首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Isolation and genetic localization of three phi-X174 promoter regions   总被引:15,自引:0,他引:15  
  相似文献   

6.
Formation of genetic recombinants in bacteriophage φX174 is stimulated up to 50-fold in host cells carrying the recA+ allele by subjecting the virus particles to ultraviolet irradiation before infection, or by starving the host cell for thymine during infection; in recA host strains no such increases are observed.φX174 replicative form DNA molecules formed in vivo from ultraviolet-irradiated bacteriophage consist of an intact, circular full-length viral (+) strand and a partially complete complementary (?) strand extending from the point of origin of complementary strand DNA synthesis to an ultraviolet lesion. φX174 replicative form DNA molecules formed in thymine-deficient host strains during thymine starvation have nearly complete circular viral (+) and complementary (?) strands, which contain random single-strand nicks or gaps.Correlation of these structures with the observed increases in recombination suggests that single-strand “breaks” are aggressive intermediate structures in the formation of φX174 genetic recombinants mediated by the host recA+ gene product.  相似文献   

7.
8.
9.
10.
11.
12.
Summary When E. coli C cells, infected with UV irradiated X 174, were allowed to grow in liquid tris-glucose medium at 37° C with aeration, the UV damage of the single stranded (ss) DNA could be repaired to some extent. Such repair was not possible if the irradiated phage were plated immediately on E. coli C in the usual double layer agar method, or if the infected complexes were initially exposed to 0.02 M KCN for 15 min before they were allowed to grow in tris-glucose medium as before. Our results indicate that in order to be repaired, ss DNA containing UV damage must be able to convert itself to a closed circular double stranded replicative form (RF) within the host cells escaping prior scission. The whole process of repair was found to be dependent on protein synthesis in the infected complexes.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号