was used to express the enzyme in isocitrate dehydrogenase-deficient E. coli. Wild type (WT) and mutant enzymes (each containing 2 normal subunits plus a mutant subunit with alpha-R88Q, beta-R99Q, or gamma-R97Q) were purified to homogeneity yielding enzymes with 2alpha:1beta:1gamma subunit composition and a native molecular mass of 315 kDa. Specific activities of 22, 14, and 2 micromol of NADH/min/mg were measured, respectively, for WT, beta-R99Q, and gamma-R97Q enzymes. In contrast, mutant enzymes with normal beta and gamma subunits and alpha-R88Q mutant subunit has no detectable activity, demonstrating that, although beta-Arg99 and gamma-Arg97 contribute to activity, alpha-Arg88 is essential for catalysis. For WT enzyme, the Km for isocitrate is 2.2 mm, decreasing to 0.3 mm with added ADP. In contrast, for beta-R99Q and gamma-R97Q enzymes, the Km for isocitrate is the same in the absence or presence of ADP, although all the enzymes bind ADP. These results suggest that beta-Arg99 and gamma-Arg97 are needed for normal ADP activation. In addition, the gamma-R97Q enzyme has a Km for NAD 10 times that of WT enzyme. This study indicates that a normal alpha subunit is required for catalytic activity and alpha-Arg88 likely participates in the isocitrate site, whereas the beta and gamma subunits have roles in the nucleotide functions of this allosteric enzyme.  相似文献   

13.
Prolyl 4-hydroxylases (P4Hs) act on collagens (C-P4Hs) and the oxygen-dependent degradation domains (ODDDs) of hypoxia-inducible factor alpha subunits (HIF-P4Hs) leading to degradation of the latter. We report data on a human P4H possessing a transmembrane domain (P4H-TM). Its gene is also found in zebrafish but not in flies and nematodes. Its sequence more closely resembles those of the C-P4Hs than the HIF-P4Hs, but it lacks the peptide substrate-binding domain of the C-P4Hs. P4H-TM levels in cultured cells are increased by hypoxia, and P4H-TM is N-glycosylated and is located in endoplasmic reticulum membranes with its catalytic site inside the lumen, a location differing from those of the HIF-P4Hs. Despite this, P4H-TM overexpression in cultured neuroblastoma cells reduced HIF-alpha ODDD reporter construct levels, and its small interfering RNA increased HIF-1alpha protein level, in the same way as those of HIF-P4Hs. Furthermore, recombinant P4H-TM hydroxylated the two critical prolines in HIF-1alpha ODDD in vitro, with a preference for the C-terminal proline, whereas it did not hydroxylate any prolines in recombinant type I procollagen chains.  相似文献   

14.
Prolyl 4-hydroxylase, the key enzyme of collagen synthesis, is an alpha2beta2 tetramer, the beta subunit of which is protein disulfide isomerase (PDI). Coexpression of the human alpha subunit and PDI in Pichia produced trace amounts of an active tetramer. A much higher, although still low, assembly level was obtained using a Saccharomyces pre-pro sequence in PDI. Coexpression with human type III procollagen unexpectedly increased the assembly level 10-fold, with no increase in the total amounts of the subunits. The recombinant enzyme was active not only in Pichia extracts but also inside the yeast cell, indicating that Pichia must have a system for transporting all the cosubstrates needed by the enzyme into the lumen of the endoplasmic reticulum. The 4-hydroxyproline-containing procollagen polypeptide chains were of full length and formed molecules with stable triple helices even though Pichia probably has no Hsp47-like protein. The data indicate that collagen synthesis in Pichia, and probably also in other cells, involves a highly unusual control mechanism, in that production of a stable prolyl 4-hydroxylase requires collagen expression while assembly of a stable collagen requires enzyme expression. This Pichia system seems ideal for the high-level production of various recombinant collagens for numerous scientific and medical purposes.  相似文献   

15.
The pyridine nucleotide transhydrogenase (PNT) of Escherichia coli consists of two different subunits (alpha and beta) and assembles as a tetramer (alpha 2 beta 2) in the inner membrane. The pnt genes from E. coli have been cloned on a multicopy plasmid resulting in high level expression of the enzyme activity. We have studied the influence of the different segments of the polypeptide chains of the alpha and beta subunits on the assembly and function of the enzyme by constructing a series of deletion mutants for both of the subunits. Our results show that the assembly of the beta subunit is contingent upon the insertion of the alpha subunit into the membrane, while the alpha subunit can assemble independently of the beta subunit. All deletions constructed for the cytosolic portion of the alpha subunit gave no incorporation of the alpha subunit and, as a consequence, of the beta subunit, also. Of the four membrane-spanning regions of the alpha subunit, the last two were indispensable, while the deletion of the first two still allowed the association of alpha as well as of the beta subunit with the membrane. However, the enzyme was not functional. The two subunits were also loosely associated as mild detergent treatment released them from the membrane in contrast with the wild-type enzyme. Deletions within the beta subunit had little effect on the assembly of the alpha subunit, although less was incorporated. All deletions involving the cytosolic portion of the beta subunit resulted in loss of incorporation into the membrane. Of the eight membrane-spanning regions of the beta subunit, the deletion of regions 2-3, 2-4, 2-6, and 2-7 yielded significant association of both the subunits with the membrane. However, none of these mutants assembled a functional enzyme, and again the two subunits were loosely associated with the membrane. Based on the stringent requirement of the cytosolic portions of alpha and beta subunits for assembly, a model is proposed that suggests interactions between these two regions must occur prior to assembly.  相似文献   

16.
A GABA(A) receptor alpha1 subunit epilepsy mutation (alpha1(A322D)) introduces a negatively charged aspartate residue into the hydrophobic M3 transmembrane domain of the alpha1 subunit. We reported previously that heterologous expression of alpha1(A322D)beta2gamma2 receptors in mammalian cells resulted in reduced total and surface alpha1 subunit protein. Here we demonstrate the mechanism of this reduction. Total alpha1(A322D) subunit protein was reduced relative to wild type protein by a similar amount when expressed alone (86 +/- 6%) or when coexpressed with beta2 and gamma2S subunits (78 +/- 6%), indicating an expression reduction prior to subunit oligomerization. In alpha1beta2gamma2S receptors, endoglycosidase H deglycosylated only 26 +/- 5% of alpha1 subunits, consistent with substantial protein maturation, but in alpha1(A322D)beta2gamma2S receptors, endoglycosidase H deglycosylated 91 +/- 4% of alpha1(A322D) subunits, consistent with failure of protein maturation. To determine the cellular localization of wild type and mutant subunits, the alpha1 subunit was tagged with yellow (alpha1-YFP) or cyan (alpha1-CFP) fluorescent protein. Confocal microscopic imaging demonstrated that 36 +/- 4% of alpha1-YFPbeta2gamma2 but only 5 +/- 1% alpha1(A322D)-YFPbeta2gamma2 colocalized with the plasma membrane, whereas the majority of the remaining receptors colocalized with the endoplasmic reticulum (55 +/- 4% alpha1-YFPbeta2gamma2S, 86 +/- 3% alpha1(A322D)-YFP). Heterozygous expression of alpha1-CFPbeta2gamma2S and alpha1(A322D)-YFPbeta2gamma2S or alpha1-YFPbeta2gamma2S and alpha1(A322D)-CFPbeta2gamma2S receptors showed that membrane GABA(A) receptors contained primarily wild type alpha1 subunits. These data demonstrate that the A322D mutation reduces alpha1 subunit expression after translation, but before assembly, resulting in endoplasmic reticulum-associated degradation and membrane alpha1 subunits that are almost exclusively wild type subunits.  相似文献   

17.
The pyridine nucleotide transhydrogenase of Escherichia coli has an alpha 2 beta 2 structure (alpha: Mr, 54,000; beta: Mr, 48,700). Hydropathy analysis of the amino acid sequences suggested that the 10 kDa C-terminal portion of the alpha subunit and the N-terminal 20-25 kDa region of the beta subunit are composed of transmembranous alpha-helices. The topology of these subunits in the membrane was investigated using proteolytic enzymes. Trypsin digestion of everted cytoplasmic membrane vesicles released a 43 kDa polypeptide from the alpha subunit. The beta subunit was not susceptible to trypsin digestion. However, it was digested by proteinase K in everted vesicles. Both alpha and beta subunits were not attacked by trypsin and proteinase K in right-side out membrane vesicles. The beta subunit in the solubilized enzyme was only susceptible to digestion by trypsin if the substrates NADP(H) were present. NAD(H) did not affect digestion of the beta subunit. Digestion of the beta subunit of the membrane-bound enzyme by trypsin was not induced by NADP(H) unless the membranes had been previously stripped of extrinsic proteins by detergent. It is concluded that binding of NADP(H) induces a conformational change in the transhydrogenase. The location of the trypsin cleavage sites in the sequences of the alpha and beta subunits were determined by N- and C-terminal sequencing. A model is proposed in which the N-terminal 43 kDa region of the alpha subunit and the C-terminal 30 kDa region of the beta subunit are exposed on the cytoplasmic side of the inner membrane of E. coli. Binding sites for pyridine nucleotide coenzymes in these regions were suggested by affinity chromatography on NAD-agarose columns.  相似文献   

18.

Background  

We describe a method for specific, quantitative and quick detection of human collagen prolyl 4-hydroxylase (C-P4H), the key enzyme for collagen prolyl-4 hydroxylation, in crude samples based on a sandwich ELISA principle. The method is relevant to active C-P4H level monitoring during recombinant C-P4H and collagen production in different expression systems. The assay proves to be specific for the active C-P4H α2β2 tetramer due to the use of antibodies against its both subunits. Thus in keeping with the method C-P4H is captured by coupled to an anti-α subunit antibody magnetic beads and an anti-β subunit antibody binds to the PDI/β subunit of the protein. Then the following holoenzyme detection is accomplished by a goat anti-rabbit IgG labeled with alkaline phosphatase which AP catalyzes the reaction of a substrate transformation with fluorescent signal generation.  相似文献   

19.
Prolyl 4-hydroxylase, a key enzyme in collagen biosynthesis, catalyzes the conversion of selected prolyl residues to trans-hydroxyproline in nascent or completed pro-alpha chains of procollagen. The enzyme is a tetramer composed of two nonidentical subunits, designated alpha and beta. To compare the enzyme and its subunits from different sources, the chick embryo and human placental prolyl 4-hydroxylases were purified to homogeneity and their physicochemical and immunological properties were determined. Both enzymes were glycoproteins with estimated apparent molecular weights ranging between 400 and 600 kDa. Amino acid and carbohydrate analyses showed slight differences between the two holomeric enzymes, consistent with their deduced amino acid sequences from their respective cDNAs. Human placental prolyl 4-hydroxylase contained more tightly bound iron than the chick embryo enzyme. Immunodiffusion of the human placental enzyme with antibodies raised against the purified chick embryo prolyl 4-hydroxylase demonstrated partial identity, indicating different antigenic determinants in their tertiary structures. The enzymes could be separated by high-resolution capillary electrophoresis, indicating differential charge densities for the native chick embryo and human placental proteins. Electrophoretic studies revealed that the human prolyl 4-hydroxylase is a tetrameric enzyme containing two nonidentical subunits of about 64 and 62 kDa, in a ratio of approximately 1 to 2, designated alpha and beta, respectively. In contrast, the chick embryo alpha and beta subunit ratio was 1 to 1. Notably, the human alpha subunit was partially degraded when subjected to electrophoresis under denaturing conditions. Analogously, when the chick embryo enzyme was subjected to limited proteolysis, selective degradation of the alpha subunit was observed. Finally, only the alpha subunit was bound to Concanavalin A demonstrating that the alpha subunits of prolyl 4-hydroxylase in both species were glycosylated. Using biochemical techniques, these results demonstrated that the 4-trans-hydroxy-L-proline residues in human placental collagens are synthesized by an enzyme whose primary structure and immunological properties differ from those of the previously well-characterized chick embryo enzyme, consistent with their recently deduced primary structures from cDNA sequences.  相似文献   

20.
We have proposed earlier a three gene loci model to explain the expression of the aldo-keto reductases in human tissues. According to this model, aldose reductase is a monomer of alpha subunits, aldehyde reductase I is a dimer of alpha, beta subunits, and aldehyde reductase II is a monomer of delta subunits. Using immunoaffinity methods, we have isolated the subunits of aldehyde reductase I (alpha and beta) and characterized them by immunocompetition studies. It is observed that the two subunits of aldehyde reductase I are weakly held together in the holoenzyme and can be dissociated under high ionic conditions. Aldose reductase (alpha subunits) was generated from human placenta and liver aldehyde reductase I by ammonium sulfate (80% saturation). The kinetic, structural and immunological properties of the generated aldose reductase are similar to the aldose reductase obtained from the human erythrocytes and bovine lens. The main characteristic of the generated enzyme is the requirement of Li2SO4 (0.4 M) for the expression of maximum enzyme activity, and its Km for glucose is less than 50 mM, whereas the parent enzyme, aldehyde reductase I, is completely inhibited by 0.4 M Li2SO4 and its Km for glucose is more than 200 mM. The beta subunits of aldehyde reductase I did not have enzyme activity but cross-reacted with anti-aldehyde reductase I antiserum. The beta subunits hybridized with the alpha subunits of placenta aldehyde reductase I, and aldose reductase purified from human brain and bovine lens. The hybridized enzyme had the characteristic properties of placenta aldehyde reductase I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号