首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Maize (Zea mays L.) seedlings were grown in nutrient solution culture containing 0, 5, and 20 μM cadmium (Cd) and the effects on various aspects of photosynthesis were investigated after 24, 48, 96 and 168 h of Cd treatments. Photosynthetic rate (P N) decreased after 48 h of 20 μM Cd and 96 h of 5μM Cd addition, respectively. Chl a and total Chl content in leaves declined under 48 h of Cd exposure. Chl b content decreased on extending the period of Cd exposure to 96 h. The maximum quantum efficiency and potential photosynthetic capacity of PSII, indicated by Fv/Fm and Fv/Fo, respectively, were depressed after 96 h onset of Cd exposure. After 48 h of 5μM Cd and 24 h of 20 μM Cd treatments, the activities of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.39) and phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) in the leaves started to decrease, respectively. We found that the limitation of photosynthetic capacity in Cd stressed maize leaves was associated with Cd toxicity on the light and the dark stages. However, Cd stress initially reduced the activities of Rubisco and PEPC and subsequently affected the PSII electron transfer, suggesting that the Calvin cycle reactions in maize plants are the primary target of the Cd toxic effect rather than PSII.  相似文献   

2.
The role of glutathione (GSH) in the adaptation of wild type Arabidopsis thaliana plants to Cd stress was investigated. The nutrient solution (control or containing 50 or 100 μM Cd) was supplemented with buthionine sulfoximine (BSO; 50, 100, 500 μM, to decrease the GSH content in plants) or GSH (50, 100, 500 μM, to increase its content in plants) in order to find how GSH content could regulate Cd stress responses. BSO application did not influence plant biomass, while exogenous GSH (especially 500 μM) reduced root biomass. BSO (500μM) in combination with Cd (100 μM) increased Cd toxicity on root growth (by over 50 %), most probably due to reduced GSH content and phytochelatin (PC) accumulation (by over 96 %). On the other hand, combination of exogenous GSH (500 μM) with Cd (100 μM) was also more toxic to plants than Cd alone despite a significant increase in GSH and PC accumulation (up to 2.7 fold in the roots). This fact could indicate that the natural content of endogenous GSH in wild type A. thaliana plants is sufficient for Cd-tolerance. A decrease in this GSH content led to decreased Cd-tolerance of the plants but an increase in GSH content did not enhance Cd-tolerance, and it showed even toxic effect on the plants.  相似文献   

3.
Salix alba L. and Populus×euroamericana cv. Robusta cuttings were grown in 10 μM Cd(NO3)2 (direct treatment) or in Knop solution and afterwards in Cd(NO3)2 (indirect treatment). Cd impact on rooting of directly treated plants and its impact on normally formed roots and shoots of indirectly treated plants were studied. The cumulative length, number and biomass of willow roots, pigment and starch contents, leaf net photosynthetic rate and dry mass/leaf area ratio of willow leaves were positively influenced by indirect treatment. However, indirectly treated poplars were more sensitive to Cd than directly treated ones. Indirect treatment lowered root Cd uptake in willow, Cd accumulation in cuttings of both species and Cd accumulation in poplar shoots. Cd-caused structural changes were similar in both species and in both treatments. Root apices, rhizodermis and cortex were the most seriously damaged root parts. In directly treated willow, the structure of central cylinder (0.5 – 1 cm from apex) remained unchanged in contrast to indirectly treated plants. Formation of cambium close to the apex indicated shortening of root elongation zone of indirectly treated plants. Directly Cd-treated poplar roots exhibited unusual defence activity of root apical meristem and accumulation of darkly stained material around central cylinder. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Growth, organic acid and phytochelatin accumulation, as well as the activity of several antioxidative enzymes, i.e. superoxide dismutase (SOD), ascorbate peroxidase (APX) guaiacol peroxidase (POX) and catalase (CAT) were investigated under Zn and Cd stress in hydroponically growing plants of Thlaspi caerulescens population from Plombières, Belgium. Tissue Zn and Cd concentration increased (the highest concentration of both was in roots) as the concentration of these metals increased in the nutrient solution. Increasing Zn concentration enhanced plant growth, while with Cd it declined compared to the control. Both metals stimulated malate accumulation in shoots, Zn also caused citrate to increase. Zn did not induce phytochelatin (PC) accumulation. In plants exposed to Cd, PC concentration increased with increasing Cd concentration, but decreased with time of exposure. Under Zn stress SOD activity increased, but APX activity was higher at 500 and 1000 μM Zn and CAT activity only at 500 μM Zn in comparison with the control. CAT activity decreased in Cd- and Zn-stressed plants. The results suggest that relative to other populations, a T. caerulescens population from Plombières, when grown in hydroponics, was characterized by low Zn and Cd uptake and their translocation to shoots and tolerance to both metals. The accumulation of malate and citrate, but not PC accumulation was responsible for Zn tolerance. Cd tolerance seems to be due to neither PC production nor accumulation of organic acids.  相似文献   

5.
In vitro breeding and somaclonal variation were used as tools to improve the potential of Indian mustard (Brassica juncea L.) to extract and accumulate toxic metals. Calli from B. juncea were cultivated on a modified MS medium supplemented with 10–200 μM Cd or Pb. Afterwards, new B. juncea somaclones were regenerated from metal-tolerant callus cells. Three different phenotypes with improved tolerance of Cd, Zn and Pb were observed under hydroponic conditions: enhanced metal accumulation in both shoots and roots; limited metal translocation from roots to shoots; reduced accumulation in shoots and roots. Seven out of thirty individual variants showed a significantly higher metal extraction than the control plants. The improvement of metal shoot accumulation of the best regenerant (3× Cd, 1.6× Zn, 1.8× Pb) and metal extraction (6.2× Cd, 3.2× Zn, 3.8× Pb) indicated a successful breeding and selection of B. juncea, which could be used for phytoremediation purpose.  相似文献   

6.
Sedum alfredii Hance has been identified as a Zn-hyperaccumulating plant species native to China. The characteristics of Zn uptake and accumulation in the hyperaccumulating ecotype (HE) and non-hyperaccumulating ecotype (NHE) of S. alfredii were investigated under nutrient solution and soil culture conditions. The growth of HE was normal up to 1000 μM Zn in nutrient solution, and 1600 mg Zn kg−1 soil in a Zn-amended soil. Growth of the NHE was inhibited at Zn levels ≥250 μM in nutrient solution. Zinc concentrations in the leaves and stems increased with increasing Zn supply levels, peaking at 500 and 250 μM Zn in nutrient solution for the HE and the NHE, respectively, and then gradually decreased or leveled off with further increase in solution Zn. Minimal increases in root Zn were noted at Zn levels up to 50 μM; root Zn sharply increased at higher Zn supply. The maximum Zn concentration in the shoots of the HE reached 20,000 and 29,000 mg kg−1 in the nutrient solution and soil experiments, respectively, approximately 20 times greater than those of the NHE. Root Zn concentrations were higher in the NHE than in the HE when plants were grown at Zn levels ≥50 μM. The time-course of Zn uptake and accumulation exhibited a hyperbolic saturation curve: a rapid linear increase during the first 6 days in the long-term and 60 min in the short-term studies; followed by a slower increase or leveling off with time. More than 80% of Zn accumulated in the shoots of the HE at half time (day 16) of the long-term uptake in 500 μM Zn, and also at half time (120 min) of the short-term uptake in 10 μM 65Zn2+. These results indicate that Zn uptake and accumulation in the shoots of S. alfredii exhibited a down-regulation by internal Zn accumulated in roots or leaves under both nutrient solution and soil conditions. An altered Zn transport system and increased metal sequestration capacity in the shoot tissues, especially in the stems, may be the factors that allow increased Zn accumulation in the hyperaccumulating ecotype of S. alfredii. Section Editor: F. J. Zhao  相似文献   

7.
Differences in Cd accumulation and Cd tolerance between Thlaspi arvense ecotype Aigues Vives (AV) from a commercial grower in South France and ecotype Jena collected in the polluted urban area of Jena (Germany) were reported here. Ecotype Jena exhibited considerable Cd-tolerance. Shoot and root masses were unaffected and root elongation was even enhanced by exposure to 50 μM Cd. In contrast, growth of ecotype AV was severely affected by this Cd treatment. Ecotype Jena was much more efficient in excluding Cd from both roots and shoots than ecotype AV. Despite the efficient restriction of Cd transport from roots to shoots in Jena, this ecotype maintained high root to shoot transport of Zn and Fe under Cd exposure. Cd supply strongly decreased the activities of antioxidant enzymes in AV, while in the Cd resistant Jena these activities either remained unaffected (SOD, APX) or were increased (CAT) by Cd supply. In conclusion, naturally selected Cd-tolerance in Thlaspi arvense is due to efficient Cd exclusion. The mechanisms underlying exclusion of Cd from the shoots seem Cd-specific yet they did not affect the homeostasis of Fe and Zn in the shoots.  相似文献   

8.
Seedlings of wheat (Triticum aestivum L.) cultivars Jing 411, Jinmai 30 and Yangmai 10 were exposed to 0, 10, 20, 30, 40 or 50 μM of CdCl2 in a solution culture experiment. The effects of cadmium (Cd) stress on wheat growth, leaf photon energy conversion, gas exchange, and Cd accumulation in wheat seedlings were investigated. Gas exchange was monitored at 3, 9, 24 days after treatment (DAT). Growth parameters, chlorophyll content, leaf chlorophyll fluorescence, and Cd concentration in shoot and root were measured at 24 DAT. Seedling growth, gas exchange, chlorophyll content, chlorophyll fluorescence parameters were generally depressed by Cd stress, especially under the high Cd concentrations. Cd concentration and accumulation in both shoots and roots increased with increasing external Cd concentrations. Relationships between corrected parameters of growth, photosynthesis and fluorescence and corrected Cd concentrations in shoots and roots could be explained by the regression model Y = K/(1 + exp(a + bX)). Jing 411 was found to be Cd tolerant considering parameters of chlorophyll content, photosynthesis and chlorophyll fluorescence in which less Cd translocation was from roots into shoots. The high Cd concentrations were in shoots and roots in Yangmai 10 which has been found to be a relative Cd tolerant cultivar in terms of most growth parameters.  相似文献   

9.
Copper (Cu) accumulation and tolerance mechanisms in Elsholtzia haichowensis, an indicator plant of Cu mines, were investigated under hydroponics supplied with different concentrations (0.32, 50.0, 100.0 and 200.0 μM) of Cu for 8 days. Cu at 100 and 200 μM significantly decreased the root dry weight, but had no significant effect on shoot dry weight. The plants grown in the presence of 200 μM Cu accumulated 288 and 7626 μg g−1 DW total Cu in the shoots and roots, respectively. A greater proportion of accumulated Cu was water-soluble accounting for 42–93% of the total Cu content in the shoots. The concentrations of reduced glutathione (GSH) and protein thiols were significantly enhanced under excess Cu supply. However, the concentrations of these compounds, particularly protein thiols, were much higher in the leaves than that in the roots. Three UV-absorbing peaks could be eluted out through gel filtration chromatography on Sephadex G-50. A large amount of Cu was detected in the UV-absorbing peaks in 40–50 and 70–90 ml elution fractions of the root extract, and in 40–50 and 120–140 ml elution fractions of the leaf extract. The results suggested that the adaptive Cu tolerance mechanism in E. haichowensis might involve the active participation of protein thiols which had a more important role in the leaves than in the roots.  相似文献   

10.
Plants of Miscanthus sinensis (cv. Giganteus) were grown in hydroponics for three months in nutrient solution with 0, 2.2, 4.4 and 6.6 μM CdNO3. Growth parameters, catalase (CAT), guaiacol peroxidase (POD), ascorbate peroxidase (APX) and superoxide dismutase (SOD) activities were analysed in leaves and roots collected after 1-and 3-month exposure. Dry biomass of all miscanthus organs was affected by Cd concentration both after 1-and 3-month exposure. No visible symptoms of Cd toxicity were observed in shoots and rhizomes of plants grown in presence of Cd. In contrast, roots became shorter and thicker and the whole root system more dense and compact already after one month of treatment with 6.6 μM Cd. The lower Cd concentration increased the enzymes activities after 3 months in leaves and only after 1-month in roots, while a decrease in activity was observed at higher Cd concentrations.  相似文献   

11.
12.
Rice seedlings were grown in hydroponic culture to determine the effects of external Zn and P supply on plant uptake of Cd in the presence or absence of iron plaque on the root surfaces. Iron plaque was induced by supplying 50 mg l−1 Fe2+ in the nutrient solution for 2 day. Then 43-day-old seedlings were exposed to 10 μmol l−1 Cd together with 10 μmol l−1 Zn or without Zn (Zn–Cd experiment), or to 10 μmol l−1 Cd with 1.0 mmol l−1 P or without P (P–Cd experiment) for another 2 day. The seedlings were then harvested and the concentrations of Fe, Zn, P and Cd in dithionite–citrate–bicarbonate (DCB) extracts and in roots and shoots were determined. The dry weights of roots and shoots of seedlings treated with 50 mg l−1 Fe were significantly lower than when no Fe was supplied. Adsorption of Cd, Zn and P on the iron plaque increased when Fe was supplied but Cd concentrations in DCB extracts were unaffected by external Zn or P supply levels. Cd concentrations in shoots and roots were lower when Fe was supplied. Zn additions decreased Cd concentrations in roots but increased Cd concentrations in shoots, whereas P additions significantly increased shoot and root Cd concentrations and this effect diminished when Fe was supplied. The percentage of Cd in DCB extracts was significantly lower than in roots or shoots, accounting for up to 1.8–3.8% of the plant total Cd, while root and shoot Cd were within the ranges 57–76% and 21–40% respectively in the two experiments. Thus, the main barrier to Cd uptake seemed to be the root tissue and the contribution of iron plaque on root surfaces to plant Cd uptake was minor. The changes in plant Cd uptake were not due to Zn or P additions altering Cd adsorption on iron plaque, but more likely because Zn or P interfered with Cd uptake by the roots and translocation to the shoots.  相似文献   

13.
Pinus sylvestris seedlings infected with either the ectomycorrhizal (ECM) fungus Paxillus involutus or Suillus variegatus were exposed to a range of Cd or Zn concentrations. This was done to investigate the relationship between the sensitivity of ECM fungi and their host plants over a wide range of concentrations. P. involutus ameliorated the toxicity of Cd and Zn to P. sylvestris with respect to root length, despite significant inhibition of ECM infection levels by Cd (Cd EC50 [effective concentration which inhibits ECM infection by 50%] values were: P. involutus 3.7 μg g-1 Cd; S. variegatus 2.3 μg g-1 Cd). ECM infection by P. involutus also decreased Cd and Zn transport to the plant shoots at potentially toxic concentrations and also influenced the proportion of Zn transported to the roots and shoots, with a higher proportion retained in the roots of the seedlings. ECM infection did increase host biomass production, but this was not affected by the presence of Cd or Zn. Root and shoot biomass production by P. sylvestris, in both the presence and absence of ECM fungi, was unaffected by Cd and Zn at all concentrations tested. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
Since agricultural crops contribute >70% of human cadmium (Cd) intake, modification of crops to reduce accumulation of this pollutant metal during plant growth is desirable. Here we describe Cd accumulation characteristics of seedlings and field grown tobacco plants expressing the Cd-chelating protein, mouse metallothionein I. The objective of the transformation is to entrap Cd in roots as Cd-metallothionein and thereby reduce its accumulation in the shoot. Transformed and control seedlings were exposed for 15 days in liquid culture at a field soil-solution-like Cd concentration of 0.02 μm. Transformed seedlings ofNicotiana tabacum cultivar KY 14 contained about 24% lower Cd concentration in shoots and about 5% higher Cd concentration in roots than control seedlings. Dry weights of transformed and control tissues did not differ significantly. In the field in 1990, mature transformedN. tabacum cv. KY 14 plants exposed only to endogenous soil Cd contained about 14% lower leaf lamina Cd concentration than did controls. Differences were significant at thep≤0.1 level in 13 of 16 leaf positions. Leaf dry weight did not differ significantly but transformed field plants had 12% fewer leaves and were 9% shorter than the controls. Copper (Cu) concentration was significantly higher (ca10%) in the bottom nine leaf positions of transformed plants suggesting that reduced leaf number and plant height may be due to Cu deficiency or toxicity. Alternatively, somaclonal variation or gene position effects may be involved. No differences were found in zinc levels. WithN. tabacum cv. Petit Havana, transformed seedlings contained no less Cd in shoots but 48% higher Cd concentration in roots. However, dry weights of shoots and roots of transformed seedlings were 25% and 26%, respectively, greater than in controls. In the field, transformed and control plants of this cultivar showed little significant differences in leaf Cd content, plant height or leaf number. Although comparison of additional metallothionein-expressing tobaccos and other plants is needed, results obtained with cultivar KY 14 support the hypothesis that sequestration of Cd in roots as Cd-metallothionein may have potential for reducing Cd content of above root tissues of certain plants.  相似文献   

15.
This work was performed to find out if metal resistant clones of Salix viminalis L. are capable to achieve high resistance to the metals by regulating their net accumulation. Salix clones with low or high resistance in combination with low or high accumulation capacity of either Zn or Cd were cultivated from cuttings in nutrient solution. The investigation included leakage and uptake experiments using 65Zn or 109Cd and analysis of root cation exchange capacity (CEC). Some plants were pre-treated with unlabeled 0.5 μM Cd or 2.5 μM Zn 24 h prior to the experiments to induce possible tolerance mechanisms. To find out if the regulation was a metabolic process, experiments were also performed with 2,4-dinitrophenol (DNP). Clones with high resistance and low Cd accumulation had higher efflux of Cd compared to the other clones, in both untreated and Cd pre-treated plants. This indicates a constitutive property to lower Cd accumulation by high Cd leakage. Pre-treatment with 0.5 μM Cd diminished the Cd net uptake to a level near zero in all clones, likely to be due to decreased the Cd uptake. In contrast, resistant clones with high Cd accumulation had the highest root CEC, which may be used to bind up Cd in the free space. No clear regulation of Zn net uptake was found in Zn-resistant clones. Pre-treatment with Zn decreased the uptake of Zn into the free space in Zn-resistant clones. The resistant high-accumulating clones, however, showed the highest leakage of Zn in both untreated and pre-treated plants, a constitutive process not related to high accumulation. Neither the influx nor the efflux of Cd or Zn was affected by DNP indicating passive transport across the plasma membrane.  相似文献   

16.
Three amaranth hybrids (Amaranthus paniculatus f. cruentus (Vishnevyi dzhem), A. paniculatus (Bronzovyi vek), and A. caudatus f. iridis (Izumrud) were grown in the climate-controlled chamber on Jonson nutrient medium supplemented with 2 μM Fe3+-EDTA. When plants developed 5–6 true leaves (six-week-old plants), NiCl2 was added to medium to final concentrations of 0 (control), 50, 100, 150, 200, and 250 μM. In 6 days, the increment in biomass of young and mature leaves, stems, and roots, and also the contents of Ni and Fe in them were measured. The red leaf amaranth hybrid Vishnevyi dzhem manifested the highest phytoremediation potential. i.e., the highest capacity for Ni accumulation in the shoots and the most pronounced symptoms of Fe deficit. In the presence of 150 and 250 μM NiCl2 in medium, the shoots of these plants contained about 2 and 4 mg Ni/g dry wt, respectively. In experiments with Fe deficit in plants grown for a week in the presence of NiCl2 (0, 25, 50, 75, and 100 μM), it was established that all tested nickel concentrations suppressed iron reduction in intact roots, which is catalyzed by ferric-chelate reductase, and this may underlie the antagonism between the two metals. In the presence of 50 μM NiCl2 in medium and 2 μM Fe3+ (Fe deficit) and especially 100 μM Fe3+ (Fe excess), the content of MDA and proline in leaves increased and superoxide dismutase was activated; this indicates a development of oxidative stress. Leaf treatment with polyamines (putrescine or spermidine) with aminoguanidine (the inhibitor of H2O2 generation at polyamine oxidation) and with 1,3-diaminopropane led to the increase in nickel accumulation in leaves but did not result in the appearance of any signs of injury. This confirms our previous suggestion that polyamines manifest their protectory action as Ni chelators and detoxicants.  相似文献   

17.
Korenkov V  Hirschi K  Crutchfield JD  Wagner GJ 《Planta》2007,226(6):1379-1387
Sequestration mechanisms that prevent high concentrations of free metal ions from persisting in metabolically active compartments of cells are thought to be central in tolerance of plants to high levels of divalent cation metals. Expression of AtCAX2 or AtCAX4, which encode divalent cation/proton antiporters, in Nicotiana tabacum cv. KY14 results in enhanced Cd- and Zn-selective transport into root tonoplast vesicles, and enhanced Cd accumulation in roots of plants exposed to moderate, 0.02 μM Cd in solution culture (Korenkov et al. in Planta 225:403–411, 2007). Here we investigated effects of expressing AtCAX2 and AtCAX4 in the same lines on tolerance to growth with near-incipient toxicity levels of Cd, Zn and Mn. Less growth inhibition (higher tolerance) to all three metals was observed in 35S::AtCAX2 and FS3::AtCAX4 expressing plants. Consistent with the tolerance observed for Cd was the finding that while root tonoplast vesicle proton pump activities of control and FS3AtCAX4 expressing plants grown in 3 μM Cd were similarly reduced, and vesicle proton leak was enhanced, root tonoplast vesicle antiporter activity of these plants remained elevated above that in controls. We suggest that CAX antiporters, unlike tonoplast proton pump and membrane integrity, are not negatively impacted by high Cd, and that supplementation of tonoplast with AtCAX compensates somewhat for reduced tonoplast proton pump and proton leak, and thereby results in sufficient vacuolar Cd sequestration to provide higher tolerance. Results are consistent with the view that CAX2 and CAX4 antiporters of tonoplast play a role in tolerance to high, toxic levels of Cd, Zn, and Mn in tobacco.  相似文献   

18.
Cadmium (100, 400 and 1000 μM CdCl2) treatments resulted in the inhibition of root dry biomass, root elongation and increased Cd accumulation in wheat (Triticum aestivum L.) roots. Further, these treatments decreased relative water content, chlorophyll content, 14CO2-fixation, activities of phosphoenolpyruvate carboxylase and ribulose-1,5-bisphosphate carboxylase and abscisic acid content while increased malondialdehyde, hydrogen peroxide and free proline contents. Chloroplast and root ultrastructure was also changed. Pretreatment of seeds with SA (500 μM) for 20 h resulted in amelioration of these effects.  相似文献   

19.
The effects of increase copper concentrations in medium (10–150 μM CuSO4) on growth and viability of the roots of two-week-old soybean seedlings (Glycine max L., cv. Dorintsa) were studied. Copper excess suppressed biomass accumulation and linear plant growth; copper affected root growth much stronger than shoot growth. The presence of 10 μM CuSO4 in medium suppressed accumulation of plant biomass by 40% and the root length by 70%; in the presence of 25 μM CuSO4, these indices were equal to 80 and 90%, respectively. In the presence of 50 μM CuSO4, roots ceased to grow but biomass and shoot length still increased slightly. 150 μM CuSO4 was lethal for plants. The earliest sign of excessive copper toxicity was the accumulation of MDA, indicating activation of membrane lipid peroxidation. A significant increase in MDA content was observed at plant incubation in medium with 10 μM CuSO4 for 1 h; in this case, the content of copper in the roots increased from 36 ±1.8 (in control) to 48 ± 2.4 μg/g dry wt. The number of dead cells (permeable for the dye Evans Blue) was doubled in the presence of 200 μg/g dry wt within the root; this occurred in 72 h of growth in medium with 10 μM CuSO4, in 6 h at 25 μM CuSO4, in 3 h at 50 μM CuSO4, and 1 h at 150 μM CuSO4. Toxicity of copper excess was manifested stronger in dividing and elongation cells of the root apex (root meristem and the zone of elongation) than in more basal root regions. Copper excess resulted in the formation of breaks in the surface cell layers of the root tips and affect root morphology. When plant grew in medium with 10 μM CuSO4, a distance of lateral root formation zone from the root tip decreased markedly, and spherical swellings were formed on the tips of lateral roots. The higher copper concentrations (50 and 150 μM) suppressed completely the development of lateral roots.  相似文献   

20.
Zn and Fe are essential nutritional elements in plants and play important roles in various physiological processes of plants. Zn and Fe are chemically similar to cadmium (Cd); therefore, Zn and Fe may mediate Cd-induced physiological or metabolic changes in plants. In order to evaluate the interaction between Cd, Zn and Fe, we conducted a hydroponics experiment to determine the plant biomass, photosynthetic characteristics, and Cd accumulation of ten ramie cultivars under Zn/Fe-sufficient or Zn/Fe-deficient conditions in the presence of 32 µM CdCl2. Ramie varied among cultivars in morpho-physiological response to Cd stress as well as Cd accumulation, translocation and distribution. Zn and Fe deficiency increased the concentration and amount of Cd in plant organs, but decreased TFstem to leaf and TFroot to stem. Cultivars with more Cd in roots and shoots showed smaller increase in Cd accumulation under Zn and Fe-deficiency stress. Xiangzhu 7 and Duobeiti 1 showed a higher capacity of Cd accumulation in their shoots. Zn and Fe deficiency decreased Pn, but increased Ci, Gs, and E in most cultivars. The difference in Cd translocation among ramie cultivars was mainly ascribed to the difference in plant transpiration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号