首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Production of sweetpotatoes, Ipomoea batatas (L.) Lam. (Convolvulaceae), is limited by several insect pests, including Diabrotica spp. (Coleoptera: Chrysomelidae), and new integrated pest management (IPM) techniques for this crop are needed. Host plant resistance is one attractive approach that fits well into IPM programs. A host plant resistance research program typically depends on reliable bioassay procedures to streamline evaluation of germplasm. Thus, a bioassay technique was developed for evaluating sweetpotato germplasm by using adults of the banded cucumber beetle, Diabrotica balteata LeConte, and spotted cucumber beetle, Diabrotica undecimpunctata howardi Barber. A single beetle was placed on a piece of sweetpotato peel (periderm and cortex with stele removed) that was embedded periderm-side up in plaster in a petri dish. Feeding and longevity of insects on 30 sweetpotato genotypes were evaluated in two experiments by using this procedure. Adult longevity ranged from 7 to 11 d for starved individuals to 211 d for beetles fed a dry artificial diet. Longevity of banded cucumber beetles that fed on sweetpotato peels ranged from 12 d for the most-resistant genotype to 123 d for SC1149-19, a susceptible control cultivar. Longevity of spotted cucumber beetles was slightly shorter than longevity of banded cucumber beetles. For the most resistant sweetpotato genotypes, both Diabrotica species exhibited a significant delay in initiation of feeding, and more beetles died on these genotypes before they had fed. Both antibiosis and nonpreference (antixenosis) are important mechanisms of resistance in sweetpotato genotypes. This bioassay was consistent with field results, indicating that this technique could be useful for evaluating resistance to Diabrotica spp. in sweetpotato genotypes.  相似文献   

2.
Recent large‐cage studies with codling moth Cydia pomonella (L.) reveal that the removal of moths from an apple orchard using pheromone‐releasing traps is more effective at reducing capture in a central monitoring trap than is a mating disruption protocol without kill/capture. The present study uses open orchard 0.2‐ha plots comparing a high‐density trapping scenario with mating disruption to confirm those results. Two tortricid moth pests of tree fruit are studied: codling moth and obliquebanded leafroller Choristoneura rosaceana (Harris). Codling moth treatments include Isomate CM FLEX (ShinEtsu Ltd, Japan), nonsticky traps baited with Trécé CM lures (Trécé, Inc., Adair, Oklahoma), and sticky traps baited with Trécé CM lures, all at equal application rates of 500 dispensers ha?1, as well as a no pheromone control. These microtraps are of a novel design, small and easy to apply, and potentially inexpensive to produce. Mating disruption using Isomate CM FLEX and nonsticky traps reduces codling moth capture in standard monitoring traps by 58% and 71%, respectively. The attract‐and‐remove treatment with sticky traps reduces capture by 92%. Obliquebanded leafroller treatments include Isomate OBLR/PLR Plus and Pherocon IIB microtraps baited with Trécé OBLR lures, both applied at 500 dispensers ha?1, as well as a no pheromone control. Mating disruption reduces capture in monitoring traps by 69%. The attract‐and‐remove treatment reduces capture by 85%. Both studies suggest that an attract‐and‐remove approach has the potential to provide superior control of moth populations compared with that achieved by mating disruption operating by competitive attraction.  相似文献   

3.
Application of insecticide at a reduced rate with a cucurbitacin-based feeding stimulant is a viable alternative to a broadcast insecticide application for control of adult western corn rootworms, Diabrotica virgifera virgifera, LeConte. Because of the small amount of material applied, it is conceivable that a high density of beetles could consume all of the spray residue before economic control is achieved. A laboratory experiment was conducted to determine the amount of cucurbitacin-based spray residue consumed by beetles. Dried residue of four treatments were exposed to three groups of 10 rootworm beetles for 1 h each. Treatments consisted of a cucurbitacin-based adjuvant (Cidetrak CRW, Trécé, Salinas, CA) with carbaryl insecticide (Sevin XLR Plus, Rhone Poulenc, Research Triangle Park, NC) mixed at 0, 0.12, 1.2, and 12 g (AI)/liter. For the treatment with cucurbitacin adjuvant only (no insecticide), beetles consumed 0.029 mg beetle(-1) h(-1) of exposure. Approximately 54% of the beetles were recorded as feeding at any given time during the 60-min feeding period. However, when the spray residue contained carbaryl, no weight loss of treatment residue was measured, though the beetles were observed to feed from the residue during the first few minutes of exposure. When residue included insecticide, beetles quickly ceased feeding (within 20 min), and toxicity behavior was observed 30 min after initial exposure for up to 75% of the beetles, which were classified as moribund (unable to stand upright). Beetle mortality was recorded 24 h after exposure and demonstrated that male beetles (53% dead for three insecticide treatments) were more susceptible to carbaryl toxicity than female beetles (28% dead for three insecticide treatments). Regression analysis showed a significant positive relationship between mortality of female beetles and ovarian development. Based on the measurements of this experiment, it is unlikely that realistic beetle densities would consume enough spray residue to prevent economic control of the beetle population.  相似文献   

4.
Cucurbitacin E glycoside, extracted from a bitter mutant of Hawkesbury watermelon [Citrulls lanatus (Thunb.) Matsum. & Nakai (Syn. Citrullus vulgaris Schrad)] is the active ingredient of a feeding stimulant for the corn rootworm complex. It is the primary component of a water-soluble bait that can be combined with toxins for adult diabroticite control. Studies were conducted using phloxine B (D&C Red 28), a xanthene dye, as the toxin. This dye was efficacious against Diabrotica undecimpunctata howardi Barber, spotted cucumber beetle, and Acalymma vittatum (F.), striped cucumber beetle, in cucumber plots and could be recovered from cucumber leaves for 8 d after treatment. The average amount of dye recovered per dead spotted cucumber beetle at 8 d after treatment was 0.173 microg. Concentrated and sugar-free fermented forms of the watermelon extract were developed and compared with the fresh juice in field applications on cucumber plants. There was no significant difference in mortality of beetles from phloxine B-bait prepared with fresh, fermented, or concentrated extract, although in laboratory studies, fermented juice had higher feeding stimulant activity.  相似文献   

5.
Field studies were conducted to investigate the effectiveness of yellow sticky traps as an alternative sampling technique for striped, Acalymma vittatum (F.), and spotted, Diabrotica undecimpunctata howardi Barber, cucumber beetles (Coleoptera: Chrysomelidae) and the diurnal beetle activity on muskmelon, Cucumis melo L., near Vincennes, IN, in 2003 and 2004. The experimental design included six replications of seven 20-m-long rows each of muskmelon with 1.5 m between rows. On each sampling date, two yellow sticky traps were placed randomly between rows in each replication. One sticky trap was placed vertically with the lower edge even with the top of the canopy, whereas the other trap was placed horizontally, even with the top of the canopy. After traps were placed in the field, number of beetles on plants was counted in situ from 0800 to 1600 hours at 2-h intervals the next day. After 48 h in the field, the number of cucumber beetles adhering on traps was counted. Analyses of variance and Tukey's multiple comparison procedure were used to compare the densities of beetles among sampling times, and regression analyses were applied to correlate the numbers of beetles on traps and the numbers of in situ counts. Results show that both species of cucumber beetles were most active from 1200 to 1400 hours, and 20 beetles on the vertically positioned sticky trap were equivalent to one beetle per plant in the field. The application of the sampling technique and scouting time for cucumber beetle management are discussed.  相似文献   

6.
Select strains of plant growth-promoting rhizobacteria (PGPR) were evaluated in greenhouse experiments with cucumber for induction of resistance against cucumber beetle (Diabrotica undecimpunctata howardi Barber) feeding and the beetle-transmitted cucurbit wilt disease. When beetles were given a choice between PGPR-treated and nontreated cucumber, their feeding on stems and cotyledons and the severity of wilt symptoms were significantly lower on PGPR-treated plants. HPLC analysis demonstrated that cotyledons from PGPR-treated plants contained significantly lower concentrations of the cucumber beetle feeding stimulant cucurbitacin than nontreated plants. These results suggest that a mechanism for PGPR-induced resistance against cucumber beetle feeding may involve a change in the metabolic pathway for cucurbitacin synthesis.  相似文献   

7.
Infection of cucumber (Cucumis sativus L.) with the bacterial pathogen Erwinia tracheiphila E. F. Smith causes vascular wilt disease in leaves, which may alter the suitability of the host plant for insects and other pathogens. In this study, densities of spotted (Diabrotica undecimpunctata howardi Barber) and striped (Acalymma vittata (Fab.) cucumber beetles (Coleoptera: Chrysomelidae) were higher on wilted leaves of mature and seedling field plants inoculated with E. tracheiphila. Bacterial infection or feeding by D. undecimpunctata howardii beetles increased total peroxidase enzyme activity in inoculated or infested leaves of greenhouse seedlings, but only beetle feeding induced higher activities in untreated systemic leaves on the same plants. Neither bacterial infection nor beetle infestation led to the development of systemic acquired resistance (SAR) to the fungal pathogen Colletotrichum orbiculare (Berk & Mont.) Arx. Susceptibility to this fungus was greater on E. tracheiphila-infected plants than on controls. The positive association between leaf wilt symptom development and beetle occurrence thus occurs in the presence of an oxidative but not anti-pathogenic response induced by both the insect and the pathogen.  相似文献   

8.
9.
Biological control research often focuses on the ability of predators to reduce pest densities and protect crops through consumption. Less studied is their ability to protect crops by altering pest behaviour (non‐consumptive effects). Lab experiments were conducted to test predation rates of striped cucumber beetles (Acalymma vittatum; Coleoptera: Chrysomelidae) and spotted cucumber beetles (Diabrotica undecimpunctata howardi; Coleoptera: Chrysomelidae) by large (>10 mm) wolf spiders (Araneae: Lycosidae). Field experiments were conducted to examine how the physical presence and/or cues of spiders impact the behaviour and mortality of A. vittatum (specialist) and D. undecimpunctata (generalist) cucumber beetles as well as growth and damage of cucumber plants (Cucumis sativus; Cucurbitaceae). A. vittatum and D. undecimpunctata adults were added to caged cucumber plants without a spider, with spider cues only (spider removed before beetle inclusion), with spider only (spider introduced to plants immediately before beetle inclusion), and with spiders and their cues present (spiders introduced 24 hr in advance of beetle inclusion). A. vittatum responded to spider cues primarily by emigrating from plants. Contrarily, D. undecimpunctata did not display obvious responses, such as reduced feeding or increased emigration, to spider foraging and/or cues. Actively foraging lycosids increased A. vittatum mortality and reduced densities of D. undecimpunctata in the field when cucumber plants were flowering. This study highlights how non‐consumptive and consumptive effects can play a role in modifying pest populations, and how these effects can vary across species and plant growth stages.  相似文献   

10.
Studies were conducted in Kansas corn and soybean fields during 1997 to compare various sampling methods, traps, and trap components for capturing three species of adult corn rootworms: western (Diabrotica virgifera virgifera Leconte), southern (D. undecimpunctata howardi Barber), and northern (D. barberi Smith & Lawrence). Lure constituents affected the species of beetle attracted to the trap. Traps with a lure containing 4-methoxycinnamaldehyde attracted more western corn rootworms, those with a lure containing eugenol were more attractive to northern corn rootworms, and those containing trans-cinnamaldehyde were most attractive to southern corn rootworms. Multigard sticky traps caught more beetles than did Pherocon AM sticky traps. In corn, a newly designed lure trap caught more beetles than did sticky traps on most occasions. Also, lure-baited sticky traps caught more beetles than did nonbaited sticky traps. Varying the color of the lure trap bottom did not affect the number caught. In soybeans, the new lure traps captured more beetles than did the nonbaited Multigard or Pherocon AM sticky traps. Results of this study suggest the new lure trap may provide a more accurate assessment of corn rootworm populations than traditional monitoring techniques and may be more esthetically pleasing to growers and consultants.  相似文献   

11.
The western spotted cucumber beetle, Diabrotica undecimpunctata undecimpunctata Mannerheim, is an important pest of melons (Cucurmis melo L.) in northern California. Recent observations indicate that adults are using alfalfa (Medicago sativa L.) as a feeding host and larvae may be developing on the roots. Greenhouse studies were conducted during the winters of 2009 and 2010 in which larval development was compared on the roots of six field and vegetable crops commonly grown in the southern Sacramento Valley. The growth parameters used to evaluate the hosts were larval and pupal head capsule width, body width, and body length as well as total survival percentage and survival percentage to the third instar. According to larval growth and survivorship in 2009, maize (Zea mays L.) was the best host, followed by alfalfa and tomato (Solanum lycopersicum L.) that were roughly equivalent to one another. Melon was a slightly weaker host than alfalfa and tomato; sunflower (Helianthus annuus L.) was a completely incompatible host and thus dropped from the 2010 study. In 2010, melon was the weakest host for larval development. Maize was the superior host again followed closely by alfalfa that performed slightly better than tomato and lima bean (Phaseolus lunatus L.). Data suggest that larval western spotted cucumber beetles may primarily develop outside of melon fields and the adults emigrate to melons.  相似文献   

12.
The citrus leafminer, Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae), is an important world‐wide pest of citrus. Larval mining within leaf flush impacts yield and predisposes trees to infection by citrus canker, Xanthomonas axonopodis pv. citri. The present series of studies sought to identify factors affecting male P. citrella catch in pheromone‐baited traps with the intent of developing effective monitoring. A commercially available pheromone lure (Citralure, ISCA Technologies, Riverside, CA, USA) was highly effective in attracting male P. citrella to traps. Pherocon VI Delta (Trécé Inc., Adair, OK, USA) traps baited with a Citralure captured more male P. citrella than identically baited Pherocon IC Wing traps (Trécé Inc.). The superiority of the Delta‐style trap was found to be due to a 3 cm long closing latch that likely prevents males from flying directly through the trap without capture. Within canopies of mature citrus trees (approximately 3.5 m high), traps at mid‐canopy height (2.0 m) captured more males than traps placed higher (3.5 m) or lower (0.6 m). On the canopy perimeter and in between canopies, traps near ground level (0.6 m height) captured more males than traps at 2.0 and 3.5 m heights. Male catch was greater within the tree canopy or on the canopy perimeter than 2.0 away from the canopy. Traps deployed in trees on the edge of groves captured more males than traps placed 120 and 240 m away from the grove edge and within the grove interior. In non‐pheromone‐treated grove plots, the optimal dosage for catching males was between 0.1 and 1.0 mg of the 3 : 1 blend of (Z,Z,E)‐7,11,13‐hexadecatrienal and (Z,Z)‐7,11‐hexadecadienal; however, in pheromone‐treated plots a higher 10.0 mg dosage lure was most effective. Male catch in pheromone‐baited traps exhibited a diel rhythm with most males captured during scotophase (22:00–23:00 h) and no males captured during photophase.  相似文献   

13.
Abstract 1. Plants experience herbivory on many different tissues that can affect reproduction directly by damaging tissues and decreasing resource availability, or indirectly via interactions with other species such as pollinators. 2. This study investigated the combined effects of leaf herbivory, root herbivory, and pollination on subsequent damage, pollinator preference, and plant performance in a field experiment using butternut squash (Cucurbita moschata). Leaf and root herbivory were manipulated using adult and larval striped cucumber beetles (Acalymma vittatum F.), a cucurbit specialist. 3. Leaf herbivory reduced subsequent pistillate floral damage and powdery mildew (Sphaerotheca fuliginea) infection. In spite of these induced defences, the overall effect of leaf herbivory on plant reproduction was negative. Leaf herbivory reduced staminate flower production, fruit number, and seed weight. In contrast, root herbivory had a minimal impact on plant reproduction. 4. Neither leaf nor root herbivory altered pollinator visitation or floral traits, suggesting that reductions in plant performance from herbivory were as a result of direct rather than indirect effects. In addition, no measured aspect of reproduction was pollen limited. 5. Our study reveals that although leaf herbivory by the striped cucumber beetle can protect against subsequent damage, this protection was not enough to prevent the negative impacts on plant performance.  相似文献   

14.
Alternative environmentally friendly methods for pest control are in high demand because of the environmental impacts of pesticides. Notably, predator-released kairomone is a natural compound released by natural enemies, which mediates non-consumptive effects between natural enemies and prey. However, this novel pest control agent is underutilized relative to pesticides and natural enemies. Additionally, the effects of spraying predator kairomone on the number and diversity of arthropods in fields and whether this method is environmental-friendly are poorly understood. In the present study, a predator kairomone, rove beetle (Paederus fuscipes Curtis) abdominal gland secretion (AGS), was sprayed in rice fields to investigate whether AGS can suppress pest populations or will affect the fields’ arthropod communities. After AGS spraying, the abundance of arthropods decreased throughout the first 12-d period, including arthropod pests such as hemipterans (small brown planthopper, Laodelphax striatellus (Fallén), brown planthopper, Nilaparvata lugens (Stål), white-backed planthopper, Sogatella furcifera (Horváth), and leafhoppers), and lepidopterans (rice leaf folder, Cnaphalocrocis medinalis Guenée). The abundance of arthropod predators was not affected, except for predatory spiders, which decreased, and rove beetles (P. fuscipes), which increased. In the terms of arthropod diversity, neither pests nor their natural enemies were changed by AGS application. This work highlights that predator kairomone can temporarily suppress pest populations in fields but has no adverse effects on arthropod diversity; thus, this approach is environmentally friendly and can be used in real-world applications. Broadly, present studies suggest that the application of predator kairomone may have synergistic or cumulative effects on pest suppression.  相似文献   

15.
Patrick J. Moran 《Oecologia》1998,115(4):523-530
Diverse organisms simultaneously exploit plants in nature, but most studies do not examine multiple types of exploiters like phytophagous insects and fungal, bacterial, and viral plant pathogens. This study examined patterns of induction of antipathogenic peroxidase enzymes and phenolics after infection by the cucurbit scab fungus, Cladosporium cucumerinum, and then determined if induction mediated ecological effects on Colletotrichum orbiculare, another fungal pathogen, and two insect herbivores, spotted cucumber beetles, and melon aphids. Peroxidase induction occurred in inoculated, `local,' symptom-bearing leaves 3 days after inoculation, and in `systemic,' symptom-free leaves on the same plants 1 day later. Phenolics were elevated in systemic but not in local leaves 3 days after inoculation. Detached systemic leaves from plants inoculated with C. cucumerinum developed significantly fewer and smaller lesions after challenge with C. orbiculare. Spotted cucumber beetles did not show consistently significant preferences for infected versus control leaf disks in comparisons using local or systemic leaves, but trends differed significantly between leaf positions. In no-choice tests, beetles removed more leaf area from local but not from systemic infected leaves compared to control leaves, and melon aphid reproduction was enhanced on local infected leaves. In the field, cucumber beetle and melon aphid densities did not differ between infected and control plants. Antipathogenic plant chemical responses did not predict reduced herbivory by insects. Other changes in metabolism may explain the positive direction and spatially dependent nature of plant-mediated interactions between pathogens and insects in this system. Received: 28 September 1997 / Accepted: 9 February 1998  相似文献   

16.
Four cultivars of lettuce, Lactuca sativa L., were evaluated for their resistance to the adult banded cucumber beetle, Diabrotica balteata LeConte, under laboratory conditions. When paired with each of the other three cultivars, leaf consumption in all possible combinations of short-term (48 h) two-choice tests among the cultivars was significantly reduced only for 'Valmaine'. However, in a 48-h no-choice situation, beetles fed Valmaine or 'Short Guzmaine' had similarly low leaf consumption, followed by 'Parris White', with the greatest consumption occurring on 'Tall Guzmaine'. In longer term experiments, female beetles fed Valmaine for 10, 13, or 16 d generally had lower survival and the lowest body weights compared with beetles fed any of the other three cultivars. No mature eggs were found in the ovaries of females fed Valmaine, whereas from 14% (Short Guzmaine, day 10) to 100% (Tall Guzmaine, day 13) of females fed the other cultivars produced mature eggs. In a starvation test, most D. balteata of either sex did not survive after 7 d with access only to water. Moreover, starved females did not produce mature eggs. Thus, food consumption by adult D. balteata is very important to their survival and reproductive performance, and it is likely that females fed Valmaine failed to produce mature eggs because they did not consume a sufficient amount of this cultivar. However, because Valmaine-fed beetles maintained their body weight and lived significantly longer than starved beetles, it appears that they can obtain some nourishment from their limited feeding on this cultivar. Overall, these results suggest that Valmaine, and to a lesser extent short Guzmaine (a cultivar produced by crossing Valmaine with two other cultivars), exhibit antixenosis-based resistance against D. balteata.  相似文献   

17.
Winter squash is a vital agricultural commodity worldwide. In the Northeastern United States, the primary insect pest is the striped cucumber beetle, Acalymma vittatum F. Using a Blue Hubbard squash (Cucurbita maxima Duchesne) perimeter trap crop system can reduce insecticide use by >90% in butternut squash (C. moschata Poir), the primary winter squash grown in this region. Despite the savings in insecticide costs, growers may be reluctant to give up field space for a perimeter crop of Blue Hubbard squash, which comprises only 5% of the winter squash market in New England as compared with 19% for buttercup squash. Finding a more marketable trap crop would lower the barrier for adoption of this system. We tested eight varieties of three species of cucurbits for attractiveness to beetles relative to Blue Hubbard and butternut squash, and chose buttercup squash as the most promising replacement. We compared the effect of a buttercup border, Blue Hubbard border, or control (no border) on beetle numbers, herbivory, insecticide use, pollination, and pollen limitation in the main crop. We found that buttercup squash performed equally well as Blue Hubbard as a trap crop, with 97% reduction in total insecticide use compared with control fields. Honey bees (Apis mellifera L.) and squash bees (Peponapis pruinosa Say) were the predominant pollinators, and border treatments did not affect visitation. Hand pollination did not increase reproduction or yield, indicating that natural pollination was sufficient for full yield. This study confirms the effectiveness of perimeter trap crop systems and offers growers a more marketable trap crop for managing cucumber beetle damage.  相似文献   

18.
In fall 2000, an on-farm sustainable agricultural research project was established for cotton, Gossypium hirsutum L., in Tift County, Georgia. The objective of our 2-yr research project was to determine the impact of several cover crops on pest and predator insects in cotton. The five cover crop treatments included 1) cereal rye, Secale cereale L., a standard grass cover crop; 2) crimson clover, Trifolium incarnatum L., a standard legume cover crop; 3) a legume mixture of balansa clover, Trifolium michelianum Savi; crimson clover; and hairy vetch, Vicia villosa Roth; 4) a legume mixture + rye combination; and 5) no cover crop in conventionally tilled fields. Three main groups or species of pests were collected in cover crops and cotton: 1) the heliothines Heliothis virescens (F.) and Helicoverpa zea (Boddie); 2) the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois); and 3) stink bugs. The main stink bugs collected were the southern green stink bug, Nezara viridula (L.); the brown stink bug, Euschistus servus (Say); and the green stink bug, Acrosternum hilare (Say). Cotton aphids, Aphis gossypii Glover, were collected only on cotton. For both years of the study, the heliothines were the only pests that exceeded their economic threshold in cotton, and the number of times this threshold was exceeded in cotton was higher in control cotton than in crimson clover and rye cotton. Heliothine predators and aphidophagous lady beetles occurred in cover crops and cotton during both years of the experiment. Geocoris punctipes (Say), Orius insidiosus (Say), and red imported fire ant, Solenopsis invicta Buren were relatively the most abundant heliothine predators observed. Lady beetles included the convergent lady beetle, Hippodamia convergens Guérin-Méneville; the sevenspotted lady beetle, Coccinella septempunctata L.; spotted lady beetle, Coleomegilla maculata (DeGeer); and the multicolored Asian lady beetle, Harmonia axyridis (Pallas). Density of G. punctipes was higher in cotton fields previously planted in crimson clover compared with control cotton fields for all combined sampling dates in 2001. Intercropping cotton in live strips of cover crop was probably responsible for the relay of G. punctipes onto cotton in these crimson clover fields. Density of O. insidiosus was not significantly different between cover crop and control cotton fields. Lady beetles seemed to relay from cover crops into cotton. Conservation of the habitat of fire ants during planting probably was responsible for the higher density of red imported fire ants observed in all conservation tillage cotton fields relative to control cotton fields. Reduction in the number of times in which economic thresholds for heliothines were exceeded in crimson clover and rye compared with control fields indicated that the buildup of predaceous fire ants and G. punctipes in these cover crops subsequently resulted in reduction in the level of heliothines in conservation tillage cotton with these cover crops compared with conventional tillage cotton without cover crops.  相似文献   

19.
Males of the spotted cucumber beetle (Diabrotica undecimpunctata howardi) rhythmically stroke females with their antennae during copulation. Males that stroke quickly have a higher probabilityof being accepted as a mate. We determined (1) the mechanismby which females prevent unattractive males from passing spermatophores,(2) whether antennal stroking signals to females the likelihoodof receiving a nuptial gift, and (3) if other male traits inaddition to stroking are subjected to sexual selection fromfemale preference. Dissections of pairs flash-frozen in copuladuring and after antennal stroking showed musculature that,when contracted, folded the vaginal duct leading to the female'sbursa copulatrix in a way that prevented complete penetrationby the aedeagus. These muscles were always contracted whilemales were stroking and always relaxed after stroking had ceased.Males accepted as mates did not differ from males that failedto pass a spermatophore in either absolute or relative bodyweight, aedeagus length, or the amount of cucurbitacins (potentialnuptial gifts) sequestered in their spermatophores. Although99% of the beetles that came to cucurbitacin-rich Cucurbitafruits in the field were males, males that had sequestered cucurbitacins did not stroke females faster than males withno cucurbitacins, and fast-stroking males were not more likelyto find and sequester cucurbitacins than were males that strokedmore slowly. Males with a cucurbitacin slurry painted on theirantennae had no mating advantage over controls. We concludethat females discriminate among males after copulation hasbegun on the basis of antennal stroking displays (or some traitcorrelated with stroking speed) that males perform to enticefemales to relax their bursal sphincter.  相似文献   

20.
In the spotted cucumber beetle, Diabrotica undecimpunctata howardi (Coleoptera: Chrysomelidae), males court females during copulation by stroking them with their antennae. Stroking occurs exclusively during the first stages of copulation, after a male has penetrated a female's vaginal duct but before he is allowed access to her bursa copulatrix. Females accept the spermatophore of fast-stroking males and reject those of slow-stroking males by relaxing or constricting muscles distorting the vaginal duct. Here, we measure the repeatability of stroking behaviour within males, examine the effect of losing one antenna on male attractiveness and test whether such female control results in direct phenotypic benefits for the discriminating female or indirect genetic benefits that appear in her offspring. We also use a half-sibling design to quantify the variance and heritability of stroking speed and endurance. Female beetles were paired with a male that was known to stroke either quickly or slowly. No difference was found in the resulting fecundity or egg-hatching rate of the females, or in the survivorship, development rate, size, age at first reproduction or fecundity of their offspring indicating that no direct benefits are gained by discriminating among males on the basis of stroking speed. There were, however, good-genes benefits for the mates of fast-stroking males. Offspring of fast-stroking fathers were also fast strokers and were more likely to be accepted as mates than offspring of slow-stroking fathers. There was substantial variance among sires in stroking speed and endurance and the heritability of each trait was high. The antennal stroking rate was highly repeatable in successive mating attempts and males with only one antenna were not accepted as mates. The repeatability within males, variability between males and heritability between generations of copulatory stroking combine to provide females with a reliable and honest signal of the genetic quality of courting males.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号