首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
【目的】通过增加北京棒杆菌(Corynebacterium pekinense)PD-67芳香族氨基酸合成的前体物质磷酸烯醇式丙酮酸(PEP)的供应,解除终产物对芳香族氨基酸合成途径中第一个酶同时也是关键酶3-脱氧-D-阿拉伯庚酮糖-7-磷酸合酶(DS)的反馈抑制并提高抗反馈抑制的DS的活力,使碳流更多地流向芳香族氨基酸合成途径,从而积累更多L-色氨酸。【方法】运用PCR技术扩增北京棒杆菌PD-67磷酸烯醇式丙酮酸合酶基因pps,与表达载体连接构建重组质粒pXPS;运用重叠PCR技术定点突变大肠杆菌(Escherichia coli)受苯丙氨酸调控的DS基因aroG,使相应的编码氨基酸序列发生突变:Leu175Asp,新的基因命名为aroGfbr,与表达载体连接构建重组质粒pXA;构建pps和aroGfbr的共表达重组质粒pXAPS。将3个重组质粒分别转入菌株PD-67,构建工程菌株PD-67/pXPS、PD-67/pXA和PD-67/pXAPS。通过摇瓶发酵研究工程菌株的发酵特性。【结果】酶活分析结果表明,pps基因和aroGfbr基因在北京棒杆菌PD-67中均实现了表达。工程菌株PD-67/pXA粗酶液DS抗反馈抑制分析表明,AroGfbr已解除酪氨酸和苯丙氨酸的反馈抑制。过表达pps基因和aroGfbr基因分别使工程菌L-色氨酸产量提高12.1%和26.8%,双基因共表达可使工程菌的产酸量提高35.9%。【结论】北京棒杆菌PD-67pps基因的过表达以及大肠杆菌来源的解除反馈抑制的aroGfbr的过表达均有助于增加PD-67 L-色氨酸的合成,而双基因的共表达可以进一步提高L-色氨酸的积累量。  相似文献   

2.
大肠杆菌莽草酸途径限速酶多基因盒的构建及基因替换   总被引:2,自引:0,他引:2  
优化大肠杆菌芳香族氨基酸生物合成代谢途径 ,构建莽草酸代谢途径限速酶的多基因盒PtacaroAaroCaroBkan .利用Red重组系统 ,在破坏整体调控基因csrA时 ,替换多基因盒 .Southern印迹证实 ,基因破坏和基因替换是成功的 .摇瓶发酵表明 ,构建的基因工程菌株比原始菌株基础产酸率提高了 4 5 3倍  相似文献   

3.
目的:改造毕赤酵母使其异源合成类黄酮生物合成途径的重要中间体肉桂酸、对香豆酸,并优化前体芳香族氨基酸生物合成途径以提高毕赤酵母的生产能力。方法:在毕赤酵母GS115中利用乙醇诱导型人工转录系统表达Rhodotorula glutinis来源的苯丙氨酸解氨酶,并在该重组菌株中分别过表达胞内芳香族氨基酸生物合成途径中的关键酶或其突变体以进行优化。结果:异源表达苯丙氨酸解氨酶可使毕赤酵母将自身产生的L-苯丙氨酸、L-酪氨酸转化为肉桂酸(38.8 mg/L)、对香豆酸(34.2 mg/L),而通过过表达相关酶进行优化,最终肉桂酸和对香豆酸的产量分别达到124.1 mg/L和302.0 mg/L。结论:利用新的异源宿主毕赤酵母成功合成了肉桂酸、对香豆酸,并对胞内的芳香族氨基酸生物合成途径进行了优化,表明毕赤酵母具有生产黄酮类化合物的应用潜力,也为其他芳香族氨基酸衍生物或植物化合物在毕赤酵母中的异源合成奠定了基础。  相似文献   

4.
马温华  赵智  王宇  张英姿  丁久元 《微生物学报》2012,52(11):1344-1351
[目的]为了减少北京棒杆菌PD-67(Corynebacterium pekinense PD-67)从细胞外吸收色氨酸,降低细胞内色氨酸库的浓度,从而使色氨酸的反馈控制作用减弱,增加胞外L-色氨酸的积累量,构建北京棒杆菌PD-67的芳香族氨基酸转运蛋白基因aroP敲除的菌株,研究aroP基因敲除对菌株L-色氨酸积累的影响.并进一步研究在aroP敲除菌株中表达邻氨基苯甲酸合成酶(AS)基因对L-色氨酸积累的影响.[方法]运用PCR技术扩增aroP基因,与整合质粒连接后,用限制性内切酶法构建带有内部片段缺失的aroP基因的敲除载体.利用同源重组技术,敲除北京棒杆菌PD-67的aroP基因,构建菌株PD-67 ΔaroP,并用带有aroP基因的表达载体对PD-67ΔaroP进行互补验证.采用PCR技术扩增AS基因,与表达载体连接构建重组质粒.将重组质粒转入菌株PD-67ΔaroP,构建工程菌株PD-67 ΔaroP/pXAS.通过摇瓶发酵研究PD-67 AaroP和PD-67 ΔaroP/pXAS的发酵特性.[结果]经PCR验证获得了aroP基因缺陷的菌株.摇瓶发酵结果表明,与出发菌株相比,PD-67ΔaroP的L-色氨酸的积累量提高了65%.酶活分析结果表明,AS基因在菌株PD-67 △aroP中得到表达.AS基因表达使工程菌单位菌体产酸率提高了25.6%.[结论]北京棒杆菌PD-67中芳香族氨基酸转运蛋白基因arop的敲除能够提高胞外L-色氨酸的积累量.在arop基因敲除菌中表达AS基因,可以进一步提高工程菌的产酸率.  相似文献   

5.
基于PTS缺陷型大肠杆菌构建莽草酸生产菌   总被引:2,自引:0,他引:2  
对大肠杆菌芳香族氨基酸合成途径进行代谢流改造, 以实现高效的生物制备莽草酸。以磷酸烯醇式丙酮酸-糖磷酸转移酶系统(PTS系统)敲除菌DH5α△ptsHIcrr (DHP)为基础, 特异性敲除aroL、ydiB基因并转入受阿拉伯糖诱导表达的T7-RNA聚合酶基因, 最终构建一系列产莽草酸宿主菌。再将aroE、aroB、tktA、glk、aroFfbr组成的系列基因串联起来置于质粒上, 在T7启动子控制下表达, 经摇瓶培养检测得知, 不同重组菌产莽草酸能力与对照相比均有明显提高, 其中DHPYA-T7/pAOC-TGEFB菌株产量最高, 可达到392 mg/L。为进一步构建高表达莽草酸工程菌奠定基础。  相似文献   

6.
夏温娜  孙雨  闵聪  韩威  吴胜 《生物工程学报》2012,28(11):1346-1358
芳香族L-氨基酸是合成许多药物、农药、精细化学品和食品添加剂的重要手性砌块(Chiral buildingblocks)。利用酶催化具有高活性和高立体选择性的特点合成手性砌块是目前不对称合成领域重要的研究方向。通过对不同来源转氨酶的进化分析,选择分别源自原核生物大肠杆菌Escherichia coli和真核生物酿酒酵母Saccharomyces cerevisia中的两种具有代表性Ⅰ型芳香族转氨酶TyrB和Aro8,比较研究了两种转氨酶通过平衡逆转不对称氨化催化合成芳香族L-氨基酸的反应过程和催化效率。重组转氨酶TyrB和Aro8都能有效地合成天然芳香族氨基酸苯丙氨酸和酪氨酸以及非天然氨基酸苯甘氨酸。手性HPLC分析表明,合成的氨基酸都是L-构型的,e.e值等于100%。L-丙氨酸是适宜的氨基供体,转氨酶TyrB和Aro8都不能利用D-型氨基酸作为氨基供体。反应体系中氨基供体L-丙氨酸和氨基受体芳香族α-酮酸的最适摩尔比为4∶1。底物芳香族α-酮酸分子结构中芳香环上的取代基以及脂肪酸碳链部分的长度都对酶催化的转氨效率有显著的影响。在制备规模试验中,TyrB催化不对称转氨反应合成L-苯甘氨酸、L-苯丙氨酸和L-酪氨酸的比生产速率为0.28 g/(g.h)、0.31 g/(g.h)和0.60 g/(g.h),Aro8催化上述反应的比生产速率分别为0.61 g/(g.h)、0.48 g/(g.h)和0.59 g/(g.h)。研究结果对利用转氨酶通过平衡逆转不对称催化合成芳香族L-氨基酸的工业化应用具有指导意义。  相似文献   

7.
5-烯醇丙酮酰-莽草酸-3-磷酸合成酶(5-enolpyruvyl-shikimate-3-phosphate synthase, EPSPS)是植物和微生物体内合成芳香族氨基酸所必需的一个关键酶,但此酶受广谱性除草剂草甘膦的强烈抑制。本试验对草甘膦胁迫下的棉花品系(Y18)研究发现:棉花品系Y18具有两个不同的5-烯醇丙酮酰-莽草酸-3-磷酸合成酶基因epsps1和epsps2,两个基因的编码区与其他植物的epsps基因具有较高的同源性,在草甘膦胁迫作用下,棉花的epsps1基因表达较为稳定,epsps2基因表达提高了1.85-2.3倍,初步认为epsps基因表达量的提高是生物对胁迫作用的一种应激反应。  相似文献   

8.
csrA 基因产物是大肠杆菌芳香族氨基酸生物合成途径中碳中心代谢有关的一种全局性调控蛋白质.采用 Red 敲除系统介导的同源重组的方法定位缺失大肠杆菌染色体 csrA 基因,经 PCR、DNA 测序等多种方法证实了基因重组缺失的可靠性.csrA基因缺失后,缺失菌株较对照菌株,糖酸转化率有所提高,发酵生产苯丙氨酸的能力也得到一定的提高,产酸提高约13%.  相似文献   

9.
大肠杆菌tyrR基因剔除及其对苯丙氨酸生物合成的影响   总被引:1,自引:0,他引:1  
TyrR是大肠杆菌芳香族氨基酸生物合成和运输途径中的一种全局性调控蛋白质。采用双交换同源重组的方法定位突变大肠杆菌染色体tyrR基因 ,在该基因中插入带有卡那霉素抗性基因的DNA片段 ,使之失活 ,实现基因剔除。经PCR、DNA测序、lacZ报告基因等多种方法证实了基因剔除的可靠性。tyrR基因剔除后 ,大肠杆菌芳香族氨基酸生物合成中受TyrR蛋白调控的关键酶的酶活力有所提高 :3 脱氧 2 阿拉伯庚酮糖 7 磷酸合成酶(DAHPS ,由aroG编码 )酶活力提高了 1.0 8倍 ,转氨酶 (AT ,由tyrB编码 )酶活力提高了 2 .70倍 ;突变菌株发酵生产苯丙氨酸的能力提高了 1.5 9倍 ;同时 ,与芳香族氨基酸运输相关的通透酶基因aroP(P)的阻遏被解除 ,细胞运输芳香族氨基酸的能力提高了 70 .2 %。  相似文献   

10.
利用重组大肠杆菌表达丝氨酸羟甲基转移酶(SHMT)和色氨酸酶(TPase),并利用双酶法合成L-色氨酸。采用PCR从大肠杆菌K12基因组中扩增上述两种酶的基因,利用pET-28a载体,构建单表达重组质粒pET-SHMT、pET-TPase和共表达重组质粒pET-ST。将上述3种重组质粒转入大肠杆菌BL21(DE3)进行表达。SDS-PAGE结果表明,单表达基因工程菌BL21(DE3)/pET-SHMT和BL21(DE3)/pET-TPase分别在47kDa(SHMT)和50kDa(TPase)处有蛋白表达带;共表达基因工程菌BL21(DE3)/pET-ST在上述两处均有蛋白表达带。与宿主菌相比,单表达SHMT基因工程菌产酶活性提高了6.4倍;单表达TPase基因工程菌产酶活性提高了8.4倍;共表达SHMT和TPase基因工程菌产酶活性分别提高了6.1和6.9倍。利用工程菌所产酶进行双菌双酶法和单菌双酶法合成L-色氨酸。两菌双酶合成L-色氨酸的累积量达到41.5g/L,甘氨酸转化率为83.3%,吲哚转化率为92.5%;单菌双酶合成L-色氨酸的累积量达到28.9g/L,甘氨酸转化率为82.7%,吲哚转化率为82.9%。  相似文献   

11.
Trehalose is a disaccharide with a wide range of applications in the food industry. We recently proposed a strategy for trehalose production based on a Corynebacterium glutamicum strain expressing the Escherichia coli enzyme UDP-glucose pyrophosphorylase (GalU). Biochemical network analysis suggest a further bottleneck for trehalose synthesis resulting from the coupling of phosphotransferase (PTS) mediated glucose uptake, and glucose catabolism in C. glutamicum. To overcome this coupling, we propose the expression of E. coli phosphoenolpyruvate synthetase (PpsA), in addition to GalU expression, in C. glutamicum. Although GalU expression improved trehalose synthesis in C. glutamicum, the simultaneous expression of GalU and PpsA did not result in a further increase in trehalose yield, but resulted in an increased catabolic rate of glucose, which could be ascribed to the operation of a futile cycle between phosphoenolpyruvate and pyruvate. The impact of GalU and PpsA expression on polysaccharide content, side product excretion and metabolic fluxes is discussed, as well as alternative ways to decouple glucose uptake and catabolism, in order to increase trehalose yield.  相似文献   

12.
Phosphoenolpyruvate synthetase (PpsA) was purified from the hyperthermophilic archaeon Pyrococcus furiosus. This enzyme catalyzes the conversion of pyruvate and ATP to phosphoenolpyruvate (PEP), AMP, and phosphate and is thought to function in gluconeogenesis. PpsA has a subunit molecular mass of 92 kDa and contains one calcium and one phosphorus atom per subunit. The active form has a molecular mass of 690 ± 20 kDa and is assumed to be octomeric, while approximately 30% of the protein is purified as a large (~1.6 MDa) complex that is not active. The apparent Km values and catalytic efficiencies for the substrates pyruvate and ATP (at 80°C, pH 8.4) were 0.11 mM and 1.43 × 104 mM−1 · s−1 and 0.39 mM and 3.40 × 103 mM−1 · s−1, respectively. Maximal activity was measured at pH 9.0 (at 80°C) and at 90°C (at pH 8.4). The enzyme also catalyzed the reverse reaction, but the catalytic efficiency with PEP was very low [kcat/Km = 32 (mM · s)−1]. In contrast to several other nucleotide-dependent enzymes from P. furiosus, PpsA has an absolute specificity for ATP as the phosphate-donating substrate. This is the first PpsA from a nonmethanogenic archaeon to be biochemically characterized. Its kinetic properties are consistent with a role in gluconeogenesis, although its relatively high cellular concentration (~5% of the cytoplasmic protein) suggests an additional function possibly related to energy spilling. It is not known whether interconversion between the smaller, active and larger, inactive forms of the enzyme has any functional role.  相似文献   

13.
大肠杆菌ppsA和tktA基因的串联表达   总被引:5,自引:0,他引:5  
ppsA和tktA是芳香族氨基酸生物合成中心途径的两个关键酶基因,在大肠杆菌中,ppsA基因编码磷酸烯醇式丙酮酸合成酶A(PpsA),该酶催化丙酮酸合成磷酸烯醇式丙酮酸;tktA基因编码转酮酶A,该酶在磷酸戊糖途径中生成4-磷酸赤藓糖起主要作用。采用PCR方法从大肠杆菌K-12株中扩增到ppsA和tktA,并实现了两基因的高效表达,其中ppsA活性提高了10.8倍,tktA活性提高了3.9倍,当这两个基因串联在一个质粒上导入大肠杆菌进行表达时,PpsA的活性变化较大(2.1~9.1倍),TktA的活性相对稳定(3.9~4.5倍),且这两个基因单独表达和串联表达都能使芳香族氨基酸生物合成共同途径中关键中间产物DAHP的产量提高,且串联表达比单独表达较高。  相似文献   

14.
Phenolic glycolipids (PGLs) are polyketide synthase-derived glycolipids unique to pathogenic mycobacteria. PGLs are found in several clinically relevant species, including various Mycobacterium tuberculosis strains, Mycobacterium leprae, and several nontuberculous mycobacterial pathogens, such as M. marinum. Multiple lines of investigation implicate PGLs in virulence, thus underscoring the relevance of a deep understanding of PGL biosynthesis. We report mutational and biochemical studies that interrogate the mechanism by which PGL biosynthetic intermediates (p-hydroxyphenylalkanoates) synthesized by the iterative polyketide synthase Pks15/1 are transferred to the noniterative polyketide synthase PpsA for acyl chain extension in M. marinum. Our findings support a model in which the transfer of the intermediates is dependent on a p-hydroxyphenylalkanoyl-AMP ligase (FadD29) acting as an intermediary between the iterative and the noniterative synthase systems. Our results also establish the p-hydroxyphenylalkanoate extension ability of PpsA, the first-acting enzyme of a multisubunit noniterative polyketide synthase system. Notably, this noniterative system is also loaded with fatty acids by a specific fatty acyl-AMP ligase (FadD26) for biosynthesis of phthiocerol dimycocerosates (PDIMs), which are nonglycosylated lipids structurally related to PGLs. To our knowledge, the partially overlapping PGL and PDIM biosynthetic pathways provide the first example of two distinct, pathway-dedicated acyl-AMP ligases loading the same type I polyketide synthase system with two alternate starter units to produce two structurally different families of metabolites. The studies reported here advance our understanding of the biosynthesis of an important group of mycobacterial glycolipids.  相似文献   

15.
Global expression profiling of acetate-grown Escherichia coli   总被引:7,自引:0,他引:7  
  相似文献   

16.
Biosynthesis of isoprenoids via the 1-deoxy-D-xylulose-5-phosphate (DXP) pathway requires equimolar glyceraldehyde 3-phosphate and pyruvate to divert carbon flux toward the products of interest. Here, we demonstrate that precursor balancing is one of the critical steps for the production of isoprenoids in Escherichia coli. First, the implementation of the synthetic lycopene production pathway as a model system and the amplification of the native DXP pathway were accomplished using synthetic constitutive promoters and redesigned 5′-untranslated regions (5′-UTRs). Next, fine-controlled precursor balancing was investigated by tuning phosphoenolpyruvate synthase (PpsA) or glyceraldehyde 3-phosphate dehydrogenase (GAPDH). The results showed that tuning-down of gapA improved the specific lycopene content by 45% compared to the overexpression of ppsA. The specific lycopene content in the strains with down-regulated gapA increased by 97% compared to that in the parental strain. Our results indicate that gapA is the best target for precursor balancing to increase biosynthesis of isoprenoids.  相似文献   

17.
Anaerobic activation of benzene is expected to represent a novel biochemistry of environmental significance. Therefore, benzene metabolism was investigated in Geobacter metallireducens, the only genetically tractable organism known to anaerobically degrade benzene. Trace amounts (<0.5 μM) of phenol accumulated in cultures of Geobacter metallireducens anaerobically oxidizing benzene to carbon dioxide with the reduction of Fe(III). Phenol was not detected in cell-free controls or in Fe(II)- and benzene-containing cultures of Geobacter sulfurreducens, a Geobacter species that cannot metabolize benzene. The phenol produced in G. metallireducens cultures was labeled with 18O during growth in H218O, as expected for anaerobic conversion of benzene to phenol. Analysis of whole-genome gene expression patterns indicated that genes for phenol metabolism were upregulated during growth on benzene but that genes for benzoate or toluene metabolism were not, further suggesting that phenol was an intermediate in benzene metabolism. Deletion of the genes for PpsA or PpcB, subunits of two enzymes specifically required for the metabolism of phenol, removed the capacity for benzene metabolism. These results demonstrate that benzene hydroxylation to phenol is an alternative to carboxylation for anaerobic benzene activation and suggest that this may be an important metabolic route for benzene removal in petroleum-contaminated groundwaters, in which Geobacter species are considered to play an important role in anaerobic benzene degradation.  相似文献   

18.
19.
In bacteria like Escherichia coli, the accumulation of glucose-6-phosphate (G6P) or its analogs such as α-methyl glucoside-6-phosphate (αMG6P) results in stress that appears in the form of growth inhibition. The small RNA SgrS is an essential part of the response that helps E. coli combat glucose-phosphate stress; the growth of sgrS mutants during stress caused by αMG is significantly impaired. The cause of this stress is not currently known but may be due to either toxicity of accumulated sugar-phosphates or to depletion of metabolic intermediates. Here, we present evidence that glucose-phosphate stress results from depletion of glycolytic intermediates. Addition of glycolytic compounds like G6P and fructose-6-phosphate rescues the αMG growth defect of an sgrS mutant. These intermediates also markedly decrease induction of the stress response in both wild-type and sgrS strains grown with αMG, implying that cells grown with these intermediates experience less stress. Moreover, αMG transport assays confirm that G6P relieves stress even when αMG is taken up by the cell, strongly suggesting that accumulated αMG6P per se does not cause stress. We also report that addition of pyruvate during stress has a novel lethal effect on the sgrS mutant, resulting in cell lysis. The phosphoenolpyruvate (PEP) synthetase PpsA, which converts pyruvate to PEP, can confer resistance to pyruvate-induced lysis when ppsA is ectopically expressed in the sgrS mutant. Taken as a whole, these results provide the strongest evidence thus far that depletion of glycolytic intermediates is at the metabolic root of glucose-phosphate stress.  相似文献   

20.
The flower-inducing and -inhibiting activities of phloem exudate (PE) prepared from cotyledons of Pharbitis seedlings were examined, using apex cultures in vitro from Pharbitis as a bioassay system.The PE was prepared from photoperiodically-induced cotyledons (SD-PE). The SD-PE was subjected to the following fractionations: When the SD-PE was extracted with CHCl3 and then ethyl acetate, the inducing activity was located in the final aqueous fraction. The activity was localized in the diffusate when the aqueous fraction was dialyzed (molecular weight cut off was 10,000). The diffusate was fractionated by ion exchange chromatography, and flower-inducing activity was found in the fraction adsorbed onto anion exchange resin. When the fraction was applied to a Sep-Pak C18 cartridge, the activity eluted with 25% MeOH. As a result of the above fractionation, activity was increased about 30-fold.The nature of the flower-inhibiting activity of the PE taken from cotyledons exposed to continuous-light conditions was examined (CL-PE). The inhibiting activity was decreased as the cotyledons were exposed to longer dark periods; it appeared to be heat-stable. The CL-PE also inhibited flowering in Lemna. The CL-PE was subjected to the following fractionations: When the CL-PE was extracted with CHCl3 and ethyl acetate, activity was located in the final aqueous fraction. Activity was localized in the diffusate when the aqueous fraction was dialyzed (molecular weight cut off was 10,000). When the diffusate was fractionated by ion exchange chromatography, the activity was found in the flow-through fraction. When the fraction was applied to a hydroxyapatite cartridge, the activity eluted with 25 mM sodium phosphate buffer. When the fraction was re-dialyzed (molecular weight cut off was 1,000), the diffusate contained the activity. As a result of the above fractionation, activity was increased about 10-fold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号